RLC串联谐振电路

合集下载

RLC串联和并联谐振电路谐振时的特性

RLC串联和并联谐振电路谐振时的特性

一、RLC串联谐振电路 串联谐振电路
表示RLC串联谐振电路,图12-15(b)是它 串联谐振电路, 图12-15(a)表示 - 表示 串联谐振电路 - 是它 的相量模型, 的相量模型,由此求出驱动点阻抗为
图12-15 -
ɺ U Z ( jω ) = ɺ I 1 = R + j(ωL − ) =| Z ( jω ) | ∠θ (ω ) ωC (12 − 24)
ɺ ɺ IS IS ɺ ɺ U = = = RI S Y G (12 − 42)
电路谐振时电压达到最大值,此时电阻、 电路谐振时电压达到最大值,此时电阻、电感和电容 中电流为(见下页) 中电流为(见下页)
ɺ ɺ ɺ I R = GU = I S ɺ = − j R I = − jQI ɺ ɺ U S S ω0 L jω 0 L ɺ ɺ ɺ ɺ I C = jω 0 CU = jω 0 RCI S = jQI S ɺ IL =
相当于虚短路), 由于 u(t)=uL(t)+uC(t)=0 (相当于虚短路 ,任何时刻进 相当于虚短路 入电感和电容的总瞬时功率为零, 入电感和电容的总瞬时功率为零,即pL(t)+pC(t)=0。电感和 。 电容与电压源和电阻之间没有能量交换。 电容与电压源和电阻之间没有能量交换。电压源发出的功 率全部为电阻吸收, 率全部为电阻吸收,即pS(t)=pR(t)。 。
其中
1 2 | Z ( jω ) |= R + (ωL − ) ωC 1 ωL − ωC ) θ (ω ) = arctan( R
2
(12 − 25)
(12 − 26)
1. 谐振条件 当 ωL − 1 = 0 ,即 ω=
1 LC
ωC
时,θ(ω)=0,

RLC串联谐振电路

RLC串联谐振电路

RLC串联谐振电路(1)实验目的:1.加深对串联谐振电路条件及特性的理解。

2.掌握谐振频率的测量方法。

3.理解电路品质因数的物理意义和其测定方法。

4.测定RLC串联谐振电路的频率特性曲线。

(2)实验原理:RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。

该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC) 当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。

谐振角频率ω0 =1/LC,谐振频率f0=1/2πLC。

谐振频率仅与原件L、C的数值有关,而与电阻R和激励电源的角频率ω无关,当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。

1、电路处于谐振状态时的特性。

(1)、回路阻抗Z0=R,| Z0|为最小值,整个回路相当于一个纯电阻电路。

(2)、回路电流I0的数值最大,I0=U S/R。

(3)、电阻上的电压U R的数值最大,U R =U S。

(4)、电感上的电压U L与电容上的电压U C数值相等,相位相差180°,U L=U C=QU S。

2、电路的品质因数Q电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即:L/Q=U L(ω0)/ U S= U C(ω0)/ U S=ω0L/R=1/R*C(3)谐振曲线。

电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。

在U S 、R 、L 、C 固定的条件下,有I=U S /22)C 1/-L (ωω+RU R =RI=RU S /22)C 1/-L (ωω+R U C =I/ωC=U S /ωC 22)C 1/-L (ωω+R U L =ωLI=ωLU S /22)C 1/-L (ωω+R改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路电流与电阻电压成正比。

rlc串联谐振电路的谐振频率

rlc串联谐振电路的谐振频率

rlc串联谐振电路的谐振频率
中国发展迅速,政务民生信息技术的发展已经走在世界前列,RLC串联谐振电路作为一种可以实现高灵敏度、高稳定度谐振系统而迅速发展,已成为多个领域的重要技术。

