地下水循环机理研究手段综述报告
水循环课题研究报告总结

水循环课题研究报告总结
水循环是地球上的重要循环之一,在地球上起着至关重要的作用。
为了加深对水循环的理解和探讨其在人类社会中的影响,本课题对水循环进行了深入的研究。
通过收集相关文献、进行实地调研和数据分析,我们深入了解了水循环的过程、影响因素以及其对人类社会的作用。
首先,我们对水循环的基本过程进行了详细的研究。
水循环主要经历了蒸发、云化、降水和地下水等几个重要阶段。
这些过程是相互联系的,相互作用,构成了一个复杂的系统。
通过研究这些过程,我们可以更好地理解水循环的机制和变化规律。
其次,我们研究了影响水循环的因素。
气温、湿度、地形以及人类活动等都会对水循环产生影响。
例如,全球气候变暖导致了水循环的加快,降水量的分布也发生了改变。
同时,人类的大规模水资源开发和污染也对水循环产生了不可忽视的影响。
因此,要想更好地保护水资源,减轻水循环受到的影响,就需要重视环境保护和水资源管理。
最后,我们研究了水循环在人类社会中的作用。
水循环不仅对水资源的供应和农业生产有重要影响,还对水生态系统和地质过程起着至关重要的作用。
同时,水循环还与气候变化密切相关,对全球气候产生重要影响。
因此,我们应该重视水循环对于人类社会的意义,加强对水资源的保护和合理利用。
总体来说,本课题对水循环进行了深入研究,对水循环的基本过程、影响因素以及在人类社会中的作用都进行了全面的分析。
在未来的研究中,还可以进一步探究水循环与其他自然循环之间的相互关系,以及制定更好的水资源管理政策。
通过这些努力,可以更好地保护和利用水资源,促进可持续发展。
地下水环境质量评价研究综述

ቤተ መጻሕፍቲ ባይዱ
・ 1 5・
地下 水环境质量评价研究综述
王 新 星
( 黑龙江省水文地质工程地 质勘 察院, 黑龙 江 哈 尔滨 1 5 0 0 3 0 )
摘 要: 随着人 口的增加 , 我 国地 下水开发 以及利用的规模 日益扩 大, 导致 了地下水位不 断下 降, 水质不断 变差。有些地 区甚至 处于 严重缺水的状 况。要想解决这些 问题 , 就 必须研究地下水环境质量。于是对 于地下水环境质量的研 究与评价 的工作就非常重要 。本 文对 我 国地 下水质 量的现状 , 以及 国外的状况进行 了评价和研 究。对 于地下水环境 质量更好 的发展提 出了一些方法。 关键词 : 地下水的总体环境 ; 水资源 ; 重要 意义; 方法 1 我国地下水环境质量研究的目的和重要意义 温度环境, 是一种宝贵的资源。我国地下水的保护与监管, 一切都还是在 地下水环境质量是指地下水的水质状况。水资源是 ^ 、 类生存的必要 刚刚起步的阶段, 还有很大的发展空间和极强可改变性。 对于整体的地下 资源。随着我国人 口的逐渐增加 , 水资源也皮 于逐渐减少的状态。地下水 水环境保护来说, 地下水环境质量评价是基础的—项工作。 更加是人们生产、 生活、 生存不可缺少的。地下水系统在我国水资源系统 地下水与地表水—样也具有侵蚀、 搬运以及堆积作用。 搬运作用, 主要 中也处于非常重要的地位, 是地质环境要素的重要组成之一。它为我国人 是以化学搬运为主 , 兼有溶洞和地下河的机械搬运。 沉积作甩包活机械沉 民的农业生产 、 工业生产都有巨大的作用。 秦岭淮河以北的黄土高原地区 积、 化学沉积和洞穴中的堆积。机械沉积是与河流沉积相似, 水动力减弱 植被覆盖面积小, 水土流失严重导致水资源严重缺乏。随着我国工 、 农业 是机械浙 只 的作用的原因。化学沉积是当地下水中C O : 分压降低,力程 的飞速 发展 , 使地下水的污染程度不断提高、 使地下水系统受到破坏。