六年级奥数计数问题练习题及答案:信号旗
小学六年级奥数题100道与答案解析

20.根据下表中的排列规律,在空格里填上适当的数。
【思路导航】经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。依此规律,空格中应填的数为:4+8=12。
21.找规律,在空格里填上适当的数。
22.根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?
32.
(1)一只西瓜的重量等于两个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量。1只西瓜的重量等于几个橘子的重量?
所以C是12221或11011。
12.先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19
【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?
解答:9+3+2=14(种)
6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?
解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)
7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?
12345679×54=12345679×9×6=66666666612345679×81=12345679×9×9=999999999.
练习3:找规律,写得数。
(1)1+0×9=2+1×9=3+12×9=4+123×9=9+12345678×9=
100题六年级奥数题目及解题思路和答案之3(共3)

1. 小明和小红一起做了100道题,小明正确率为80%,小红正确率为90%,他们的总正确率是多少?解题思路:总正确率就是总共做对的题目数量除以总题目数量。
解题步骤:先求出小明做对的题目数量:100 ×80% = 80再求出小红做对的题目数量:100 ×90% = 90总共做对的题目数量:80 + 90 = 170总题目数量:100总正确率:170 ÷100 = 1.7,也就是170%答案:总正确率是170%。
2. 在八卦炉中,传统的火腿需要烤40分钟才能熟透,现在你有两个火腿需要烤,请问烤两个火腿需要多长时间?解题思路:烤两个火腿需要的时间应该比一个火腿需要的时间更长,因为两个火腿同时放入八卦炉里,热量需要分摊给两个火腿,所以烤两个火腿需要的时间会更长一些。
解题步骤:计算一分钟的烤熟度:1 ÷40 = 0.025两个火腿需要的时间:1 ÷2 ÷0.025 = 20答案:烤两个火腿需要20分钟。
3. 有一只长方体动物,它的长为3个单位,宽为2个单位,高为4个单位。
请问它的体积是多少?解题思路:体积就是长度、宽度和高度的积。
解题步骤:体积:3 ×2 ×4 = 24答案:这只长方体动物的体积是24个单位。
4. 用6个相同的小方格能组成哪些图形?解题思路:这道题目需要我们尝试不同的组合来构成不同的图形。
解题步骤:以下是一些可能的组合和图形:- 一个6 ×1 的长方形。
- 两个3 ×1 的长方形。
- 一个2 ×3 的矩形,上下各有一个小方格浮在中间。
- 一个3 ×2 的矩形,左右各有一个小方格浮在中间。
- 一个4 ×1 的长条,中间两个小方格留空。
- 一个1 ×4 的长条,中间两个小方格留空。
- 一个2 ×2 的正方形,四个小方格排成一列然后切掉两个。
答案:用6个相同的小方格能组成以上七种图形。
六年级上册奥数试题——第九讲操作与计数技巧含解析人教版

第九讲操作与计数技巧教学目标操作类问题与计数类问题由于其灵活性和本身的趣味性,非常受出题和供题者青睐,如今各类数学竞赛的出题越来越趋向于新奇和趣味化,因此操作类问题和计数问题在竞赛中的比重将会加大。
鉴于操作类问题和计数问题没有一般性的算法或解题通式,本讲将以近年来各类竞赛以及小升初考试中的出现过的真题为例,引导学生发现关键并解决问题。
1.常见操作类问题2.计数技巧与操作经典精讲常见操作类题目【例1】(2006年《小学生数学报》读报竞赛)把一张正方形的餐巾纸先上下对折,再左右对折(如右图),然后用剪刀将所得的小正方形沿直线剪一刀。
