中考旋转作图题专题

合集下载

(完整)中考数学几何旋转经典例题

(完整)中考数学几何旋转经典例题

旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AOB BO '∠'∠,都是旋转角。

说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。

决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。

由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同. ⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。

⑶对应点到旋转中心的距离相等。

⑷对应线段相等,对应角相等。

例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )DA.25B.30 C.35 D.45知识点3:旋转作图1。

明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.'图1图2例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由。

旋转中考复习

旋转中考复习

图形的旋转一、定义:把一个平面图形绕着平面内某点O 转动一个角度叫做图形的旋转。

点O 叫做旋转中心,转动的角叫做旋转角。

二、旋转的性质:1、对应点到旋转中心的距离相等;2、对应点与旋转中心所连线段的夹角等于旋转角;3、旋转前后的图形全等。

三、旋转作图例1:把RT △ABC (∠C=90°)绕点 C 逆时针旋转90°,得到△A 1B 1C 。

求证:A 1B 1⊥AB 。

例2:如图,以O 为原点建立适当的直角坐标系,标出△ABC 的坐标,并将△ABC 绕原点O 顺时针旋转90°,得到△A 1B 1C 1,写出旋转后各点坐标,并求点A 经过的路径长。

例3:把直线y =x +3绕点O 顺时针旋转90°,写出直线解析式。

例4:已知:正方形ABCD 中,把RT △ABE 绕某一点旋转90°后,得到RT △ADF ,用尺规作图找出旋转中心总结:①由角度相等可以证明线段垂直。

②旋转某个特殊角度一般可由三角形全等求出点的坐标。

③把一条直线旋转可求出旋转后的的直线与坐标轴的点的坐标,再写出直线解析式。

④据旋转的性质:对应点到旋转中心的距离相等,通过作对应点所连线段的垂直平分线的交点可找出旋转中心。

四、旋转与中心对称:把一个图形绕某一点O 旋转180°得到中心对称图形。

把一个图形绕某一点O 旋转任意角度可以得到旋转对称图形。

例:说出下列图形中哪些是中心对称图形,哪些是旋转对称图形。

五、旋转的应用图形的旋转可分为两种题型: ①用旋转进行计算或证明。

通常通过旋转构建直角三角形或等边三角形,从而便于计算或证明。

一般这类题目通常出现在正方形,等边三角形或等腰直角三角形中。

有旋转后重合相等的边构建新的直角三角形或等边三角形。

②图形变换中的旋转。

这类题目往往是通过旋转进行证明,进而探求变化规律。

例1:如图所示:⊿ABC 中,∠ACB=90,AC=BC ,P 是⊿ABC 内的一点,且AP=3,CP=2,BP=1,求∠BPC 的度数.例2:已知,正△ABC 中内有一点P ,连接AP ,BP ,CP ,且∠APC=150°,CP=3,AP=4.求BP 的长。

专题32 几何变换之旋转模型--2024年中考数学核心几何模型重点突破(学生版)

专题32 几何变换之旋转模型--2024年中考数学核心几何模型重点突破(学生版)