影 1 0 — 1 向左进行, 便发生沉积, 形成石笋、 石幔、 石柱等钟乳 貌。洞穴中 响城乡供水质量, 危及 ^ 、 体健康而目还容易引发地质问题 , 使人们的生命 的堆积分化学沉积 、 重力堆积、 地下河湖沉积与生物和文化堆积。化学沉 财产安全受到威胁。 积是各种钟 石形成的。 重力堆积是各种崩塌形成的崩击物, 生物文化堆 随着人们生活水平的不断提高, 对生活质量的要求也随之增加 , 人们 积是古动物和人类还在洞穴栖身时, 常有古生物、 古人 类及古文化堆积。 的意识也在不断的改变。 水作为人生存的必要条件, 人们也认识地下水污 例如周口店猿人、 汤山人等古 ^ 类化石都发现于洞穴中。当然也有不少洞 染的问题 , 现在也得到了越来越多的重视。要想减 地下水的污染 , 主要 穴的生物文化堆积是地下河搬运而来的。 在于防治与监管。要从实际出发 , 客观的认识到问题的严重 , 具体问题 地下水受污染有几种途径: —个是地表污染后渗 入地下水 , 如很多地 具体分析, 积极的去发现问题 , 解决问题, 预防问题再次发生的可能l 生 。要 方地下水为很低 , 地表是沙土层的活就非常容易渗透下去, 如果地表是固 坚持对地下水的水质边行 认真的分析和评价 ,努力做妇- L切 的基础准备 态的废物, 那渗透的时间会更 久。还有—种是直接污染 : 例如有的企业将 工作。 废水通过打井直排地下。经常见到的污染像垃圾填埋场渗出液体直接接 2地下 水环境质 量地质调查与 国内外现状 触地表 , 这样长期的会对地下水环境造成很大的影响。 地下水环境是地下水及其赋存空间环境在内外运动地质作用和人为 我国现在地下水环境质量检测和质量的保证技术陛都不是很高。需 活动作影响下所形成的状态及其变化的总称,是地质环境的重要组成部 要提高监管力度, 提高大家保护水资源的意识。 将科学技术应用到保证地 分。 下水环境质量的工作中去。提高工作人员的知识水平 , 提高相关方面的科 2 0 世纪 6 0 年代 中期 , 工业发达造成环境污染严重, 环境质量评价在 学研发 。 国外出现。 加拿大 1 9 6 4 年召开国际环境贯星洋价会议, 首次提出了“ 环境 简单、 实用 、 科学、 合理的地下水环境质量评价方法是未来的研究方 质量评价” 说法。美国 1 9 6 9 年制定国 谚 。另外, 其他国家- 世 j 『 挝 向。应加快地下水环境质量标准的更新和修订,提高对水环境质量的要 . 了相关法律, 如加拿大、 瑞典 、 澳大利亚等。 日 本也非常重视环 工作 , 求, 满足 人 类及社会发展需要。污染因子权重的确定 , 是地下水环境质量 1 9 7 4 年提出了《 关于环境影响评价的运用指南》 , 及有关环境影响评价技 评价中的重要研究 内容。 术 的 方案 , 1 9 7 5 年提出了 境影响评价的力怯》 。 结束语 1 9 6 5 年, R N. Ho r t o n 提出水尉 介 于 黢 D 。1 9 7 0 , t L M _ B r o w n 提出 本文结合了国内外的地下水环境质量的问题和发展,对地下水研境 水质珊 - 价 质量指数法( WQ I ) 。1 9 7 4 年, N J A N e me r o w提出尼梅罗综合 质量的发展做出了分析和总结。 我国地下水环境质量还存在一定的问题 , 污染指数法。 还需要大力加强科 技术的应用。坚持可持续发展的道路, 让有限的水资 各类指数力栏} 各有所长, 但这些方法皆是事先假定模式或者主观规 源带来更大的可利用空间和价值。同时要加强对地下水质的检测、 控制, 定参数, 因I 平价结果未必客观。 