问能把餐巾纸:⑴剪成2块吗?⑵剪成3块吗?⑶剪成4块吗?⑷剪成5块吗?如果你认为能剪成,请在下面图中各画出一种你的剪法;如果你认为不能,那么只需回答“不行”即可。
【分析】⑴剪开成两块,如下图:⑵剪开成3块,如下图:⑶剪开成4块,如下图:⑷剪开成5块,如下图:【巩固】(2008年华杯赛)将等边三角形纸片按图所示的步骤折迭3次(图中的虚线是三边中点的连线),然后沿两边中点的连线剪去一角。
将剩下的纸片展开、铺平,得到的图形是( ).【分析】折迭3次,纸片的厚度为4,所以剪去的面积即应等于4倍小三角形的面积,所以答案是A。
【例2】A、B、C、D四个盒子中依次放有6,4,5,3个球。
第1个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子;然后第2个小朋友找到放球最少的盒子,从其他盒子中合取一个球放入这个盒子;如此进行下去,……。
求当34位小朋友放完后,B盒子中放有球多少个?【分析】盒子A B C D初始状态 6 4 5 3第1人放过后 5 3 4 6第2人放过后 4 6 3 5第3人放过后 3 5 6 4第4人放过后 6 4 5 3第5人放过后 5 3 4 6由此可知:每经过4人,四个盒子中球的情况重复出现一次,因为34482÷=,所以第34次后的情况与第2次后的情况相同,即B盒子中有球6个。
六年级奥数专题 计数方法(学生版)

计数方法,掌握常见的计数方法,会使用这些方法来解决问题最简单的计数问题,只需一一列举就可以;复杂的计数问题则需要借助排列与组合的相关知识予以解决.一般地,从n 个不同的元素中,任取m(m ≤n)个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中任取m 个元素的一个排列.我们主要来研究满足某种条件的排列的个数.相同的排列应满足:它们所含的元素均相同;它们的顺序也一样.一般地,从n 个不同元素中取出m 个元素的排列的个数称为从n 个不同元素中取出m 个元素的排列数,记作:m n A (m ≤n).从n 个元素中取出m 个元素排成一排,有多少种排法,是从n 个元素中取出m 个元素的排列数.这个问题可以看成有m 个位置,从n 个元素中取m 个元素放到m 个位置中,可分m 个步骤:第①步:第1个位置有n 种选择;第②步:第2个位置有n-1种选择;第③步:第3个位置有n-2种选择;……第m 步:第m 个位置有n-m+1种选择.由乘法原理:m n A = n ×(n- 1)×(n- 2)×…×(n-m+1).——乘积中共有m 项特别地,当m=n 时,()1...21m n n n A A n n ==⨯-⨯⨯叫做n 个元素的全排列数.1×2×3×…×n 称为n 的阶乘,记作n!因此()!!m n n A n m =- (m ≤n). 排列数乘积形式的公式:m n A =n ×(n- 1)×(n- 2)×…×(n-m+1).排列数阶乘形式的公式:()!!m n n A n m =- (m ≤n).有时我们只需从若干元素中取出一些就可以了,这种问题称为组合问题,组合问题与排列问题的区别就是:组合问题是将元素取出即可,不需排序,而排列问题是取出后要进行排序.一般地,从n 个不同元素中任取m(m ≤n)个不同的元素并成一组,叫做从n 个不同元素中取出,n 个元素的组合.从n 个不同元素中,每次取出m 个元素的组合总数,叫做从n 个不同元素中取出m 个元素的组合数,记作m n C (m ≤n).从n 个元素中取出m 个元素的排列问题可以看成分两步完成:第①步:从n 个元素中取出m 个元素,这时有多少种取法?实际上就是从n 个元素中取出m 个元素的组合数m n C ;第②步:对取出的m 个元素进行排列,排法数就是m m A .由乘法原理可知:m m m n n m A C A =⨯,因此,m m n n m mA C A =. 将排列数公式代人得:()()().1...1.1...3.2.1m n n n n m C m m --+=-或 ()!!!m n n C n m m =- 常用的计数方法有:分类枚举、插板、整体、递推、排除、概率等等。
高斯小学奥数六年级上册含答案第19讲 计数综合提高上

