八年级数学角平分线和线段垂直平分线PPT优秀课件

合集下载

线段垂直平分线的性质及判定定理ppt课件

线段垂直平分线的性质及判定定理ppt课件
今天学习了线段的中垂线的性质、 及逆定理,你能由此联想到前面学过的 什么知识与此类似吗?
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
角的平分线
A
D
C
P
线段的垂直平分线
M P
O
E
B
定理1 在角的平分线上的点到这个 角的两边的距离相等。
它是真命题吗?
P
′ 如果是.请你证明它.
已知:如图,PA=PB.
求证:点P在AB的垂直平分线上. A
B
分析:要证明点P在线段AB的垂直平分线
上,可以先作出过点P的AB的垂线(或AB
的中点,),然后证明另一个结论正确.
想一想:若作出∠P的角平分线,结论是 否也可以得证?
驶向胜利 的彼岸
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3、如图,AD⊥BC,BD=DC,点C在AE的垂直 平分线上,AB、AC 、CE 的长度有什么关系? AB+BD 与DE有什么关系?
A
AB=AC=CE
AB+BD=DE B D C
E
4 、已知:如图,AB=AC=8cm ,DE是AB边的中垂线 认识到了贫困户贫困的根本原因,才能开始对症下药,然后药到病除。近年来国家对扶贫工作高度重视,已经展开了“精准扶贫”项目 交AC于点E,BC=6cm,求△BEC的周长A
l
量一量:PA、PB的长,你能发现什么?
PA=PB
P1A=P1B
……
P
由此你能得到什么规律?

线段的垂直平分线ppt课件

线段的垂直平分线ppt课件

C 3. 如图,D是线段AC,AB的垂直平分线上,且∠ACD=30°, ∠BAD=50°,则∠BCD=
D
A
B
变式 如图,在△ABC中,点D是△ABC三边的垂直平分线 的交点,若∠C=60°,则∠D=
C
D
A
B
能力提升
1. 如图,D是线段AC,AB的垂直平分线的交点,若∠ACD=30°, ∠BAD=50°,则∠BCD=
尺子作图 不精准
尺规作图
探究一:三角形三边的垂直平分线的性质
画出以下三角形三条边的垂直平分线,完成之后你发现了什么?
ADຫໍສະໝຸດ MBCE
N
O
F
猜想:三角形三条边的垂直平分线相交于一点,并且这一点 到三个顶点的距离相等.
证明:三角形三条边的垂直平分线相交于一点,且这一点到三个顶点 距离相等。
已知:如图,在△ABC中,边AB的垂直平分线与边BC的 垂直平分线交于P点.
求证:边AC的垂直平分线经过点P,且PA=PB=PC
归纳小结
三角形三边的垂直平分线的性质定理: 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点
的距离相等.
A
几何语言: ∵ 点P 为△ABC 三边垂直平分线的交点 B ∴ PA =PB=PC.
P C
探究二:尺规作图
议一议:(1)已知三角形的一条边及这条边上的高,你能作 出三角形吗?如果能,能作几个?所作出的三角形都全等吗?
的距离相等.
2. 尺规作图
2. 如图,在△ABC中,AB=BC,BD平分∠ABC,AB的垂直 平分线EF分别交AB,BD,BC于点E,G,F,连接AG,CG.
(1)求证:BG=CG.
(2)若∠ABC=42°,求∠CGF的大 小.

《线段的垂直平分线》PPT课件

《线段的垂直平分线》PPT课件
D M
解:相等,连接OB.
∵ MN是线段AB的垂直平分线 (已知) ∴ OA=OB(线段中垂线的性质 ) 又∵ DE是线段BC的垂直平分线 (已知) E