以免带来不 必要的危害。 要提高大家保护水资源的意识, 减! 人 类对与水 在2 0 世纪 7 0年代初, 国内开始开展环境保护盼 。1 9 7 9年 的污染。工业、 农业等相关经 业 , 在i 猁 的同时要保i Ⅱ 不污染水质, 破 颁布环境保护法 , 确定了环境影响评价制度。此后, 开展了一系列的相关 坏地下水系统。要提倡节约用水, 减少高危险污染企业的生产项 目。提高 学术研讨活动 , 如“ 区域环境学术讨论会” 、 “ 环境理论研究讨会” 、 “ 中国环 各方面的安全防范措施 , 避免水污染危害 人 体健康诱发灾害给经济带来 境科学学会代表大会” 、 “ 全国环境质量评价研究学术讨论会” 、 “ 中国环境 巨大的损失。要学会对项 目 采取降低危险措施 , 从安全、 防火、 防毒等方面 科学学 会学术年 会” 。 进行预防。提前做好各种应急预案 , 一 旦发生问题时, 要严格按照预案处 2 0世纪 8 0 年代初 ,地质矿产部组织开展第一轮地下水资源评价工 理问题 , 将风险损失降到最低。 最后希望部能够 0 地下水环境的重要 作。 2 0 0 0 年始 , 历时两年, 国土资源部开展了新—轮地下水资源评价工作。 性, 为了我们共同的发展将水资源的保护做到最好。 两7 欠{ 介 调 查,足可见 . 对地下水环境质量及时了解的重要陛。2 0 0 9 年9 最后,感谢国家级大学生创新实验项目及吉林省自然科学基金项 目 月,国土资源部在哈尔滨市举办了地下水监测网优化与地下水污染调查 ( 2 0 1 1 1 5 0 4 1 ) 的支持。 取样培训班,可 见对地下水环境 则网的建设与地下水污染调查取样规 参考文献 范 的重 视。 【 1 塘 永銮环 境质量综 合指数简 介 环境科学 , 1 9 7 9 2 : 7 1 _ 7 4
水循环课题研究报告

水循环课题研究报告1. 引言水循环是地球上最重要的自然循环之一,它在维持地球生态系统的平衡中起着至关重要的作用。
本报告旨在对水循环进行深入研究,探讨其原理、影响因素以及人类活动对水循环的影响,并提出一些改进和保护水资源的策略。
2. 水循环原理水循环是指地球上水的循环过程,其中水以液态、气态和固态的形式在大气、地表和地下之间不断转移。
主要的水循环过程包括蒸发、凝结、降水、径流、渗漏和地下水补给。
太阳能驱动了水循环的核心机制,通过蒸发和凝结,水从地表升腾到大气中形成云,最终以降水的形式返回地表。
3. 影响水循环的因素水循环受到多个因素的影响,包括降雨量、气温、地形、地表覆盖和植被等。
降雨量是影响水循环最重要的因素之一,它决定了地面的水分补给量。
气温的变化会直接影响蒸发和凝结的速率,进而影响水循环的速度。
地形也对水循环起着重要的作用,它决定了水的流动方向和速度。
地表覆盖和植被可以影响土壤的保水能力和蒸发速率,进而对水循环产生影响。
4. 人类活动对水循环的影响人类活动对水循环有着显著的影响。
首先,大规模的水资源开发和利用,例如水库建设和灌溉系统,改变了水循环的速度和路径。
其次,过度的城市化和工业化导致了城市地表的排水系统改变,使降水的径流增加,进而影响地表水和地下水的补给。
同时,农业生产中的大量水消耗和化学物质的使用,导致了农田土壤水循环的变化。
最后,气候变化也对水循环产生了重要的影响,如干旱和极端降水事件的增加。
5. 改进和保护水资源的策略为了改善和保护水资源,我们需要采取一系列的策略和措施。
首先,提高水资源的利用效率,包括改善农田灌溉系统、发展节水型工业和居民生活方式。