第十九讲 计数综合提高上一、 枚举法.1、简单枚举.2、分类枚举.3、特殊的枚举:标数法、树形图.二、 加法原理——分类如果完成一件事有几类方式,在每一类方式中又有不同的方法,那么把每类的方法数相加就得到所有的方法数.加法原理的类与类之间会满足下列要求: (1)只能选择其中的某一类,而不能几类同时选;(2)类与类之间可以相互替代,只需要选择某一类就可以满足要求.三、 乘法原理——分步如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数.乘法原理的步与步之间满足下列要求:(1)每步都只是整件事情的一个部分,必须全部完成才能满足结论; (2)步骤之前有先后的顺序,先确定好一步,再做下一步,……,直到最后.四、 排列:从m 个不同..的元素中取出n 个(n m ≤),并按照一定的顺序排成一列,其方法数叫做从m 个不同元素中取出n 个的排列数,记作nm A ,它的计算方法如下:五、 组合:从m 个不同..元素中取出n 个(n m ≤)作为一组(不计顺序),可选择的方法数叫做从m 个不同元素中取出n 个不同的组合数,记作nm C ,它的计算方法如下:nm A =()()()[11]121nnmmn n m m m n A C A n n ⨯-⨯⨯-+==⨯-⨯⨯⨯L L L L注意:几个常用公式:1m C m =;01m C =;n m n m m C C -=;0122m m mm m m C C C C +++=L .六、 一些好用的计数技巧和方法:1. 捆绑法:对于要求必须站在一起的人,可以采用事先捆绑的方法来处理.2. 插空法:对于不能相邻的情况,先把其他人先排好,再把不能相邻的人插入其他人之间的空隙中.3. 有重复数字的数字排列问题,可以用“数字挑位置”的方法解决.4. 数字0不能作为多位数的首位,在计数时需要特别注意.5. 对挑出的对象有特殊要求的计数问题,一般来说要优先考虑有特殊要求的对象或位置,尽可能地让余下的对象或位置的确定变得简单.6. 当满足要求的情况很多时,可以尝试用排除法计算不满足要求的情况,再从所有可能的情况中排除不满足要求的,也能得到问题的答案.例1. 某人射击8枪,命中4枪,命中的4枪中恰好有3枪连在一起的情况有多少种?「分析」首先仔细思考一下命中的4枪之间是否有顺序区别?然后确定其中3枪连在一起的位置选择有多少种情况?练习1、在由1和2组成的六位数中(例如112111、111111等),恰好有3个1连在一起的六位数有多少个?例2. 一种电子表在6时24分30秒的显示为6:24:30,那么从6时到7时这段时间里,此表的5个数字都不相同的时刻一共有多少个?「分析」分钟的十位和秒钟的十位可能性比较少,所以,应优先确定.练习2、现在我们规定一种记日期的方式,把“2012年05月12日”写作“120512”,即只需写出后面六位数,那么在2013年有多少天按这种计数方式写出的六位数六个数字互不相同?例3.纳达尔和费德勒进行网球比赛,谁先得6分就赢得此局,最后费德勒在第一局6:4获胜,已知在过程中费德勒从未落后过,那么比赛过程一共有多少种不同的可能?「分析」大家还记得最短路线问题中曾经学习过的标数法吗?练习3、皇马和巴萨两队进行足球比赛,最后皇马5:3获胜,已知在过程中皇马从未落后过,那么进球过程一共有多少种不同的可能?例4.小王左口袋里有10张黑卡片,分别写着1到10,右口袋里有10张红卡片,也分别写着1到10.他从两个口袋里各取出一张卡片,然后计算两张卡片上数的乘积,如果乘积恰好是6的倍数,那么共有多少种不同的取法?「分析」两个数的乘积是6的倍数这两个数需要符合什么要求?练习4、小高有12个黑球,分别写着1到12,还有10个红球,分别写着1到10.他从两个种球里各取出一个,然后计算两球上数的乘积,如果乘积恰好是10的倍数,那么共有多少种不同的取法?(注:此题中6不能倒过来当9用,9也不能倒过来当6用)例5.N BA总决赛在洛杉矶湖人和波士顿凯尔特人队之间进行,比赛采用7局4胜制,比赛分为主场和客场,第1,第2,第6,第7场均在洛杉矶进行,第3~5场在波士顿进行.最终湖人队在自己的主场获得总冠军,那么比赛中的胜负结果有多少种可能?「分析」由7局4胜制及主场获胜两个要求你可得出什么?通过分析寻找一下解决这道题目的突破口.例6.各位数字均不大于5,且能被99整除的六位数共有多少个?「分析」99的整除特性是什么,在这道题目中任何应用?年龄“外号”知多少总角:指童年.语出《诗经》,如《诗•卫风•氓》“总角之宴”.垂髫:指童年.古时童子未冠,头发下垂,因而以”垂髫”代指童年.束发:指青少年.