正弦定理说课稿

合集下载

正弦定理说课稿

正弦定理说课稿

正弦定理说课稿【正弦定理说课稿】一、引入正弦定理是高中数学中的重要概念之一,它能够匡助我们解决在三角形中已知某些边长和夹角的情况下,求解其他未知边长或者夹角的问题。

本次说课将环绕正弦定理的定义、推导以及应用展开,匡助学生深入理解正弦定理的原理和应用方法。

二、概念讲解1. 正弦定理的定义正弦定理是指在任意三角形ABC中,三条边a、b、c与其对应的角A、B、C之间满足以下关系:a/sinA = b/sinB = c/sinC2. 推导过程为了匡助学生理解正弦定理的推导过程,我们可以通过绘制一个任意三角形ABC,并在三边上标注对应的边长a、b、c和夹角A、B、C,然后利用三角形的面积公式S = 1/2 * a * b * sinC,结合三角形ABC的高度h,可以得到以下推导过程:a/sinA = b/sinB = c/sinC = 2R (其中R为三角形外接圆的半径)三、应用举例1. 已知两边和夹角,求第三边例如,已知三角形ABC的两边长分别为a = 5cm,b = 7cm,夹角A = 60°,我们可以利用正弦定理求解第三边c:c/sinC = a/sinAc/sinC = 5/sin60°c/sinC = 5/(√3/2)c/sinC = 10/√3c ≈ 10/√3 * sinCc ≈ 10/√3 * sin(180° - 60° - C)c ≈ 10/√3 * sin(120° - C)2. 已知两边和夹角,求其他夹角例如,已知三角形ABC的两边长分别为a = 6cm,b = 8cm,夹角A = 45°,我们可以利用正弦定理求解夹角B和夹角C:a/sinA = b/sinB6/sin45° = 8/sinB6/√2 = 8/sinBsinB = 8/6 * √2sinB ≈ 0.9428B ≈ arcsin(0.9428)3. 已知三角形的三边长,求角度例如,已知三角形ABC的三边长分别为a = 5cm,b = 7cm,c = 8cm,我们可以利用正弦定理求解夹角A、夹角B和夹角C:a/sinA = b/sinB = c/sinC5/sinA = 7/sinB = 8/sinCsinA = 5/7 * sinBsinC = 8/7 * sinBsinA + sinB + sinC = 5/7 * sinB + sinB + 8/7 * sinB = 1sinB = 7/20B ≈ arcsin(7/20)四、教学方法与策略1. 概念讲解结合实例:通过引入正弦定理的定义,结合具体的应用实例,匡助学生理解定理的意义和应用方法。

2024正弦定理的说课稿范文

2024正弦定理的说课稿范文

2024正弦定理的说课稿范文初中数学《正弦定理》的说课稿一、说教材1、《正弦定理》是初中数学七年级上册第四章第六节的内容。

它是在学生已经掌握了三角形的基本概念和性质的基础上进行教学的,是初中数学几何领域中的重要知识点,而且正弦定理在解决实际问题中有着广泛的应用。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学知识,我制定了以下三点教学目标:①认知目标:了解正弦定理的定义和条件,熟练掌握正弦定理的运用。

②能力目标:培养学生运用正弦定理解决实际问题的能力。

③情感目标:激发学生对数学的兴趣和探索精神,培养学生合作学习和思维能力。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:掌握正弦定理的定义和条件,能够正确运用正弦定理解决问题。

难点是:将实际问题转化为三角形的求解,灵活运用正弦定理求解。

二、说教法学法本节课的教学法是以问题为导向的教学法,通过引导学生思考问题,激发学生的兴趣和思维能力,培养学生自主学习和合作探究的能力。

学法是通过问题解决的方式进行学习,通过实际问题的应用,让学生主动思考和探索,提高学生的实践操作能力。

三、说教学准备在教学过程中,我将使用多媒体辅助教学,通过图像和动画的展示方式,直观地呈现教学素材,引起学生的兴趣和注意力。

同时,准备一些实际问题作为教学材料,以便学生在实际问题中应用正弦定理进行求解。

四、说教学过程新课标提出:“教学活动是师生共同参与、交往互动的过程”。

本堂课的教学过程主要包括以下环节:1. 导入新课:通过呈现一个实际问题,让学生思考如何解决该问题。

引导学生从实际问题出发,思考问题的解决方法,为正弦定理的引入做准备。

2. 正式学习:教师向学生介绍正弦定理的定义和条件,并通过示例展示正弦定理的运用方法。

让学生在教师的引导下逐步理解正弦定理的使用,掌握其求解的步骤和技巧。

3. 实际应用:设计一些实际问题,让学生运用正弦定理解决。

通过实际问题的应用,让学生加深对正弦定理的理解,并培养学生解决实际问题的能力。

人教版正弦定理说课稿(共14篇)