其次,加强水资源的保护和管理,包括建立水资源保护区、加强水污染防治和建设雨水收集系统等。
第三,加强国际合作,共同应对气候变化带来的水资源挑战。
最后,推动公众的水资源意识和参与,通过教育和宣传来提高公众对于水资源问题的认识和理解。
6. 结论水循环是地球上生态系统得以运行的基础,对于维持地球上的生命和环境有着重要的影响。
地表水与地下水联动关系研究综述

地表水与地下水联动关系研究综述地表水与地下水是地球上两种重要的水资源形式,它们在水循环过程中具有紧密的关联。
地表水与地下水的联动关系研究对于水资源的开发利用、水环境保护等方面具有重要的意义。
本文将对地表水与地下水联动关系的研究进行综述,以期为相关研究及水资源管理提供参考。
一、地表水与地下水概念及特点地表水是指地球表面及地下表面以下未被土壤包裹的水体,如河流、湖泊、水库以及地表水库等。
其特点是易受气候、地形和人为活动的影响,波动性大,受降水和蒸发影响较大。
而地下水是指地表以下的地下水体,包括地下水层、含水层等,常常保存在土壤孔隙、裂隙和岩石中。
地下水的特点是稳定性高,受气候变化影响较小。
二、地表水与地下水联动关系地表水和地下水并不是孤立的,它们之间存在着很强的互动关系。
一方面,地表水会通过渗漏作用进入地下水系统,补充了地下水的储量。
地下水则可能通过泉眼、温泉等形式向地表水释放,维持了地表水的生态环境。
而在一些特定条件下,地表水与地下水之间还存在着相互补充和调控的关系:当地下水位下降时,地表水可能会渗入地下水系统进行补给;反之,当地下水位上升时,地下水也可能会向地表水系统释放。
在不同地理环境中,地表水与地下水联动关系会表现出不同的特点。
在河流地区,地下水与地表水的相互补给关系较为明显,河流的水量主要来自于地下水的渗漏。
而在湖泊地区,地下水则可能通过泉涌、湖底渗漏等方式向湖泊系统补给水量。
在滨海地区,由于地下水位受潮汐影响,地下水与海水之间的相互渗透也是一种重要的联动关系。
随着对水资源的需求不断增加,地表水与地下水联动关系的研究日益受到重视。
目前,国内外学者对地表水与地下水联动关系展开了一系列深入研究,主要集中在以下几个方面。
1. 水文地质特征研究水文地质特征是地表水与地下水联动关系研究的基础。
学者们通过对地质构造、水文地质条件等方面的研究,以期揭示地下水与地表水的运移规律、渗流途径等情况,为地表水与地下水联动关系的研究提供理论依据。
地表水与地下水联动关系研究综述

地表水与地下水联动关系研究综述地表水与地下水联动关系是地下水水文循环的重要组成部分,也对水资源管理和保护具有重要意义。
近年来,随着社会经济的发展和人口的增加,水资源短缺和水环境污染问题日益突出,地表水与地下水联动关系研究已成为水文学、水资源管理和环境保护的新热点,其应用范围已从单纯的科学研究拓展到地下水资源开发、水文预报和水资源保护等领域。
地表水和地下水是地球上水文循环系统的两个重要组成部分,二者通过许多不同的方式发生联系与作用。
地表水一般指自由流的水体,如河流、湖泊、水库以及冰川融水等;地下水则指自然界中储存、流动的水体,是地层中自然聚集起来的水。
地下水具有储存量大、质量稳定、利用灵活等优点,是重要的水资源之一。
在许多地方,地下水是主要的饮用水源和灌溉水源。
在自然界中,地表水和地下水是相互联动的,二者之间的关系是复杂的、多元的。
地表水对地下水的补给是一个基本问题,一些河流、湖泊、水库和沼泽等均为地下水提供了充足的补给;同样,通过地下水渗入地表水体系也能够起到保持流量、稳定水质的作用。
同时,地下水对地表水的补给也是至关重要的。
在干旱地区,地表水通常极为有限,地下水更能够支持人类生活和经济活动的需要。