一般指15岁左右,这时应该学会各种技艺.及笄:指女子15岁.语出《礼记•内则》“女子……十有五年而笄”.“笄”,谓结发而用笄贯之,表示已到出嫁的年岁.待年:指女子成年待嫁,又称“待字”.弱冠:指男子20岁.语出《礼记•曲礼上》“二十曰弱,冠”.古代男子20岁行冠礼,表示已经成年.而立:指30岁.语出《论语•为政》“三十而立”.以后称三十岁为“而立”之年.不惑:指40岁.语出《论语•为政》“四十而不惑”.以后用“不惑”作40岁的代称.艾:指50岁.语出《礼记•曲礼上》“五十曰艾”.老年头发苍白如艾.花甲:指60岁.作业1.8个同学排成一排照相,其中4个人要站在一起,共有多少种站法?2.甲、乙队之间进行篮球比赛,比赛采用7局4胜制,等比到第6场就分出了胜负,甲赢得了比赛,那么有多少种可能?3.甲、乙、丙、丁四人各有一个作业本混放在一起,4个人看也不看就随便各拿了1本,那么至少有一人拿错有多少种可能?4.小明左口袋里有8张红卡片,上面写着1到8,右口袋里有8张黑卡片,上面也写着1到8,如果从两个口袋里各取出一张卡片,然后计算得到卡片上两数的乘积,那么能被6整除的乘积共有多少个?(6不能倒过来当9用)5.各位数字均不大于4,且能被99整除的六位数共有多少个?第十九讲 计数综合提高上例7. 答案:20详解:分情况讨论,如果第1到3枪命中,第4枪有4种方法;第2到4枪命中,最后一枪有3种可能;3到5命中,有3种;4到6命中,有3种;5到7命中,3种;6到8命中,4种.共20种情况.例8. 答案:1260详解:从右边数第二位和第四位上的数字可取0到5,第一位和第三位上的数字可取0到5或7到9.乘法原理可知答案为1260.例9.答案:42 详解:画一个的表格,则答案就是在虚线以下部分,从A 到B 的方法数,注意最右面一列不标数,因为有人达到6分比赛即结束,标数,得到答案为42.例10. 答案:35详解:分五类讨论,(1)黑卡和红卡都是6的倍数,此时有1种取法;(2)黑卡是6的倍数而红卡不是6的倍数,此时有9种取法;(3)红卡是6的倍数而黑卡不是6的倍数,此时有9种取法;(4)黑卡上的数字是3或9,红卡上的数字是2、4、8或10,此时有8种取法;(5)红卡上的数字是3或9,黑卡上的数字是2、4、8或10,此时有8种取法.所以共有35种取法.例11. 答案:30详解:湖人在主场获得胜利,则最少打了6场,即可分两种情况讨论:(1)打了6场,则湖人在前5场中输了2场,5选2,有10种可能;(2)打了7场,则湖人在前6场中输了3场,6选3,有20种可能.所以共有30种可能.64例12. 答案:575解法:设六位数为,由其可被99整除且各位数字不大于5,可知,则且,9540531522441432333=++=++=++=++=++=++,所以a 、c 、e 有23种可能(只有a 不能是0),b 、d 、f 有25种可能,所以共有个符合要求的六位数.练习1、答案:12简答:前3位是1,有4种;2到4位是1,有2种;3到5位是1,有2种;4到6位是1,有4种.所以共12种.练习2、答案:30简答:千位(表示月份的十位)只能是0,十位只能是3,其它两个数字共30种情况.练习3、答案:28简答:题目可转化为如右图由A 到B 点共有多少种最短的走法,且必须沿着虚线右下方的边走.由标数法可知共有28种可能.练习4、答案:30简答:黑球数为10时,任意红球均可,红球为10时,任意黑球均可,除去红10黑10重复的情况,共有21种取法,另一类情况是一个球提供质因数2,另一个球提供质因数5,共有4+5=9种取法,所以,本题共有21+9=30种不同取法.2325575⨯= 9b d f ++= 9a c e ++= 99ab cd ef ++= abcdef作业1. 答案:2880简答:把要站在一起的4个人捆绑在一起,由乘法原理可知共有种站法.2. 答案:10简答:甲在第6场取得胜利,则甲赢了第6场且在前5场中赢了3场,即五选三的问题,共有10种可能.3. 答案:23简答:共有4!种情况,减去全拿对的1种情况,则符合要求的情况有23种.4. 答案:21简答:按照例4、练4的方法详解即可.5. 答案:100简答:设六位数为,由其可被99整除且各位数字不大于4,可知,则且, 9441432333=++=++=++,所以a 、c 、e 有10种可能,b 、d 、f 也有10种可能,所以共有个符合要求的六位数.1010100⨯= 9b d f ++= 9a c e ++= 99ab cd ef ++= abcdef 54542880A A ⋅=。
