初中数学动态几何问题
初中数学动态几何问题的教学难点及措施研究

初中数学动态几何问题的教学难点及措施研究初中数学动态几何问题是初中数学教学中的重要内容,也是学生比较难掌握的知识点之一。
动态几何问题涉及到几何图形的运动和变化,需要学生具有一定的几何直觉和数学思维能力。
对于这一知识点的教学难点及措施研究显得尤为重要。
一、教学难点分析1. 几何图形的变化理解难度大动态几何问题涉及到几何图形的变化,对学生要求具有一定的空间想象能力和几何直觉。
许多学生对于几何图形的变化理解难度较大,在实际操作中很难准确地把握图形的运动和变化规律,容易产生混淆和错误。
2. 数学思维能力欠缺动态几何问题需要学生具有一定的数学思维能力,能够通过分析、推理和计算来解决问题。
许多学生数学思维能力欠缺,对于动态几何问题的解题方法和思路理解不清楚,导致在解题过程中无法形成正确的思维链条。
3. 计算方法不够灵活动态几何问题中经常需要进行一些几何计算,如长度、面积等。
许多学生在计算方法上不够灵活,往往死记硬背,缺乏较强的计算能力和技巧,导致在解题过程中准确度不高,结果不确定。
二、教学对策探讨1. 强化几何图形的变化理解针对学生对几何图形变化理解难度大的问题,教师可以通过引导学生观察几何图形的变化规律,可以借助动画、视频等多媒体手段进行展示,以帮助学生直观地理解几何图形的变化规律,从而提高他们的空间想象能力。
2. 提高数学思维能力为了提高学生的数学思维能力,教师可以采用启发式教学法,通过提出问题、引导讨论等方式,激发学生的求解欲望,帮助学生形成正确的解题思路和方法。
鼓励学生多进行数学推理和分析,培养他们的数学思维能力。
3. 提升计算方法的灵活性针对学生计算方法不够灵活的问题,教师可以引导学生掌握多种计算方法,并结合实际问题进行训练,培养学生的计算能力和灵活性。
通过讲解解题技巧和方法,帮助学生养成正确的计算习惯,提高计算的准确性和效率。
三、教学实施建议1. 结合具体情境引出问题在教学中,教师可以通过引入一些生活中的具体情境,如物体的运动、建筑的变换等,引出动态几何问题,让学生在实际情境中感受问题的意义和价值,增加他们对问题的兴趣和求解欲望。
2020年初中数学竞赛讲义:第27讲-动态几何问题透视

2020年初中数学竞赛讲义:第27讲-动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.【例题求解】【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在l上转动两次,使它转到A″B″C″的位置,设BC=1,AC=3,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A 移到点B时,A′B′的中点的位置( )A.在平分AB的某直线上移动B.在垂直AB的某直线上移动C.在AmB上移动D.保持固定不移动思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P 从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x 的关系.思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm,现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1m /秒的速度向点A运动,点F沿折线A—D—C以2cm/秒的速度向点C运动,设点E离开点B的时间为2 (秒).(1)当t为何值时,线段EF与BC平行?(2)设1<t<2,当t为何值时,EF与半圆相切?(3)当1≤t<2时,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.思路点拨动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于tAP是否为一定的方程;对于(3),点P的位置是否发生变化,只需看PC值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】⊙O1与⊙O2相交于A、B两点;如图(1),连结O2O1并延长交⊙O1于P点,连结PA、PB并分别延长交⊙O2于C、D两点,连结C O2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求:CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P′为⊙O1上(⊙O2外)的动点,连结P′A、P′B并分别延长交⊙O2于C′、D′,请你探究∠C′AD′是否等于α? C′D′与P′O l的位置关系如何?并说明理由.思路点拨对于(1)、(2),作出圆中常见辅助线;对于(3),P点虽为OO l上的一个动点,但⊙O1、⊙O2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.学力训练1.如图,ΔABC中,∠C=90°,AB=12cm,∠ABC=60°,将ΔABC以点B为中心顺时针旋转,使点C旋转到AB延长线上的D处,则AC边扫过的图形的面积是cm (π=3.14159…,最后结果保留三个有效数字).2.