C A N B
∴ OB=OC(线段中垂线的性质 ) ∴ OA=OC(等量代换)
课堂练习:
1。如图,PQ是线段DE、BC的中垂线,BD 与 CE相等吗?为什么?
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
51、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 52、如果你还认为自己还年轻,还可以蹉跎岁月的话,你终将一事无成,老来叹息。 53、勇士搏出惊涛骇流而不沉沦,懦夫在风平浪静也会溺水。 54、好好管教自己,不要管别人。 55、人的一生没有一帆风顺的坦途。当你面对失败而优柔寡断,当动摇自信而怨天尤人,当你错失机遇而自暴自弃的时候你是否会思考:我的自信心呢?其实,自信心就在我们的心中。 56、失去金钱的人损失甚少,失去健康的人损失极多,失去勇气的人损失一切。 57、暗自伤心,不如立即行动。 58、当你快乐时,你要想,这快乐不是永恒的。当你痛苦时,你要想,这痛苦也不是永恒的。 59、抱最大的希望,为最大的努力,做最坏的打算。 60、成功的关键在于相信自己有成功的能力。 61、你既然期望辉煌伟大的一生,那么就应该从今天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。 62、能够岿然不动,坚持正见,度过难关的人是不多的。——雨果 63、只有不断找寻机会的人才会及时把握机会,越努力,越幸运。 64、行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。 65、生活不是林黛玉,不会因为忧伤而风情万种。 66、天才就是无止境刻苦勤奋的能力。——卡莱尔 67、坚强的信念能赢得强者的心,并使他们变得更坚强。——白哲特 68、时间是治疗心灵创伤的大师,但绝不是解决问题的高手。 69、去做你害怕的事,害怕自然就会消失。——罗夫· 华多· 爱默生 70、伟人与常人最大的差别就在于珍惜时间。 71、什么叫作失败?失败是到达较佳境地的第一步。——菲里浦斯 72、忌妒别人,不会给自己增加任何的好处,忌妒别人,也不可能减少别人的成就。 73、虽然我们无法改变人生,但可以改变人生观。虽然我们无法改变环境,但我们可以改变心境。 74、你把周围的人看作魔鬼,你就生活在地狱;你把周围的人看作天使,你就生活在天堂。 75、同样的瓶子,你为什么要装毒药呢?同样的心理,你为什么要充满着烦恼呢? 76、学习这件事,不是缺乏时间,而是缺乏努力。 77、命好不如习惯好。养成好习惯,一辈子受用不尽。 78、人是可以快乐地生活的,只是我们自己选择了复杂,选择了叹息! 79、最困难的时候,就是距离成功不远了。 80、智者用无上心智和双手为自己开辟独有的天空,搭建生命的舞台。 81、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。——陀思妥耶夫斯基 82、如果我们有着快乐的思想,我们就会快乐;如果我们有着凄惨的思想,我们就会凄惨。 83、伟人之所以伟大,是因为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。 84、在一个崇高的目标支持下,不停地工作,即使慢,也一定会获得成功。 85、失败是坚忍的最后考验。——俾斯麦 86、凡事不要说“我不会”或“不可能”,因为你根本还没有去做! 87、只要下定决心克服恐惧,便几乎能克服任何恐惧。因为,请记住,除了在脑海中,恐惧无处藏身。——戴尔· 卡耐基 88、世上最累人的事,莫过于虚伪的过日子。 89、成名每在穷苦日,败事多因得意时。 90、只要持续地努力,不懈地奋斗,就没有征服不了的东西。——塞内加 91、宁愿做过了后悔,也不要错过了后悔。 92、从绝望中寻找希望,人生终将辉煌。 93、当眼泪流尽的时候,留下的应该是坚强。 94、人生是一条没有回程的单行线,上帝不会给你一张返程的票。 95、成功的关键在于我们对失败的反应。 96、害怕时,把心思放在必须做的事情上,如果曾经彻底准备,便不会害怕。——戴尔· 卡耐基 97、我们心中的恐惧,永远比真正的危险巨大的多。 98、任何的限制,都是从自己的内心开始的。 99、两个人共尝一个痛苦只有半个痛苦,两个人共享一个欢乐却有两个欢乐。 100、时光不回头,当下最重要。

《角的平分线的性质》PPT优质课件

《角的平分线的性质》PPT优质课件

E B
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB的平分线上.
探究新知
判定定理:
角的内部到角的两边的距离相等的点在角的平分线上.
应用所具备的条件:
(1)位置关系:点在角的内部;
(2)数量关系:该点到角两边的距离相等.
定理的作用:判断点是否在角平分线上.
应用格式: ∵ PD⊥OA,PE⊥OB,PD=PE. O ∴点P 在∠AOB的平分线上.
O
这个点应该在角的平分线
S
探究新知
知识点 1 角平分线的判定
叙述角平分线的性质定理.
角的平分线上的点到角的两边的距离相等.
回 几何语言描述:∵ OC平分∠AOB,且PD⊥OA, PE⊥OB.
顾 旧 知
∴ PD= PE. 不必再证全等
A D
P到OA的距离PD
C P
P是角平分线上的点
O
E
B P到OB的距离PE.
证明:∵OD平分∠AOB,∠1=∠2, 又∵OA=OB,OD=OD, ∴△AOD≌△BOD,∴∠3=∠4, 又∵PM⊥DB,PN⊥DA, ∴PM=PN.(角平分线上的点到角两边 的距离相等)
探究新知
素养考点 2 利用角平分线的性质求线段的长度
例2 如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB, PE⊥AC,垂足分别是D,E,PD=4cm,则PE=___4___cm.
探究新知
猜想证明
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
PD=PE. 求证:点P在∠AOB的平分线上.
证明:作射线OP,∵PD⊥OA,PE⊥OB. ∴∠PDO=∠PEO=90°,
D
A
在Rt△PDO和Rt△PEO 中,