六年级下册数学试题-加乘原理拓展训练题(解析版)全国通用

加乘原理拓展训练题1.红、黄、蓝、白四种不同颜色的小旗,各有 2,2,3,3 面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?如果白旗不能打头又有多少种?【解析】(一)取出的 3 面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类第一类,一种颜色:都是蓝色的或者都是白色的,2 种可能;第二类,两种颜色:(4 ⨯ 3) ⨯ 3 = 36 第三类,三种颜色:4 ⨯3⨯2 = 24 所以,根据加法原理,一共可以表示 2 +36 + 24 = 62 种不同的信号.(二)白棋打头的信号,后两面旗有 4 ⨯ 4 = 16 种情况.所以白棋不打头的信号有62 -16 = 46种.2.如图,用红、蓝两种颜色来给图中的小圆圈染色,每个小圆圈只能染一种颜色。
请问:(1)如果每个小圆圈可以随意染色,一共有多少种不同的染法?(2)如果要求关于中间那条竖线左右对称,一共有多少种不同的染法?【解析】(1)先考虑中间的圈,有两种选择,其他对应的每一个圆圈里的数都有两种选择,所以共有:29 = 512 (种)方法;(2)由于要关于中间竖线对称,则竖线的每一项都无要求,有:25 = 32 种选法;左侧的有2⨯ 2 = 4 种选法,此时右侧的也已固定,共有:32⨯ 4 =128 (种)选法;3.如图,在一个3×4的方格表内放入 4 枚相同的棋子,要求每列至多有 1 枚棋子,一共有多少种不同的放法?如果放入 4 枚互不相同的棋子,要求每列至多有 1 枚棋子,一共有多少种不同的放法?(1)对于第一种,由于每一个棋子,在每一列都有 3 种选法,所以共有:3⨯3⨯3⨯3=81(种)选法;(2)首先 4 枚棋子的摆放顺序共有:4⨯3⨯ 2⨯1 = 24(种)选法;选好后的放置方如上,有:3⨯ 3⨯ 3⨯ 3 = 81 种。
所以一共有:24⨯81 =1944 (种)4. 用四种颜色对下图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?【解析】第一步给“而”上色,有 4 种选择;然后对“学”染色,“学”有 3 种颜色可选; 最后对“奥”、“数”、“思”染色,当“奥”,“数”取相同的颜色时,有 2 种颜色可选, 此时“思”也有 2 种颜色可选,不同的涂法有2 ⨯ 2 = 4 种;当“奥”,“数”取不同的颜色 时,“奥”有 2 种颜色可选,“数”剩仅 1 种颜色可选,此时“思”也只有 1 种颜色可选(与 “学”相同),不同的涂法有 2⨯1⨯1 = 2 种.所以,根据加法原理,共有4 ⨯ 3⨯ (4 + 2) = 72 种不同的涂法5. 如图,把 A 、B 、C 、D 、E 这五部分用 4 种不同的颜色染色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色。
六年级奥数——第十讲棋盘中的数学(一)(附习题及解答)

第十讲 棋盘中的数学(一)——什么是棋盘中的数学所谓棋盘,常见的有中国象棋棋盘(下图(1)),围棋盘(下图(2)),还有国际象棋棋盘(下图(3)).以这些棋盘为背景而提出的问题统称为棋盘问题.这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题.解决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学.作为开篇我们先解几道竞赛中的棋盘问题.例1 这是一个中国象棋盘,(下图中小方格都是相等的正方形,“界河”的宽等于小正方形边长).黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8, 9, 10, 11, 12, 13, 14中的两个位置.问:这三个棋子(一个黑“象”和两个红“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?解:我们设每个小方格的边长为1单位.则小方格正方形面积为1平方单位.由于三个顶点都在长方形边上的三角形面积至多为这个长方形面积的一半.