今天,咱们就来简单的聊聊RLC串联谐振电路的谐振频率的知识。

RLC串联谐振电路是将电阻R、电感L和电容C,串联起来构成的一个电路,它能够输出某一固定频率的高度稳定的振幅信号,而这一固定频率就是我们所说的谐振频率。

关于RLC串联谐振电路的谐振频率可以通过以下公式计算:谐振频率=1/(2π√(LC)),其中,LC是电感和电容的乘积。

因此,RLC串联谐振电路的谐振频率是十分依赖电容和电感的乘积。

RLC串联谐振电路的谐振频率要求精度高,所以R,L,C的参数也要求精度高,否则谐振频率也就无法稳定。

一般来说,RLC串联谐振电路的谐振频率可以被成功控制在意料之中。

比如若是要使谐振频率达到1kHz,则要将L和C的参数设置为1/1000Ω,这样就可以达到预期的谐振频率。

总电路需要根据要求控制RLC 串联谐振电路的谐振频率,以保证谐振机制的工作正常,同时也是把握精确信息的关键技术手段之一,受到了众多科技的应用和广泛的关注。

因此,作为政务民生,能准确计算RLC串联谐振电路的谐振频率,以克服技术问题,将会对我国的发展和建设具有重要的影响力。

R、L、C串联谐振电路研究

R、L、C串联谐振电路研究
0
R + rL
如果ω<ω0 ,电路呈容性; ω >ω0 ,电路呈感 性。 谐振电路中,电感电压和电容电压与角频率的 关系为:
U L I L
LU i
1 2 R + L C
2
UC I
1
C

Ui
C
1 2 R + L C
2
2
2
其中,I0为谐振时的电流值,η=ω/ω0。 通用谐振曲线可通过实验方法获得,在保持函数发生器输出 电压恒定的状态下,改变函数发生器的输出频率,通过测量电阻 R上的电压,当电路谐振时,电阻R上的电压U0为最大值,此时 的频率即为电路的谐振频率。
电工电子实验教学中心
R、L、C串联谐振电路研究
I / I0 1
电工电子实验教学中心
R、L、C串联谐振电路研究
UL(ω)和UC(ω) 曲线如图所示
uC、uL
uC uL
0
0
图 RLC串联电路的UL(ω)和UC(ω) 曲线

电工电子实验教学中心
R、L、C串联谐振电路研究
品质因数Q
从理论上来说, 谐振时 L C ,电感上的电压UL与 电容上的电压UC数值相等,相位差为180º ;谐振时电感上 的电压(或电容上的电压)与电源电压之比称电路的品质 因数Q,即
• •
3、电路品质因数Q值的两种测量方法 一是根据公式
Q UL UO UC UO
R、L、C串联谐振电路研究
测定,UC与UL分别为谐振时电容器C和电感线圈L上的电压;另一方法 是通过测量谐振曲线的通频带宽度
f f 2 f1
再根据
Q fo f 2 f1

rlc串联谐振的谐振频率(3篇)

rlc串联谐振的谐振频率(3篇)

第1篇一、RLC串联谐振电路的基本原理RLC串联谐振电路由电阻R、电感L和电容C三个元件组成。

当电路中电压或电流的频率发生变化时,电路的阻抗Z也会随之变化。

当电路的阻抗Z达到最小值时,电路处于谐振状态,此时的频率称为谐振频率。

二、谐振频率的计算1. 谐振频率的定义谐振频率是指RLC串联电路在谐振状态下,电路的阻抗Z达到最小值时的频率。

在谐振状态下,电路的电流I与电压U之间的相位差为0,即电流和电压同相位。

2. 谐振频率的计算公式RLC串联电路的谐振频率可以通过以下公式计算:\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]其中,\( f_0 \)表示谐振频率,L表示电感,C表示电容。