此外,地下水污染、地下水开采等因素也可能影响地表水的水质和水量。
地下水与地表水联动关系的研究在实践中具有广泛的应用。
在水资源管理方面,地下水与地表水联动关系研究为在特定地区制定合理的水资源管理政策提供了科学依据。
在工程水利方面,对于水沟、拦河坝、水文观测和水文预报等工程设计和管理也有重要意义。
此外,地下水与地表水联动关系也是环境保护的重要研究内容。
在水污染治理领域,地下水与地表水联动关系的研究可为处置水污染、预防水污染提供决策支持,有助于环境质量的保护和改善。
在地下水与地表水联动关系的研究中,物理、化学、数学等多个学科的交叉融合,反映了地下水水文循环的复杂性和多样性。
其中主要的研究方法包括水文地质、数学模型、同位素示踪和水文化学等。
地表水与地下水联动关系研究综述

地表水与地下水联动关系研究综述地表水与地下水是自然水循环中的两个重要组成部分。
地表水主要来源于降雨、融雪、冰川、湖泊等,通过河流、湖泊、海洋等渠道最终流入海洋。
地下水则主要来自雨水、雪水、融雪等渗入地下。
两者之间紧密联系,相互影响,构成了复杂的地下水-地表水联动系统。
本文就地表水与地下水的联动关系进行综述,分析其相互作用机制及影响因素。
1.地下水与地表水的相互作用机制1.1浸润补给地下水主要来源于地表水的浸润补给。
当自然降水从大气层中降落并形成地表水时,一部分水会陆续渗透到地下,地下层岩石土壤中的孔隙和裂缝中形成地下水。
这种渗透作用是地下水与地表水之间相互作用的一个重要方面。
例如,在石漠化地区,由于水文条件的变化,石漠化地表水不能充分利用,导致地下水资源枯竭。
而水土保持措施和植被恢复等可以增加降水对土壤的输入,提高地下水的充裕程度。
1.2水量交换地表水和地下水之间也存在水量交换作用。
当地面水体超过地下水水位时,地表水流入地下水层补给地下水;反之亦然。
例如在河滩、滨海带、荒漠和内陆盆地中,地下水和地表水之间存在密切联系,这种水量交换可以增加地下水资源的稳定性和可靠性,从而维持区域生态环境的平衡。
程度上的污染也可能由地表水扩散到地下水,导致水质问题。
例如,化肥、农药、工业废物、重金属等可污染物可能通过降水和地表水渗入土层,接着进入地下水,在地下水层中流动并扩散,最终造成地下水的污染。
在实际应用中,可以利用地下水补给地表水,提高地表水质量,也可通过地表水的净化提高地下水质量。
2.1降水量和水文地质条件地下水和地表水的数量和质量与降水量和水文地质条件密切相关。
在干旱的南方地区,随着全球气候变暖,降水量相对较少,地下水资源日趋稀缺,导致地表水供应不足。
同样,热带雨林和沿海地区相对降雨多,地下水丰富,长度和宽度上的水位梯度就趋向于平坦,不容易形成明显的地下水流。
2.2地形地貌和土地覆盖地形地貌和土地覆盖会对地下水和地表水的联动关系产生显著影响。
水循环课题研究报告范文

水循环课题研究报告概述本文旨在研究水循环的相关问题,并分析其应用和影响。
水循环(也称为水循环或水资源循环),是指地球表面水在地球系统中持续运动的过程。
本文将首先介绍水循环的概念和基本原理,然后分析水循环对生态系统、气候变化和人类活动的影响,最后讨论如何有效管理和保护水资源。
1. 水循环的概念和原理水循环是地球上水的持续运动过程,包括蒸发、凝结、沉降和径流等过程。
首先,太阳能引起水体蒸发,并形成水蒸汽。
随后,水蒸汽上升到高空,遇冷凝结成云。
当云中的水滴足够大时,就会下降为降水,包括雨、雪和冰雹。
降水通常分为表层径流和地下径流,这些径流最终回到海洋或湖泊中,完成循环过程。
2. 水循环对生态系统的影响水循环对生态系统的影响十分重要。