所以要比较三角形面积的大小,只要比较三角形的三个顶点所在边的外接长方形面积的大小就可见端倪.直观可见,只须比较(3,10,12)或(2,10,12)与(3,10,13)或(2,12,14)这两类三角形面积就可以了.顶点为(3,10,13)或(2,12,14)的三角形面积等于:所以顶点在(2,10,12)或(3,10,12)时三角形面积最大.答:黑“象”在2或3的位置,两个红“相”分别在 10,12的位置时,以这三个棋子为顶点的三角形(2,10,12)或(3,10,12)的面积最大,如下图所示.说明:本题是以棋盘格点为基础组成图形计算面积.其实,这类问题所在多有,我们把m×n的方格阵称为广义棋盘,则可以设计出许多这类的问题.例2 下图是一个围棋盘,另有一堆围棋子,将这堆棋子往棋盘上放,当按格点摆成某个正方阵时,尚多余12枚棋子,如果要将这个正方阵改摆成每边各加一枚棋子的正方阵,则差9枚棋子才能摆满.问:这堆棋子原有多少枚?解:第一次排方阵剩余12枚,加上第二次排方阵所不足的9枚,恰是原正方阵扩大后“贴边”的部分(如下图所示),共21枚,它恰是原正方阵每边棋子数与“扩阵”每边棋子数之和.恰是两个相邻自然数之和,所以原正方阵每边10枚棋子,新正方阵每边11枚棋子.这堆棋子总数是102+12=112枚.答:这堆棋子原有112枚.说明:本题也可以列方程求解.设原正方阵每边m枚棋子,由题意得:(m+1)2-9=m2+12.即2m+1=21,解得 m=10.所以棋子总数为102+12=112枚.本题与围棋盘并无本质联系,问题可改述为“一堆棋子若摆成一个实心方阵,剩余12粒棋子,若改摆每边各加一枚的方阵,则差9枚棋子,问这堆棋子原有多少枚?”应用围棋盘显得更加直观、具体.例3 如下左图是一个国际象棋棋盘,A处有只蚂蚁,蚂蚁只能由黑格进入白格再由白格进入黑格这样黑白交替地行走,已经走过的格子不能第二次进入.请问,蚂蚁能否从A出发,经过每个格子最后返回到A处?若能,请你设计一种路线,若不能,请你说明理由.解:这种爬行路线是存在的.具体的设计一条,如右图所示.例4 在8×8的方格棋盘中,如下图所示,填上了一些数字1,2,3,4.试将这个棋盘分成大小和形状都相同的四块,并且每块中都恰有1、2、3、4四个数字.分析 注意这个正方形的面积是8×8=64个平方单位,因此切分后的每一块的面积为16个平方单位,即由16个小方格组成.解:①将两个并列在一起的“4”分开,先画出这段划分线,并将它分别绕中心旋转90°,180°和270°,得到另外三段划分线,如下图(1)所示.②仿照上述方法,画出所有这样的划分线,如上图(2)所示.③从最里层开始,沿着画出的划分线作设想分块,如上图(3),这个分块中要含1,2,3,4各一个,且恰为16块小方格.④将上面的阴影部分绕中心旋转180°,可以得到符合条件的另一块,空白部分的两块也符合条件,所求的划分如上页图(4)所示.例5 国际象棋的棋盘有64个方格,有一种威力很大的棋子叫“皇后”,当它放在某格上时,它能吃掉此格所在的斜线和直线上对方的棋子,如下左图上虚线所示.如果有五个“皇后”放在棋盘上,就能把整个棋盘都“管”住,不论对方棋子放在哪一格,都会被吃掉.请你想一想,这五个“皇后”应该放在哪几格上才能控制整个棋盘?解:本题是构造性的题目.用五个子管住六十四格,如上右图所示就是一种放置皇后的方案.例6 如下图是半张棋盘,请你用两个车、两个马、两个炮、一个相和一个兵这八个子放在这半个棋盘上,使得其余未被占据的点都在这八个点的控制之下(要符合象棋规则,“相”走田字,只能放在“相”所能到的位置,同样“兵”也只能放在“兵”所能到的位置.马走“日”字,“车”走直线,“炮”隔子控制等).解:这仍是一个占位问题,只需要把指出的几个子排布成所要求的阵势即可,如下图所示.本节我们初步看到了一些棋盘问题,它们的特点是:①以棋盘为背景提出各种问题,无论围棋盘、中国象棋盘或是国际象棋盘.更为一般的提法是m×n方格上的数学问题.②这些问题有面积计算,图形分割,棋子计数,棋子布局等各种类型,这些问题一般属于智巧类的问题或更深一步的组合数学问题.习题十1.在4×4的棋盘中每一格分别填入字母A、B、C、D.要求每行、每列、两条斜线的四个格都恰有A、B、C、D各一个.2.把A、B、C、D四个棋子放在4×4的棋盘的方格里,使每行每列只能出现一个棋子.问共有多少种不同的放法?3.下页第一图是16×16棋盘,每个小正方格面积都是1,求图中这只狗所占的图形的面积.4.