三、谐振频率的影响因素1. 电感L和电容C谐振频率与电感L和电容C的乘积成反比。

当电感L或电容C增大时,谐振频率会减小;反之,当电感L或电容C减小时,谐振频率会增大。

2. 电阻R电阻R对谐振频率没有直接影响,但会影响电路的品质因数Q。

品质因数Q定义为:\[ Q = \frac{f_0}{\Delta f} \]其中,\( \Delta f \)表示谐振曲线的带宽。

当电阻R增大时,品质因数Q减小,电路的带宽增大,谐振频率基本不变。

四、谐振频率在实际应用中的重要性1. 选择合适的谐振频率在实际应用中,选择合适的谐振频率可以提高电路的性能。

例如,在无线通信、信号传输等领域,通过选择合适的谐振频率,可以减小信号损耗,提高传输效率。

2. 提高电路的稳定性在电路设计和分析过程中,通过调整电感L和电容C的值,可以使电路在特定的频率下达到谐振状态,从而提高电路的稳定性。

3. 优化电路性能通过调整谐振频率,可以优化电路的性能。

例如,在滤波器设计中,通过选择合适的谐振频率,可以实现对特定频率信号的滤波。

五、总结RLC串联谐振电路的谐振频率是电路设计和分析中的一个重要参数。

通过掌握谐振频率的计算方法、影响因素以及在实际应用中的重要性,有助于我们更好地进行电路设计和优化。

rlc串联谐振电路

rlc串联谐振电路

rlc串联谐振电路
RLC串联电路是电子技术中一种重要的线性电路,也叫RLC谐振电路,由电阻R、电感L、电容C三个元件串联而成。

它是一种非线性电子电路,能够形成谐振现象。

RLC串联电路可以用来检测、滤波及放大特定频率的输入信号,工作原理为当输入信号的频率接近RLC电路自身振荡频率时,RLC电路自身发生振荡,造成输入信号强度的增大,从而形成放大效果。

另外,它还可以用于滤波,可以在振荡反馈强度较小的振荡波的频率下,阻挡其他频率的信号,这样,RLC串联电路可用于滤波或波形分离。

RLC串联电路的制作并不复杂,其基本构成为一个非线性的谐振电路,由三个元件构成,只要把电阻、电感和电容按照一定的顺序串联,即可在一定频率段内形成振荡。

RLC串联电路的特点十分显著,可以提高放大器的稳定性和增益,以及抑制噪声,同时还能够抑制高谐振频率的输入信号,以实现信号的检测和滤波。

RLC串联谐振电路也可用于检测和放大一定频率段内的输入信号,具有很高的应用价值。

RLC串联电路在工程实践中有着非常广泛的应用,特别是在调制电路、振荡电路、叫声电路和转换电路中普遍应用,它已经广泛应用于电视、电台和电脑中。

总之,RLC串联谐振电路是一种重要的电子电路,它可以用来放大、检测和滤波某一定频率段的信号,广泛应用于许多工程实践中,具有重要的理论及应用价值。

RLC串联和并联谐振电路谐振时的特性

RLC串联和并联谐振电路谐振时的特性

其值称为谐振电路的特性阻抗,用表示,即
0L
1
0C
L C
(12 29)
2. 谐振时的电压和电流
RLC串联电路发生谐振时,阻抗的电抗分量
导致
X
ω
0 L ω
1 0C
0
Z ( j0 ) R (12 30)
即阻抗呈现纯电阻,达到最小值。若在端口上外加电
压源,则电路谐振时的电流为
I US US ZR
CU
2 C
LI
2 L
L U S R
2
(12 37)
可以从能量的角度来说明电路参数 R、L、C变化对电
感和电容电压UL= UC的影响。若电阻 R减小一半,或电感
L增加到4倍( Q 1
R
L C
增加一倍),则总能量
W
LU
2 S
/
R 2增
加到4倍,这将造成电压UL=UC增加一倍。若电容 C减少到
l/4( Q增加一倍), W CU总C2 能量不变,而电压UL= UC增
0
1 LC
1
rad/s 10 6 rad/s
10 4 10 8
(2)电路的品质因数为
Q 0 L 100
R

UL UC QU S 100 10V 1000 V
二、RLC并联谐振电路
图 12-19(a) 所 示 RLC 并 联 电 路 , 其 相 量 模 型 如 图 1219(b)所示。
能量在电感和电容间的这种往复交换,形成电压和电
流的正弦振荡,这种情况与 LC串联电路由初始储能引起的
等幅振荡相同(见第九章二阶电路分析)。其振荡角频率
ω 0=
1 LC
,完全由电路参数L和C来确定。