首先,水循环提供了生态系统所需的水资源,维持了生物体的生存和繁衍。
其次,水循环通过降水分配水资源,为不同地区的生态系统提供了水源。
然而,气候变化和人类活动对水循环造成了一些负面影响,如干旱、洪水和水资源匮乏。
因此,合理管理和保护水资源对维持生态系统的平衡至关重要。
3. 水循环对气候变化的影响水循环对气候变化起着重要的作用。
水蒸汽是大气中最主要的温室气体之一,它能够吸收地球上反射回宇宙的红外辐射,从而增加地球的温度。
因此,水循环的变化将直接影响全球气候。
近年来,由于气候变暖和人类活动的影响,降水模式和频率发生了显著变化,导致了干旱和洪水的增加。
因此,更深入地研究和了解水循环对气候变化的影响,有助于制定可持续的气候变化适应策略。
4. 水循环对人类活动的影响水循环对人类活动有着重要的影响。
首先,水循环为农业、工业和居民提供了必要的水资源,维持着人类社会的正常运转。
然而,由于水循环的不平衡,一些地区出现了水资源匮乏的问题,导致了水危机和社会不稳定。
其次,水循环还与城市化、能源生产等人类活动密切相关。
例如,工业污染和排放会影响水质,进而影响水循环。
因此,人类需要采取有效的管理和保护措施,以确保水资源的可持续利用。
循环用水实验报告总结(3篇)

第1篇一、实验背景随着我国经济的快速发展和城市化进程的加快,水资源短缺问题日益凸显。
为了提高水资源的利用效率,减少浪费,循环用水技术得到了广泛应用。
本实验旨在通过模拟循环用水系统,验证其运行效果,为实际工程提供理论依据。
二、实验目的1. 研究循环用水系统的运行原理和工艺流程。
2. 评估循环用水系统在处理水质、提高水资源利用率等方面的效果。
3. 分析循环用水系统在实际应用中可能存在的问题,并提出相应的解决方案。
三、实验原理循环用水系统主要包括预处理、主体处理、深度处理和回用水系统等环节。
实验过程中,通过向循环用水系统中加入一定量的原水,经过预处理、主体处理和深度处理后,将净化后的水回用到生产或生活领域,实现水资源的循环利用。
四、实验方法1. 实验装置:循环用水实验装置包括预处理系统、主体处理系统、深度处理系统和回用水系统。
2. 实验步骤:(1)将原水加入预处理系统,去除悬浮物、泥沙等杂质;(2)将预处理后的水进入主体处理系统,通过物理、化学、生物等方法进一步净化水质;(3)将主体处理后的水送入深度处理系统,去除微污染物、重金属离子等;(4)将深度处理后的水送回回用水系统,用于生产或生活领域。
五、实验结果与分析1. 预处理效果:实验结果表明,预处理系统可有效去除原水中的悬浮物、泥沙等杂质,保证后续处理环节的正常进行。
2. 主体处理效果:主体处理系统通过物理、化学、生物等方法,使水质得到进一步净化。
实验结果显示,主体处理后的水质达到国家相关标准。
3. 深度处理效果:深度处理系统可有效去除微污染物、重金属离子等,保证回用水水质满足生产或生活领域的需求。
4. 回用水效果:实验结果表明,回用水系统运行稳定,回用水水质达到预期目标,有效提高了水资源的利用率。
六、实验结论1. 循环用水系统具有处理效果好、运行稳定、水资源利用率高等优点,可有效解决水资源短缺问题。
2. 实验结果表明,循环用水系统在实际应用中具有较高的可行性和推广价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水循环机理研究手段综述报告
地下水循环模式代表了区域内地下水总的补、径、排特征,可以为地下水资源的合理管理和可持续利用提供科学依据。
如今,地下水循环的研究越来越引起人们的广泛关注。