中国象棋规定马走“日”字.定义:在中国象棋盘上从点A到B马走的最少步数称为A与B的马步距离,记作|AB|m.如下图在3×3的棋盘格中,标出了 A、B、C、D、E五个点,则在|AB|m,|AC|m,|AD|m,|AE|m中最大者是多少?最小者是多少?5.在6×6的棋盘中至少要放入多少个棋子,(每个小方格内至多放一个),才能使得随意划掉3行3列上的棋子后,在剩下的方格中至少要留有一枚棋子?习题十解答1.如下图填入即可.答案可能不唯一.2.不妨先考虑棋子A的情况,共有16种不同的放法,不妨设A就放在左上角.然后考虑棋子B的放法,由于A所在的行及所在列不能再放棋子,所以棋子B只能有9种不同放法,不妨设棋子B在右图中位置.类似地C只有4种不同放法,D只有一种放法,总计共有16×9×4×1=576种不同放法.3.面积是71.5(平方单位).4.观察下面4个图.知最大的是|AE|m=4,最小的是|AC|m=2.5.至少放十枚棋子.十枚棋子如下图放置,划去任意三行、三列后,剩下的格子中至少还有一枚棋子.如果放入9枚棋子,则总能划去某三行、某三列,把这9枚棋子都划去(想一想,为什么?).。
高斯小学奥数六年级下册含答案第12讲_计数综合练习

第十二讲计数综合练习【学生注意】本讲练习满分100分,考试时间70分钟.一、填空题Ⅰ(本题共有8小题,每题6分)1.用0、1、2、3、4、5这六个自然数中的三个组成三位数,从个位到百位的数字依次增大,且任意两个数字的差都不是1,这样的三位数共有________个.2.从1到30中选出两个不同的数相加,和大于30的情况有_______种.3.从1000到2010中,十位数与个位数相同的数有______个.4.在用数字0、1组成一个6位数中,至少有4个连续的1的数共有______个.5.3个海盗分30枚金币,如果每个海盗最多分12枚,一共有_______种不同的分法.6.右图中有______条线段,______个三角形,______个梯形.7.一台综艺节目,由2个不同的舞蹈和3个不同的演唱组成.如果第一个节目是舞蹈,那么共有_____种不同的安排方法.8.有身高各不相同的5个孩子,按下列条件排成一行:条件1:最高的孩子不排在边上.条件2:最高的孩子的左边按由高到矮向左排列.条件3:最高的孩子的右边按由高到矮向右排列.那么符合上述所有条件的排队方法有________种.二、填空题Ⅱ(本题共有4小题,每题7分)9.(1)平面上7个点,任意三点不共线,那么可以连出_______个三角形.(2)两条平行线上各有4个点,从这些点中任取3个作为顶点,可以连出______个三角形.10.如图,左边是由22个六边形组成的图形,在六边形内蚂蚁只可以选如右边箭头所指的方向之一爬到相邻的六边形内.一只蚂蚁从六边形A出发,选择不经过六边形B的路线到达六边形C,那么这样的路线共有________条.11.8块相同的奥运纪念徽章分给小高、卡莉娅、墨莫、萱萱四人,每人至少分一块,有______种不同的分法.12.由0、1、2、…、9组成的小于5000且没有重复数字的四位数共有________个,其中从小到大第2010个是________.三、填空题Ⅲ(本题共有3小题,每题8分)13.有些三位数,相邻两个数字的差都不超过...2.,比如424、244、110、……,所有这样的三位数有_______个.14.各位数字之和为4的四位数有______个,其中能被11整除的有_______个.15.在下面数字谜中,七个不同汉字表示七个不同数字,“高思学校尖子班”表示的七位数有_______种不同的取值.高思学校+ 尖子班2 0 1 0第十二讲 计数综合练习1. 答案:4.解答:枚举法,符合要求的数只有420、520、530、531,共4个.2. 答案:225.解答:较小数是1时,较大数只能取30,有1种取法;较小数是2时,较大数只能取30和29,有2种取法;……较小数是15时,较大数可取16、17、L 、30,有15种取法;……较小数是29时,较大数只能取30,有1种取法.所以一共有123141514321225++++++++++=L L 种情况.3. 答案:101.解答:在1000到1999中,十位与个位相同有10种情况:00、11、22、L 、99,千位和百位也有10种情况:10、11、12、L 、19.所以在1000到1999中,十位数与个位数相同的数有1010100⨯=个.