如图,在RtΔABC中,∠C=90°,∠A=60°,AC=3cm,将ΔABC绕点B旋转至ΔA'BC'的位置,且使A、B、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( )A .23πB .34πC .4D .232π+4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22C .1D .215.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动.(1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r的取值范围及相应的切点个数;(3)设O在整个移动过程中,在ΔABC内部,⊙O未经过的部分的面积为S,在S>0时,求关于r的函数解析式,并写出自变量r的取值范围.6.已知:如图,⊙O韵直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连结BC、BA,过点C作CD⊥AB于D.设CB 的长为x,CD的长为y.(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE 为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.7.如图,已知A为∠POQ的边OQ上一点,以A为顶点的∠MAN 的两边分别交射线OP于M、N两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平移移动.设OM=x,ON= (y>x≥0),ΔAOM的面积为S,若cosα、OA是方程0-z+z的两个根.2522=(1)当∠MAN旋转30°(即∠OAM=30°)时,求点N移动的距离;(2)求证:AN2=ON·MN;(3)求y与x之间的函数关系式及自变量x的取值范围;(4)试写出S随x变化的函数关系式,并确定S的取值范围.8.已知:如图,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/s的速度运动,点Q从点C开始沿CD边向点D以1cm/s的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21 ; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.10.如图1,在直角坐标系中,点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动,B(4,2),以BE为直径作⊙O1.(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB,几秒时FB与⊙O1相切?(3)如图2,若E点提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥x轴于A点,连结AF交⊙O1于点P,试问PA·FA的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.参考答案。
七上数学动态几何问题举例_赖启茂

七上数学动态几何问题举例赖启茂(福建省武平县城郊中学,364300)动态几何问题涉及的知识点多,有一定的复杂性,能考察学生的数学阅读能力,分析问题和解决问题的能力,此类问题成为每年中考的热点.七上教材就让学生接触动态几何问题,作为启蒙,让他们初步感知,用运动和变化的眼光去观察和思考问题,在变中找出不变的量,从中渗透数形结合、分类讨论、方程函数等数学思想,最终树立运动观点和整体观点.一、动点问题1.单动点例1在数轴上,点A表示的数为-10,点P从A点出发向右运动,运动时间为t秒.(1)若点P的速度为每秒1个单位,则t 为何值时,到达原点?(2)若点P的速度为每秒2个单位,则t 为何值时,到达原点?(3)若点P的速度为每秒2个单位,则t 为何值时,原点为线段AP的中点?解(1)依题意,得t=10,所以,当t=10秒时,点P到达原点.(2)依题意,得2t=10,解得t=5.所以,当t=5秒时,点P到达原点.(3)依题意,得2t=20,解得t=10.所以,当t=10秒时,原点为线段AP的中点.2.双动点例2如图2,线段AB=10,点P从点A 出发,以1个单位/秒的速度沿AB向终点B运动,同时,点Q从点B出发,以3个单位/秒的速度在AB上连续往返运动,当P到达B时,P、Q两点同时停止运动.设点P的运动时间为x 秒.(1)当x=3时,求线段PQ的长;(2)当P、Q两点第一次重合时,求线段BQ的长;(3)是否存在x,使Q为线段AP的中点?若存在,求x的值;若不存在,请说明理由.教学分析本题实际是路程问题中的相遇问题和追及问题.第(3)小题应抓住点Q是动线段AP的中点这个不变量,鉴于点Q在AB 上往返运动,需进行分类讨论.解(1)如图2,AP=1ˑ3=3,BQ=3ˑ3=9,所以PQ=(3+9)-10=2.(2)如图3,依题意得,x+3x=10,解得x=2.5,BQ=3x=7.5.(3)存在,有三种情况①当3x<10时,如图4.