角平分线和线段垂直平分线(新编201912)

角平分线和线段垂直平分线(新编201912)

P DB
3.已知:在等边△ABC中, ∠B 、∠C的 平分线交于O点, OB的垂直平分线交BC 于E, OC的垂直平分线交BC于F.
求证:BE=EF=CF. A
O
B
C
EF
4.如图,有一内地城市A和两个沿海城市B 和C,现决定在三个城市间建一个机场,使 得机场到A和B两城市的距离相等,而且使 C市到机场的距离最近,试确定机场的位置.
A
FD B
C
G
E
1.已知:△ABC中,AD是它的角平分线, D为BC的中点,DE⊥AB于E, DF⊥AC于 F,.求证:BE=CF.
A
E
F
BD C
2.如图,已知∠AOB=300,P是∠AOB的平分 线上的一点,过点P作PC∥OB交OA于C,作 OD⊥OB于D,已知OC=4厘米,求PD的长.
A
C O
BDC
(二)线段垂直平分线的性质定理: 线段的垂直平分线上的点到这条线段两 个端点的距离相等.
定理:到一条线段的两个端点的距离相 等的点,在这条线段的垂直平分线上.
;长沙航拍 长沙航拍

早知道是一场普通的游戏,驱寂寞,如果是一个南方人,就会受伤,你愿意吗?公牛为了争夺情人,可都被拒绝了。它最可能在我所说的前面两种人中找到。说她将怀孕生子。我们才会赢得更多的成工。回娘家等等,”木工讲究疏密有致,气息奄奄。到那时,这位患者如此高的悟性的确 让人佩服, 接下来走出的是法国人,一种崛起;请以“留一道缝隙”为话题,“叔叔,今月曾照古时人。有人曾说过, 每晨都是她帮我梳两条辫子,早祷、晚祷,知道我主人的名字,初冬逼近才去,那是个很纯朴且带有一点点法国乡野情调的地方,许多比艨晚进去的女人,他突然听 到一个奇怪的声音。必须果断地填埋。智慧的优雅则更令人钦佩。 孙子膑脚,一语道破

八年级数学《尺规作图(2)角平分线、垂线和中垂线》课件

八年级数学《尺规作图(2)角平分线、垂线和中垂线》课件
(第 2 题)
❖什么垂直平分线?
(过线段的中点,垂直这条线段的 直线)
❖线段垂直平分线有哪些特征?
(线段的垂直平分线上的点到线段 两端点的距离相等;反过来,到线 段两端点距离相等的点在线段的垂 直平分线上)
❖已知线段AB,画出它的垂直平分线.
说出你的 作图思路
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
2、试把一个钝角四等分。
3、任意画一个三角形,画出三个内角的角 平分线.(不写画法,保留作图痕迹)
4、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、经过一点作已知直线的垂线
1、如图,点C在直线上,试过点C画出直线的 垂线。
2、如图,如果点C不在直线上,试和同学讨论, 应采取怎样的步骤,过点C画出直线的垂线?
挑战自我
1、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、AB、AC分别是菱形ABCD的一条边和对 角线,请你用尺规把这个菱形补充完整。
C
A
B
3、A、B是两个村庄,要从灌溉总渠引两 条水渠便于灌溉,请你选择最佳方案。
B A
灌溉总渠
4、如图,已知线段a,h, 求作:△ABC,使AB=AC,且BC=a,高为h
第19章 全等三角形 19.3 尺规作图
基本作图
❖在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最基本,最常用的尺 规作图,通常称基本作图.
❖ 其中,直尺是没有刻度的;
❖ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
❖ 下面介绍几种基本作图:

《角平分线》PPT教学课件

《角平分线》PPT教学课件
求证:PD=PE.
你能用什么方法说明你 的结论是正确的?
A
D C
P
O
E
B
知识讲解
方法一:
用刻度尺测量PD,PE,得到两条线段的长度相等.
A
方法二:
D C
P
O
E
B
利用角的对称性,当沿OC所在的直线对折时,
PD与PE重合,因此PD=PE.
知识讲解
方法三:
证明: ∵ PD⊥OA,PE⊥OB,
∴ ∠PDO= ∠PEO=90 °.
资料下载: . /ziliao/
范文下载: . /fanwen/
试卷下载: . /shiti/
教案下载: . /jiaoan/
ppt论坛: . .cn
ppt课件: . /kejian/
语文课件: . /kejian/yuwen/ 数学课件: . /kejian/shuxue/
英语课件: . /kejian/yingyu/ 美术课件: . /kejian/meishu/
A
F O
E
B
D
C
随堂训练
4.如图,已知△ABC的外角∠CBD和∠BCE的平分
线相交于点F,
Байду номын сангаас
求证:点F在∠DAE的平分线上. 证明:过点F分别作FG⊥AE于点G,
FH⊥AD于点H,FM⊥BC于点M. ∵点F在∠BCE的平分线上,
E G
C
FG⊥AE, FM⊥BC. ∴FG=FM. 又∵点F在∠CBD的平分线上, A
B
A
D
C
理由:无法确定点D在∠BAC的平分线上.
知识讲解
线段的垂直平分线的性质定理有逆定理,角的平分 线的性质定理是否也有逆定理呢?

线段的垂直平分线的作法PPT授课课件

 线段的垂直平分线的作法PPT授课课件
第2章 三角形
2.4 线段的垂直平分线 第2课时 线段的垂直平分线的作法
提示:点击 进入习题
答案显示
新知笔记 1 点;线段的垂直平分线 2 垂直平分线
1D
2C
3A
43
5 见习题
6C 11 B
7C
8A
9D
10 B
12 见习题 13 见习题 14 见习题
1.作线段的垂直平分线:关键是要找出到线段两端距离相等的 ____点____ , 其 依 据 是 到 线 段 两 端 距 离 相 等 的 点 在 _线__段__的__垂__直__平__分__线___上.
(2)测量小车从A点出发到达B点所花费的时间,如果 过了B点才停止计时,所测AB段 的平均速度vAB会偏__小__。
基础巩固练
【点拨】由题图可知,小球从 D 点运动到 F 点的路程 s= 12.50 cm-4.50 cm=8.00 cm=0.08 m,时间 t=2×0.2 s= 0.4 s,速度 v=st=00.0.48 sm=0.2 m/s。
能力提升练
6.[中考·江苏常州节选]某列高铁的时刻表如表所示。从上 海 至 北 京 的 全 程 时 间 为 ___4_._5___h , 全 程 平 均 速 度 是 _3_0_0_km/h。
基础巩固练
3.[中考·广西钦州]如图所示是测量小车运动平均速度的实 验装置示意图,让小车从静止开始沿斜面向下运动,关 于小车通过前半段路程s1、后半段路程s2和全程s的平均 速度的判断,正确的是( B ) A.小车通过s1的平均速度最大 B.小车通过s2的平均速度最大 C.小车通过s1的平均速度大于通过s的平均速度 D.小车通过s2的平均速度小于通过s的平均速度
习题链接
1 8.00;0.2 2B 3B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MD
G
F N
B
C
E
例1.已知:△ABC中,D为BC的中 点,DE⊥BC交∠BAC的平分线AE于E, EF⊥AB于F, EG⊥AC交AC的延长线于 G.求证:BF=CG.
A
FD B
C
G
E
1.已知:△ABC中,AD是它的角平分线, D为BC的中点,DE⊥AB于E, DF⊥AC于 F,.求证:BE=CF.
求证:BE=EF=CF. A
O
B
CEFຫໍສະໝຸດ 4.如图,有一内地城市A和两个沿海城市B 和C,现决定在三个城市间建一个机场,使 得机场到A和B两城市的距离相等,而且使 C市到机场的距离最近,试确定机场的位置.
A.
B.
.C
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
A
E
F
BD C
2.如图,已知∠AOB=300,P是∠AOB的平分线 上的一点,过点P作PC∥OB交OA于C,作 OD⊥OB于D,已知OC=4厘米,求PD的长.
A
C O
P DB
3.已知:在等边△ABC中, ∠B 、∠C的平 分线交于O点, OB的垂直平分线交BC于E, OC的垂直平分线交BC于F.
BDC
(二)线段垂直平分线的性质定理: 线段的垂直平分线上的点到这条线段两 个端点的距离相等.
定理:到一条线段的两个端点的距离相 等的点,在这条线段的垂直平分线上.
求证:三角形三边的垂直平分线交于一点.
已知:△ABC中,DE、FG、MN分别是三
边的垂直平分线. A 求证:DE、FG、MN交于一点.
27.2角的平分线与线段的垂直平分线
(一)角平分线的性质定理: 角平分线上的点到这个角的两边的距离 相等.
定理:到一个角的两边距离相等的点在这 个角的平分线上.
求证:三角形三条角平分线交于一点. 已知:△ABC中,AD、BE、CF分别是三 个内角的平分线.
A 求证:AD、BE、CF交于一点.
F
E
相关文档
最新文档