人教版正弦定理说课稿(共14篇)

人教版正弦定理说课稿〔共14篇〕篇1:《正弦定理》说课稿大家好,今天我向大家说课的题目是《正弦定理》。

下面我将从以下几个方面介绍我这堂课的教学设计。

一、教材分析^p本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的根本关系有亲密的'联络与断定三角形的全等也有亲密联络,在日常生活和工业消费中也时常有解三角形的问题,而且解三角形和三角函数联络在高考当中也时常考一些解答题。

因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析^p ,考虑到学生已有的认知构造心理特征及原有知识程度,制定如下教学目的:认知目的:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类根本的解三角形问题。

才能目的:引导学生通过观察,推导,比拟,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维才能,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目的:面向全体学生,创造平等的教学气氛,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及根本应用。

教学难点:两边和其中一边的对角解三角形时判断解的个数。

二、教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的开展为本,遵照学生的认识规律,本讲遵照以老师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学形式,即在教学过程中,在老师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为根本探究内容,以生活实际为参照对象,让学生的思维由问题开场,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。

三、学法指导学生掌握“观察――猜测――证明――应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。

《正弦定理》说课讲稿

《正弦定理》说课讲稿

《正弦定理》说课讲稿唐山市丰南区第二中学李立春一、学情分析:(一)教材分析:本节知识是人教版必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角关系、判定三角形的全等有密切联系,在日常生活和工农业生产中也时常有解三角形的问题,而且解三角形问题在高考当中是必考内容,因此,正弦定理和余弦定理的知识非常重要。

根据上述分析,故确定本节:教学重点:1、正弦定理的证明、内容;2、定理的基本应用;教学难点:1、正弦定理的探索及证明;2、已知两边和其中一边的对角判断解的个数问题。

(二)学生情况分析:学生在此之前已经学习了函数、三角函数有关知识,初步掌握了利用函数研究问题的重要方法,并且在初中学习三角形知识及勾股定理的基础上去探索正弦定理做好了铺垫。

经过一个学期的高中学习,学生已经初步能够从特殊的情况中发现一些规律,从而推广为一般情况。

关键是学生在这个方面的应用意识还比较淡漠,所以本节课要做好这种引导工作,学生是比较容易理解的。

这也是本节课要突出的“从特殊到一般”的课堂设计的原因,能够使学生充分地参与进来,体会到成功的喜悦。

二、教学目标:根据上述学情分析,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理,简单运用正弦定理与三角形的内角和定理解三角形的两类问题。

能力目标:引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理,培养学生的创新意识、观察能力与逻辑思维能力,体会利用所学知识向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:培养学生勇于探索、善于研究的精神,挖掘其非智力因素资源,培养其良好的数学学习品质。

调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

三、教学方法:(一)教法:1、遵循“数学学习的本质是主体(学生)在头脑中建构和发展数学认知结构的过程,是主体的一种再创造行为”的理论,遵循以学生为主体,教师为主导的指导思想,采用探究式教学法,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

正弦定理说课课件

正弦定理说课课件

正弦定理在数学竞赛中的应用
解决三角形问题
正弦定理是解决三角形问 题的重要工具,在数学竞 赛中常用于解决与三角形 有关的问题。
解决三角函数问题
正弦定理与三角函数紧密 相关,可以通过正弦定理 解决一些三角函数的问题 。
解决几何问题
正弦定理在几何问题中也 有广泛应用,可以通过正 弦定理解决一些与几何图 形有关的问题。
02 正弦定理的推导 过程
三角形中的角度与边长关系
三角形中的角度与边长关系是正弦定理的基础,通过观察和测量三角形的角度和 边长,可以发现它们之间存在一定的比例关系。
例如,在一个直角三角形中,如果已知一个锐角和对应的边长,就可以通过三角 函数计算出另一个锐角的正弦值。
利用三角函数定义推导正弦定理
05 总结与反思
正弦定理的重要性和应用价值
总结
正弦定理是三角函数中一个非常重要的定理,它揭示了三角形边长和对应角正弦值之间的关系。在几何、物理、 工程等领域有着广泛的应用。
应用价值
正弦定理可以用于解决各种与三角形相关的问题,如测量、建筑设计、机械制造等。它是数学和自然科学领域中 解决问题的重要工具之一。
三角函数在实际问题中的应用
三角函数在工程、物理、天文、航海等领域有着广泛的应用 。
在信号处理、交流电、波动等方面,三角函数也起着关键的 作用。
引入正弦定理的意义
正弦定理是三角函数中一个重要的定 理,它提供了解决三角形问题的一种 有效方法。
通过引入正弦定理,可以更好地理解 三角形的性质和特点,为解决复杂的 几何问题提供有力支持。
计算角度
已知三角形的两边及夹角 ,可以使用正弦定理计算 其他角度。
在三角恒等变换中的应用
简化表达式