依题意,得x=2(10-3x),解得,x=207.当10<3x<20时,如图5,·72·第5期初中数学教与学依题意,得x =2(3x -10),解得,x =4.③当20<3x <30时,如图6依题意,得x =2(30-3x ),解得,x =607.综上所述,当Q 为线段AP 的中点时,x 的值分别为207秒、4秒或607秒.二、动线1.单线动例3∠BOA =90ʎ,射线OC 从射线OA开始绕O 点以5ʎ/分钟的速度逆时针旋转,运动时间为x 分钟.(1)当x 为何值时,射线OC 平分∠BOA ;(2)当x 为何值时,∠BO C =13∠BOA.教学分析应充分利用学具(如笔,当成射线),让学生自己动手操作,按题意旋转,在“动”中求“静”,利用特殊位置中角与角之间的关系列出方程.解(1)如图7,依题意,∠AOC =12∠BOA ,得5x =45,解得x =9.当x =9分钟时,射线OC 平分∠BOA.(2)分两种情况讨论.①如图8,射线OC 未过射线OB ,因为∠BOC =13∠BOA.所以∠AOC =23∠BOA.得5x =60,x =12.②如图9,射线OC 过了射线OB.依题意,因为∠BOC =13∠BOA ,所以∠AOC =43∠BOA ,得5x =43ˑ90ʎ,即x =24.综上所述,当x =12分钟或24分钟时,∠BOC =13∠BOA.2.双线动例4如图10,∠AOB =120ʎ,射线OC 、OD 分别从OA 、OB 同时开始,绕点O 逆时针旋转,旋转速度分别为20ʎ/分钟,5ʎ/分钟.设旋转的时间为t 分钟(0≤t ≤15)(1)当t 为何值时,射线OC 与OD 重合?(2)当t 为何值时,∠COD =90ʎ?(3)当t 为何值时,射线OB 、OC 、OD 中的某一条是另外两条射线夹角的角平分线?教学分析本题的两条射线运动,可类比两个动点的问题,转化为行程问题中的追及问题,并且特别应让学生利用学具动手操作,直观感知动线问题,画出图形,找出等量关系,列出方程.解(1)依题意,得20t -5t =120,解得t =8.ʑ当t =8分钟时,射线OC 与OD 重合.(2)分两种情况讨论.①当OC 未超过OD 时,如图11.依题意,得(120+5t )-20t =90,解得t =2.②当DC 超过OD 时,如图12.·82·初中数学教与学2019年依题意,得20t -(120+5t )=90,解得t =14.综上所述,当t =2分钟或14分钟时,∠COD =90ʎ.(3)分三种情况讨论①当OB 平分∠COD 时,如图13.依题意,得5t =120-20t ,解得t =4.8.②当OC 平分∠BOD 时,如图14.依题意,得5t =2(20t -120),解得t =487.③当OD 平分∠COB 时,如图15.依题意,得20t -120=2ˑ5t ,解得t =12.综上所述,满足题意的t =4.8分钟、487分钟或12分钟.三、动角例5如图16,将一副三角尺的直角顶点重合在O 处.将∠COD 绕O 点顺时针旋转,在旋转过程中,(1)猜想∠AOD 与∠BOC 有何数量关系,并说明理由;(2)猜想∠AOC 与∠BOD 有何数量关系,并说明理由.教学分析应让学生利用三角板演示动态过程,注意观察哪些是变量,哪些是不变量.解(1)猜想∠AOD =∠BOC.理由如下:如图16,ȵ∠1+∠2=90ʎ,∠2+∠3=90ʎ.ʑ∠1=∠3.(2)即∠AOD =∠BOC.猜想∠AOC +∠BOD =180ʎ.理由如下:如图17,ȵ∠AOC +∠BOD +∠AOB +∠COD =360ʎ,∠AOB =90ʎ,∠COD =90ʎ.ʑ∠AOC +∠BOD =180ʎ-90ʎ-90ʎ=180ʎ.总之,为了使学生尽快熟悉动态几何问题,让学生亲自动手操作是关键,学生在“做数学”中不断积累数学活动经验.教师应针对学生在动手操作中存在的问题予以指导,特别是指导学生在多种情况时恰当地分类.动态几何问题对初中学生而言是难点,但是只要教师有意识、有计划地引领学生逐次递进地思考不同类型的动态几何问题,经过初中三年的摸爬滚打,学生的动态思维能力一定会越来越强,一定能为后续学习打下坚实的基础.参考文献[1]杨仲鉴.初中数学活页练习[M ].福州:福建少年儿童出版社,2018.[2]杨道林.初中数学动点问题解析与思路探讨[J ].中学数学月刊,2016,9.·92·第5期初中数学教与学。
中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
浅析初中数学动态几何问题的教学策略

浅析初中数学动态几何问题的教学策略摘要:数学动态几何问题是对学生是否全面、灵活掌握知识点的综合考察,是近年来中考的热点及难点。
但因为动态几何题目变量多,在几何图形的运动中,伴随着出现图形的位置、数量关系的“变”与“不变”性,不少学生对之有着极大的畏难情绪,导致中考失分。
因此中考数学动态问题的研究更具有实际意义。
关键词:初中数学动态几何题教学策略一、变式教学下的“减负高效”课堂动态几何题的解题,有时候需要变化的思想,这也是初中数学教学的精髓部分,笔者认为通过变式教学,有利于帮助学生开阔眼界、拓宽思路、提高应变能力,防止思维定势的负面影响。
例1:在平面直角坐标系中有一点A(4,2)在X轴上找一点B,使得为等腰三角形,请写出点B的坐标。