早期水循环研究主要应用于地表水与地下水相互转化关系。
目前,地下水循环研究的方法有:水文地质分析法、水化学方法、同位素分析方法、数值模拟法等。
1.水文地质分析法水文地质分析法是地下水循环模式研究最传统的方法,也是最基础的方法。
该方法以地质、水文地质条件为基础,从地下水补、径、排角度来分析和确定地下水循环模式。
2.数值模拟技术随着计算技术的发展,数值模拟技术得到广泛的应用,但受到参数的限制,影响到该方法的应用。
3.水化学方法地下水水化学组分是地质历史时期形成的产物,在一定程度上记录着水体的赋存环境特征、补给来源、渗流途径等水循环方面的信息,可用用来阐明地下水的运动方向,在一定程度上反映区域地下水循环规律和更新能力。
但是不同成因的地下水,其水化学组分可能相似,需要配合其它方法使用。
4.环境同位素方法二十世纪五十年代国外就将同位素技术应用到水文地质学的研究中。
最初同位素只用作示踪剂,随后人们开始利用同位素技术探讨地下水的起源、形成、埋藏和演化等理论问题,判定地下水的补给来源,补给高程、补给强度、不同补给来源的比例、估算水文地质参数、地下水年龄,地下水更新能力,流速和流向,查明地表水与地下水以及不同含水层间的水力联系等实际问题,掌握区域地下水循环特征。
目前,常用的同位素有D、18O、3H、13C、14C。
氢氧稳定同位素是研究区域地下水循环方式和补给来源最常用的示踪剂,在低温的情况下,水岩作用不会影响它们在地下水中的含量。
地下水中稳定同位素在循环过程中受到混合以及雨水补给、蒸发等作用引起同位素分馏而产生规律性的变化。
氚是一种放射性同位素,具有计时性,且地下水中的3H含量不与岩石介质发生交换,可以用来研究含水
层是否曾接受现代水的补给,是上世纪50年代以来有效示踪水循环的理想示踪剂。
13C是天然水中最为重要的组分,有助于查明水中碳的来源及其形成过程,提供地下水形成过程的重要信息。
14C同位素可以用来测定古地下水的年龄。
地下水溶解的无机碳中的初始14C浓度浓度容易受物理化学作用的影响,确定补给水中14C的初始浓度是14C测年法关键问题。
近几十年14C年龄的校正成为一个重要研究课题。
学者相继提出了多种校正模型,较为普遍的校正模型是13C混合模型和碱度模型。
H.Craig于1961年发现了大气降水中的氢氧同位素组成呈线性关系,数学关系式为δD=8δ18O+10,为以后的研究奠定了基础。
1987年于津生对我国东部大气降水中氢、氧同位的组成特征进行了分析,指出在降水、地表水、土壤水和地下水循环转化过程中,会发生氢氧稳定同位素的分馏,使得不同的水体中含有不同的氢氧稳定同位素比值,从而可以有效的研究不同水体补给来源以及不同水体间水力联系。
Warren W.Wood和Wand E.Sanford于1994年在计算美国新墨西哥州南部以及德克萨斯州地下水补给量时,提出了将水化学与同位素相结合的方法来评价补给来源、径流途径以及补给源的时空分布。
2000年张宗祜通过对华北平原地下水和地表水氢氧稳定同位素分布规律的分析,以及14C测年,研究了地下水的循环模式,苏小四、林学钰2004年利用δD,δ18O分布情况,结合3H ,14C测龄分析了包头平原潜水、承压水的补给来源,建立了包头地下水循环模式。
同位素技术已经成为研究水循环不可或缺技术手段。
总之,水文地质分析法、水化学方法和同位素法都可以在一定程度上揭示水循环的部分信息,为水循环研究提供依据。
如果只用一种方法,不确定因素太多,精度以及准确度已经不能满足实际应用的要求,有时甚至会出现相反的结论。
水文地质、水化学和多种同位素法相结合,相互验证,才能使水循环研究更全面、更细致、更可靠。