《正弦定理、余弦定理》说课稿

《正弦定理、余弦定理》说课稿

《正弦定理、余弦定理》说课稿《正弦定理、余弦定理》说课稿下面是关于初中数学《正弦定理、余弦定理》说课稿范文,希望对大家有帮助!《正弦定理、余弦定理》说课稿一、教材分析正弦定理是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系,。

提出两个实际问题,并指出解决问题的关键在于研究三角形中的边、角关系,从而引导学生产生探索愿望,激发学生学习的兴趣。

在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的'问题:(1)已知两角和一边,解三角形:(2)已知两边和其中一边的对角,解三角形。

二、学情分析本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。

高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

三、教学目标1.知识与技能:(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题2.过程与方法:通过对定理的探究,培养学生发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法.3.情感、态度与价值观:(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养.四、教学重点、难点教学重点: 1.正弦定理的推导. 2.正弦定理的运用教学难点:1.正弦定理的推导. 2.正弦定理的运用.五、学法与教法学法与教学用具学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培养学生“会观察”、“会类比”、“会分析”、“会论证”的能力,资料共享平台《《正弦定理、余弦定理》说课稿》(https://www.)。

《正弦定理》说课稿

《正弦定理》说课稿

《正弦定理》说课稿《正弦定理》说课稿作为一名人民教师,通常需要用到说课稿来辅助教学,说课稿是进行说课准备的文稿,有着至关重要的作用。

优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的《正弦定理》说课稿,希望能够帮助到大家。

《正弦定理》说课稿1一、说教材正弦定理是高中新教材人教A版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之间的数量关系。

提出两个实际问题,并指出解决问题的关键在于研究三角形的边、角关系,从而引导学生产生探索愿望,激发学生的学习兴趣。

在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导,并引导学生分析正弦定理可以解决两类关于解三角形的问题: (1)已知两角和一边,解三角形; (2)已知两边和其中一边的对角,解三角形。

二、说学情本节授课对象是高二学生,是在学生学习了必修四基本初等函数和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。

高二学生对生产生活问题比较感兴趣,由实际问题出发可以激发学生的学习兴趣,使学生产生探索研究的愿望。

三、说教学目标能准确写出正弦定理的符号表达式,能够运用正弦定理理解三角形、初步解决某些测量和几何计算有关的简单的实际问题。

通过对定理的证明和应用,锻炼独立解决问题的能力和体会分类讨论和数形结合的思想方法。

通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识。

四、教学重难点正弦定理及其推导。

正弦定理的推导与正弦定理的运用。

五、说教学方法运用“发现问题——自主探究——尝试指导——合作交流”的教学方式,整堂课围绕“一切为了学生发展”的教学原则,突出:师生互动、共同探索,教师指导、循序渐进。

新课引入——提出问题,激发学生的求知欲。

掌握正弦定理的推导证明——分类讨论,数形结合动脑思考,由一般到特殊,组织学生自主探索,获得正弦定理及证明过程。

2023正弦定理说课稿_2

2023正弦定理说课稿_2

2023正弦定理说课稿2023正弦定理说课稿1一、教材分析1.教材地位和作用在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4,学生也学习了三角函数、平面向量等内容。

这些为学生学习正弦定理提供了坚实的基础。

正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。

依据教材的上述地位和作用,我确定如下教学目标和重难点2.教学目标(1)知识目标:①引导学生发现正弦定理的内容,探索证明正弦定理的方法;②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。

(2)能力目标:①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。

②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。

通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。

通过教师对例题的讲解培养学生良好的'学习习惯及科学的学习态度。

3.教学的重﹑难点教学重点:正弦定理的内容,正弦定理的证明及基本应用;教学难点:正弦定理的探索及证明;教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段二、教学方法与手段1.教学方法教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。

根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。

2.学法指导学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。

学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*
教材地位与作用:
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理的知识非常重要。

学情分析:
作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)
教学目标分析:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

教法学法分析:
教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。

让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

教学过程
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:
在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明
(四)归纳总结,简单应用
1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。

自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理
1.例1。

在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。

要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。

完了把时间交给学生。

(六)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形.
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。

我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。

在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。


(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。

布置作业,预习下一节内容。

(九)作业布置
P10习题1.1A组习题1。

创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*。

相关文档
最新文档