设计意图:通过一个比较简单的等腰三角形的要的数学动态作为切入点,使所有学生明白数学动态的思想并不深奥,只要针对三种情况画出相应的图形,解答起来并不困难。
切入点比较低,调动所有学生的学习兴趣。
变式1:若在X轴上有一点P(6,0),请在平面直角坐标系中在再找一个点Q,使四边形AOPQ为平行四边形,写出点Q的坐标。
变式2:若点P(6,0),请在平面直角坐标系中再找一点Q,写出使A,O,P,Q 为顶点的平行四边形的点Q的坐标。
设计意图:通过两个变式将对等腰三角形的分类讨论延伸到平行四边形第四个顶点的讨论,进一步让学生明确不同的对象,不同的条件下的分类讨论方法,同时也培养不同情况下的画图并正确解答的能力。
变式3:在坐标轴上是否存在一点C,使得为直角三角形?若存在,请求出点C的坐标,若不存在,请说明理由。
设计意图:通过变式把数学动态的对象变成直角三角形,通过对不同的角为直角的讨论得到不同的情况。
讨论的范围也从母题的x轴扩展到坐标轴。
同时注意数学动态不重复不遗漏的原则。
变4:过点A做轴,垂足为D,在直角坐标系中找一点E,使得与相似。
设计意图:通过变式把数学动态的对象变成相似三角形,本题情况比较多也比较复杂,如果学生能过顺利的解答,那么对于数学动态在不同的对象,不同的范围内的理解将更加的深刻。
初中数学动态几何定值问题(word版+详解答案)

动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB=2,求线段PA +PF 的最小值.(结果保留根号) 【举一反三】如图(1),已知∠=90MON ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
浅谈初中数学中的动态几何问题

三、动态几何问题的课堂教学
在日常教学中,总有部分学生感到几何难学, 在日常教学中,总有部分学生感到几何难学,老师也感 到几何难教。 到几何难教。“难”的原因之一就是图形关系复杂,变化多 的原因之一就是图形关系复杂, 样。而原先在几何教学中往往是以静态的居多,静态的亦已 而原先在几何教学中往往是以静态的居多, 如此,何况动态!几何难教、难学问题凸现。 如此,何况动态!几何难教、难学问题凸现。
二、动态几何的几点认识
动态几何问题,即随着图形中的某些元素的运动变化, 动态几何问题,即随着图形中的某些元素的运动变化, 导致问题的结论或者改变或者保持不变的几何问题。它是命 导致问题的结论或者改变或者保持不变的几何问题。 题的一种构造方法,同时也展示了一种数学的创造过程, 题的一种构造方法,同时也展示了一种数学的创造过程, 反 映了几何本身的实质。 映了几何本身的实质。 动态几何问题,是以几何知识和具体的几何图形为背景, 动态几何问题,是以几何知识和具体的几何图形为背景, 渗透运动变化的观点,通过点、 形的运动,图形的平移、 渗透运动变化的观点,通过点、线、形的运动,图形的平移、 翻折、 翻折、旋转等把图形的有关性质和图形之间的数量关系位置 关系看作是在变化的、相互依存的状态之中, 关系看作是在变化的、相互依存的状态之中,要求对运动变 化过程伴随的数量关系的图形的位置关系等进行探究。 化过程伴随的数量关系的图形的位置关系等进行探究。对学 生分析问题的能力,对图形的想象能力, 生分析问题的能力,对图形的想象能力,动态思维
能力的培养和提高有着积极的促进作用。 能力的培养和提高有着积极的促进作用。 动态几何问题, 动态几何问题,以运动中的几何图形为载体所构建成的综合 题,它能把几何、三角、函数、方程等知识集于一身,题型 它能把几何、三角、函数、方程等知识集于一身, 新颖、灵活性强、有区分度,受到了人们的高度关注, 新颖、灵活性强、有区分度,受到了人们的高度关注,同时 也得到了命题者的青睐,动态几何问题, 也得到了命题者的青睐,动态几何问题,常常出现在各地的 中考数学试卷中。但这类试题却对学生提出了较高的要求, 中考数学试卷中。但这类试题却对学生提出了较高的要求, 不少学生感到困惑。 不少学生感到困惑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MC NCEC CD(这个比例关系就是将静态与动态联系起来的关键)中考数学专题 动态几何问题第一部分真题精讲【例1】如图,在梯形 ABCD 中,AD II BC , AD 3 , DC 5 , BC 10,梯形的高为4 •动 点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点 C 运动;动点N 同时从C 点 出发沿线段CD 以每秒1个单位长度的速度向终点 D 运动•设运动的时间为t (秒)•(1 )当MN I AB 时,求t 的值;(2)试探究:t 为何值时,△ MNC 为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同 学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析 动态条件和静态条件之间的关系求解。
对于大多数题目来说, 都有一个由动转静的瞬间,就本题而言,M , N 是在动,意味着 BM,MC 以及DN,NC 都是变化的。