另外,2000到2010中只有2000是十位数与个位数相同的,所以符合要求的数一共有101个.4. 答案:5.解答:枚举即可,有111100、111110、111101、111111、101111共五个.5. 答案:28.解答:不妨设三个海盗分别为甲、乙、丙.当甲海盗分到8枚金币时,乙海盗的金币可能是10、11、12枚,有3种分法;当甲海盗分到9枚金币时,乙海盗的金币可能是9、10、11、12枚,有4种分法;……当甲海盗分到12枚金币时,乙海盗的金币可能是6、7、8、9、10、11、12枚,有7种分法.所以一共有123456728++++++=种不同的分法.6. 答案:42、18、18.解答:每条直线(如直线AD )上有6条线段,一共有6742⨯=条线段;每个三角形都由顶点以及AD 、BE 或CF 上的一段线段组成,有6318⨯=个;AD 、BE 或CF 中,任两条之间有6个梯形,所以一共有23618C ⨯=个梯形.7. 答案:48.解答:设舞蹈是第1个和第n 个节目,则n 可取2、3、4、5,有4种取法.同时两个舞蹈的顺序有222A =种,3个演唱的顺序有336A =种,所以一共有42648⨯⨯=种不同的安排方法.8. 答案:14.解答:按最高的孩子左边的孩子人数分类,可的符合要求的排队方法有12344414C C C ++=种.9. (1)答案35.解答:任取三个点就确定了一个三角形,共有3735C =个.(2)答案:48.解答:一条直线上取两个点,另一条上取一个点,就确定了一个三角形,共有2112444448C C C C ⨯+⨯=个.10. 答案:466.解答:标数法.11. 答案:35.解答:用插板法,有3735C =种不同的分法.12. 答案:2016、4980.解答:用乘法原理,求出符合要求的四位数有49872016⨯⨯⨯=个.求其中第2010个数,只需从大往小数到第7个数即可,它是4980.13. 答案:188.解答:按十位数字分类讨论.如十位是2时,百位可取1、2、3、4有四种取值,个位可取0、1、2、3、4有五种取值,所以十位数字是2的有4520⨯=个.按这样把十位数字是0到9的情况都进行计数,可求得符合要求的三位数一共有188个.14. 答案:20、6.解答:设abcd 的各位数字之和为4,则a 、1b +、1c +、1d +这四个正整数的和是7.由于7x y z w +++=的正整数解个数是3620C =个,故各位数字之和4的四位数有20个.其中能被11整除的数,必有2a c b d +=+=,(),a c 的取值有()1,1、()2,0两种,(),b d 的取值有两种()0,2、()1,1、()2,0三种,故有236⨯=个.15. 答案:40.解答:容易推断出:校+班=10,学+子=10,思+尖=9,高=1,尖≠0.按“思,尖”的取值分类讨论:(1)思=0,尖=9时,10283746=+=+=+,“校”有6种取值,取完“校”之后,“班”的值就确定了,而“学”的可选取值还有4种,所以此类情况有6424⨯=种填法;(2)“思=2,尖=7”或“思=7,尖=2”或“思=3,尖=6”或“思=6,尖=3”时,余下的数字均不足以配成两对和数10,故没有符合要求的填法;(3)“思=4,尖=5”或“思=5,尖=4”时,102837=+=+,“校”有4种取值,取完“校”之后,“班”的值就确定了,而“学”的可选取值还有2种,所以此类情况有24216⨯⨯=种填法.所以一共有241640+=种不同的取值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数计数问题练习题及答案:信号旗
小学生频道为大家整理的六年级奥数计数问题练习题及答案:信号旗,供大家学习参考。
红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?如果白旗不能打头又有多少种?
【答案解析】
取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类
第一类,一种颜色:都是蓝色的或者都是白色的,2种可能;
第二类,两种颜色:(4×3)×3=36
第三类,三种颜色:4×3×2=24
所以,根据加法原理,一共可以表示2+36+24=62种不同的信号.
(二)白棋打头的信号,后两面旗有4×4=16种情况.所以白棋不打头的信号有62-16=46种.。