RLC串联谐振的频率与计算公式

RLC串联谐振的频率与计算公式

RLC串联谐振的频率与计算公式RLC串联谐振是指在电路中,电感、电容、电阻依次串联连接,产生共振现象的一种电路类型。

在串联谐振电路中,电感、电容、电阻的三个元件相互耦合,相互作用。

当谐振电路得到外加电源的激励时,由于电容器和电感器相互储存和释放能量的特性,电路中的能量在电容和电感之间进行交换。

当电容和电感器中储存的能量达到最大时,电路达到谐振状态。

在谐振状态下,电路中的阻抗最小,电流和电压振幅达到最大值,电路中的能量也达到最大。

1.电感的自谐振频率ω0:电感的自谐振频率是指在没有电容和电阻的情况下,电感本身的固有频率。

它可以通过电感器的电感值L计算得到,表达式如下:ω0=1/√(LC)其中,ω0为电感的自谐振频率,L为电感器的电感值,C为电容器的电容值。

2.电感和电容串联后的谐振频率ω:在串联谐振电路中,电感和电容器是串联连接的,它们的串联等效电容为Ceq,可以通过以下公式计算得到:Ceq = 1 / (1 / C + ω^2L)其中,Ceq为电感和电容的串联等效电容,C为电容器的电容值,L为电感器的电感值,ω为电路的振荡频率,可以通过以下公式得到:ω = 1 / √(L(Ceq - C))3.总电阻下的谐振频率:在实际电路中,会有一定的电阻存在,对电路产生一定的阻碍作用。

因此,在计算谐振频率时,需要考虑电阻的影响。

根据串联谐振电路的特性,可以使用下面的公式计算总电阻下的谐振频率:ω=1/√(LC-R^2/4L^2)其中,ω为电路的振荡频率,L为电感器的电感值,C为电容器的电容值,R为电阻器的电阻值。

4.响应振幅及相移:在串联谐振电路中,电压和电流的相位差及振幅也是非常重要的参数。

在电压与电流相位差为0并且振幅最大时,电路达到谐振状态。

在谐振频率下,电路响应的振幅可以通过以下公式计算得到:VR=I*R其中,VR为电压振幅,I为电流振幅,R为电阻的电阻值。

此外,电压相位差可以通过以下公式计算得到:θ = arctan((1 / ωC - ωL) / R)总的来说,RLC串联谐振的频率与计算公式主要包括电感的自谐振频率、电感和电容串联后的谐振频率、总电阻下的谐振频率,以及电压响应振幅及相位差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《模拟电子技术实验》课程
实验报告
实验项目:R,L,C串联谐振电路
姓名:*** 学号:***
学院:信息学院专业:物联网工程指导教师:*** 日期:2018.6.10
一.实验目的
1.学习R ,L ,C 串联电路的幅频特性曲线
2.学会利用公式计算R,L,C 串联电路的谐振频率f 0和品质因素Q,以及通频带宽Δf
3.学会利用示波器读出R ,L ,C 串联电路谐振频率f 0
二.实验仪器
1.示波器
2.DGJ-1电工试验台
三.实验内容涉及的基本理论
1. 在如左图所示的R 、L.C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。

取电阻R 上的电压u 。

作为响应,当输入电压u 的幅值维持不变时,在不同频率的信号激励下,测出Uo 之值,然后以f 为横坐标,以Uo/Ui;为纵坐标(因Ui 不变,故也可直接以Uo 为纵坐标),绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如右图所示。

2.在f=fo=
LC
π21
处,即幅频特性曲线尖峰所在的频率点称为谐振频率。

此时X L =X C ,电
路呈纯阻性,电路阻抗的模为最小。

在输入电压Ui 为定值时,电路中的电流达到最大值,
且与输入电压Ui 同相位。

从理论上讲,此时Ui=U R =Uo,U L =U C =QUi,式中的Q 称为电路的品质因数。

3、电路品质因数Q 值的两种测量方法一是根据公式Q=
O L U U =O
C
U U 测定,Uc 与U L 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐
振曲线的通频带宽度Δf=f 2-f 1,
再根据Q=fo/(f2-f1) 求出Q 值。

式中f1为谐振频率,f2和f1是失谐时,亦即输出电压的幅度下降到最大值的1/2 (2=0.707)倍时的上、下频率点。

Q值越大,曲线越尖锐,
通频带越窄,电路的选择性越好。

在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。

四.实验内容及数据
1.基本电路图
2.先求出谐振频率,再求出f2,f1,在这之中再取几组不同的频率进行测量
表一:R=500Ω
表二:R=1KΩ
五.实验思考
1. 对于RLC 串联电路,在f=fo=
LC
π21
处,为谐振频率,在发生谐振时,电路的阻抗有
最小值,)1
(j C
L R Z ωω-
+=,此时,电路阻抗为电阻阻值。

2. 通频带宽:Δf=f 2-f 1越小,允许通过的波的范围就越小,用来制作滤波器的效果就更好。

相关文档
最新文档