但是我们发现,和 这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定 MN//AB 时,就变成了一个静止问题。
由此,从这些条件出发,列出方程,自然得出结果。
【解析】解:(1 )由题意知,当 M 、N 运动到t 秒时,如图①,过 D 作DE II AB 交BC 于E 点,则 四边形ABED 是平行四边形.••• AB II DE , AB II MN • ••• DE II MN •(根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题)25 8 △MNC为等腰三角形.••• t 1 •解得t 50 .10 3 5 17【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。
在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。
具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解【解析】(2)分三种情况讨论:①当MN NC时,如图②作NF BC交BC于F ,则有MC 2FC即.(利用等腰三角形底边高也是底边中线的性质)DF4sin C—CD5C3•cos5,3t•102t 2 —5解得t8②当MN MC时,如图③,过M作MH CD于H . 贝U CN 2CH ,•••t 2 10 2t 3.5•t 60.17③当MC CN时,则10 2t t .103综上所述,当t【例2】在△ABC中,/ACB=45 o .点D (与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB #AC,如图②,且点D在线段BC上运动.(1 )中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC = 4.2 ,BC 3, CD= x,求线段CP的长.(用含x的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的变化图形当中,什么条件是不动的。
由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递, 就可以得解。
【解析】:(1)结论:CF与BD位置关系是垂直;证明如下:AB=AC , /ACB=45 o ,「.Z ABC=45 o .由正方形ADEF 得AD=AF ,T/DAF= ZBAC =90 o,•••ZDAB= /FAC,「.A)AB 也zEAC , •••厶CF= /ABD .•••ZBCF= ZACB+ /ACF= 90 o .即CF丄BD .【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找一样求解。
(2) CF 丄BD . (1)中结论成立.理由是:过点 A 作AG 丄AC 交BC 于点G ,「.AC=AG 可证:△ GAD 也/CAF•••厶CF= ZAGD=45 oZBCF= ZACB+ ZACF= 90 o . 即 CF 丄 BD【思路分析3】这一问有点棘手,D 在BC 之间运动和它在 BC 延长线上运动时的位置是不 一样的,所以已给的线段长度就需要分情况去考虑到底是 4+X 还是4-X 。
分类讨论之后利用相似三角形的比例关系即可求出CP.(3)过点 A 作AQ 丄BC 交CB 的延长线于点 Q , ①点D 在线段BC 上运动时,【例3】已知如图,在梯形ABCD 中,AD // BC , AD 2, BC 4,点M 是AD 的中点,△ MBC 是等边三角形.(1) 求证:梯形 ABCD 是等腰梯形;易证△AQD s/DCP , •CP CD,• CP xDQ AQ4x42x CPx .4②点D 在线段BC 延长线上运动时,过A 作AG AC 交CB 延长线于点G ,则AGDACF△AQD S /DCP , • CP CD,• CP xDQ AQ4 x42xCPx .4■//BCA=45 o ,可求出 AQ= CQ=4 . • DQ=4-x , ■//BCA=45 o ,可求出 AQ= CQ=4 , • DQ=4+x(2) 动点P、Q分别在线段BC和MC上运动,且/ MPQ 60保持不变.设PC x, MQ y,求y与x的函数关系式;(3) 在(2)中,当y取最小值时,判断△PQC的形状,并说明理由. M【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。
第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。
第二问和例1 一样是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的。
题目给定/MPQ=60 。
这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来•因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系•怎么证相似三角形呢?当然是利用角度咯•于是就有了思路•【解析】(1)证明:••• △ MBC是等边三角形•••MB MC,Z MBC / MCB 60•••M是AD中点•AM MD•/ AD // BC•••/AMB / MBC 60 ,/ DMC / MCB 60 •••△ AMB DMC•AB DC•梯形ABCD是等腰梯形.Z MPQ 60•••/ BMP Z BPM Z BPM Z QPC 120(这个角度传递非常重要,大家要仔细揣摩)• Z BMP Z QPC • △ BMP CQP •竺 CQ "BM BP• y -x 2 x 4 4 (设元以后得出比例关系,轻松化成二次函数的样子)【思路分析2】第三问的条件又回归了当动点静止时的问题。
由第二问所得的二次函数,很 轻易就可以求出当 X 取对称轴的值时Y 有最小值。
接下来就变成了 “给定PC=2,求APQC 形状”的问题了。
由已知的BC=4,自然看出P 是中点,于是问题轻松求解。
(3)解: △ PQC 为直角三角形1 2••• y - x 234•••当y 取最小值时,x PC 2• P 是 BC 的中点,MP BC ,而 Z MPQ 60 , • Z CPQ 30 , •Z PQC 90以上三类题目都是动点问题, 这一类问题的关键就在于当动点移动中出现特殊条件, 例如某边相等,某角固定时,将动态问题化为静态问题去求解。
如果没有特殊条件,那么就需要研(2)解:在等边△ MBC 中,MB MCBC 4,/ MBC / MCB 60 ,••• PC x , MQy ••BP 4 x , QC 4 y究在动点移动中哪些条件是保持不变的。
当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.【例4】已知正方形ABCD中,E为对角线BD上一点,过E点作EF BD交BC于F,连接DF,G为DF中点,连接EG,CG .(1)直接写出线段EG与CG的数量关系;(2)将图1中BEF绕B点逆时针旋转45,如图2所示,取DF中点G ,连接EG , CG , 你在(1 )中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1 )中的结论是否仍然成立?(不要求证明)DC C【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。
从旋转45。
到旋转任意角度,要求考生讨论其中的不动关系。
第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。
第二问将△ BEF旋转45。
之后,很多考生就想不到思路了。
事实上,本题的核心条件就是G是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。
连接AG之后,抛开其他条件,单看G点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF的垂线。
于是两个全等的三角形出现了。
(1)CG EG(2)( 1 )中结论没有发生变化,即CG EG .证明:连接AG,过G点作MN AD于M,与EF的延长线交于N点.在DAG与DCG中,•/ AD CD, ADG CDG , DG DG ,••• DAG 也DCG .二AG CG .在DMG与FNG中,•/ DGM FGN , FG DG , MDG NFG ,•DMG 也FNG .•MG NG在矩形AENM中,AM EN在Rt AMG 与Rt ENG 中,•/ AM EN , MG NG ,•- AMG 也ENG .• AG EG .•EG CGDC【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。
但是我们不应该止步于此。
将这道题放在动态问题专题中也是出于此原因,如果△ BEF任意旋转,哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。
建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在△BEF的旋转过程中,始终不变的依然是G 点是FD的中点。
可以延长一倍EG到H,从而构造一个和EFG全等的三角形,利用BE=EF 这一条件将全等过渡。
要想办法证明三角形ECH是一个等腰直角三角形,就需要证明三角形EBC和三角形CGH全等,利用角度变换关系就可以得证了。
(3)( 1 )中的结论仍然成立.C【例5】已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE 交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B'处.BE(1 )当---- =1 时,CF= cm ,CEBE(2)当=2 时,求sin /DAB '的值;CEBE(3 )当——=x时(点C与点E不重合),请写出厶ABE翻折后与正方形ABCD公共CE部分的面积y与x的关系式,(只要写出结论,不要解题过程)【思路分析】 动态问题未必只有点的平移, 图形的旋转,翻折(就是轴对称)也是一大热点。