专题32几何变换之旋转模型【理论基础】1.旋转的概念:将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转,定点称为旋转中心,旋转的角度称为旋转角.2.旋转三要素:旋转中心、旋转方形和旋转角度.3.旋转的性质(1)对应点到旋转中心的距离相等;(2)两组对应点分别与旋转中心连线所成的角度相等.注:图形在绕着某一个点进行旋转的时候,既可以顺时针旋转,也可以逆时针旋转.4.旋转作图:在画旋转图形时,首先要确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.具体步骤如下:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺/逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的对应点.5.旋转中的全等变换.(1)等腰直角三角形中的半角模型(2)正方形中的半角模型6.自旋转模型:有一组相邻的线段相等,可以通过构造旋转全等.(1)60º自旋转模型(2)90º自旋转模型(3)等腰旋转模型(4)中点旋转模型(倍长中线模型)7.共旋转模型(1)等边三角形共顶点旋转模型(2)正方形共顶点旋转模型8.旋转相似【例1】如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF.下列结论:①△AED≌△AEF;②∠FAD =90°,③BE+DC=DE;④∠ADC+∠AFE=180°.其中结论正确的序号为()A.①②③B.②③④C.①②④D.①③④【例2】如图,点E 为正方形ABCD 外一点,∠AEB =90°,将Rt △ABE 绕A 点逆时针方向旋转90°得到△ADF ,DF 的延长线交BE 于H 点,若BH =7,BC =13,则DH =_____.【例3】如图,ADE △由ABC △绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且DF PF =.①判断CDF ∠和DAC ∠的数量关系,并证明;②求证:EP PC PF CF=.一、单选题1.如图,P 是等边三角形ABC 内一点,将△ACP 绕点A 顺时针旋转60°得到△ABQ ,若PA=2,PB =4,PC =,则四边形APBQ 的面积为()A .B .C .D .2.如图,在ABC 中,AB AC =,若M 是BC 边上任意一点,将ABM 绕点A 逆时针旋转得到ACN △,点M 的对应点为点N ,连接MN ,则下列结论不一定成立的是()A .AM AN=B .AMN ANM ∠=∠C .CA 平分BCN ∠D .MN AC⊥3.如图,在平面直角坐标系中,△ABC 中点A 的坐标是(3,4),把△ABC 绕原点O 逆时针旋转90︒得到A B C ''' ,则点A ′的坐标为()A .(4,-3)B .(-4,3)C .(-3,4)D .(-3,-4)4.如图,O 是边长为1的等边ABC 的中心,将AB 、BC 、CA 分别绕点A 、点B 、点C 顺时针旋转()0180αα︒<<︒,得到AB '、BC '、CA ',连接A B ''、B C ''、A C ''、OA '、OB '.当A B C '''V 的周长取得最大值时,此时旋转角α的度数为()A .60°B .90°C .120°D .150°5.如图,正方形ABCD 的边长为4,30BCM ∠=︒,点E 是直线CM 上一个动点,连接BE ,线段BE 绕点B 顺时针旋转45°得到BF ,连接DF ,则线段DF 长度的最小值等于()A .424B .222C .2623D .2636.如图,在ABC 中,90C ∠<︒,30B ∠=︒,10AB =,7AC =,O 为AC 的中点,M 为BC 边上一动点,将ABC 绕点A 逆时针旋转角()0360αα︒<≤︒得到AB C ''△,点M 的对应点为M ',连接OM ',在旋转过程中,线段OM '的长度的最小值是()A .1B .1.5C .2D .37.如图,矩形ABCD 中,3AB =,BC =3,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是()A .233+B .25C .233+D 218.如图,在平面直角坐标系中,等腰直角△OAB 位置如图,∠OBA =90°,点B 的坐标为(1,0),每一次将△OAB 绕点O 逆时针旋转90°,同时每边扩大为原来的2倍,第一次旋转得到△OA 1B 1,第二次旋转得到△OA 2B 2,…,以此类推,则点A 2022的坐标是()A .(22022,22022)B .(-22021,22021)C .(22021,-22021)D .(-22022,-22022)二、填空题9.如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF .给出结论:①DE =EF ;②∠CDF =45°;③若正方形的边长为2,则点M 在射线AB 上运动时,CF .其中结论正确的是____.10.如图,四边形ABCD ,AB =3,AC =2,把△ABD 绕点D 按顺时针方向旋转60°后得到△ECD ,此时发现点A 、C 、E 恰好在一条直线上,则AD 的长为__________.11.在△ABC 中,∠C =90°,AB =5,把△ABC 绕点C 旋转,使点B 落在射线BA 上的点E 处(点E 不与点A ,B 重合),此时点A 落在点F ,联结FA ,若△AEF 是直角三角形,且AF =4,则BC =_____.12.如图,在四边形ABCD 中,60ADC ∠=︒,30ABC ∠=︒,且AD CD =,连接BD ,若2AB =,BD =BC 的长为______.13.已知,⊙O 的直径BC =,点A 为⊙O 上一动点,AD 、BD 分别平分△ABC 的外角,AD 与⊙O 交于点E .若将AO 绕O 点逆时针旋转270°,则点D 所经历的路径长为_____.(提示:在半径为R 的圆中,n °圆心角所对弧长为180R n π)14.如图,在正方形ABCD 中,M ,N 分别是AB ,CD 的中点,P 是线段MN 上的一点,BP 的延长线交4D 于点E ,连接PD ,PC ,将DEP 绕点P 顺时针旋转90︒得GFP ,则下列结论:CP GP =①,tan 1CGF ∠=②;BC ③垂直平分FG ;④若4AB =,点E 在AD 边上运动,则D ,F ______.15.已知⊙O 的半径为4,A 为圆内一定点,AO =2.M 为圆上一动点,以AM 为边作等腰△AMN ,AM =MN ,∠AMN =108°,ON 的最大值为_____________.16.如图,在矩形ABCD 中,AB =3,BC =4,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A ′B ′CD ′,B ′C 与AD 交于点E ,AD 的延长线与A ′D ′交于点F .当矩形A 'B 'CD '的顶点A '落在CD 的延长线上时,则EF =_____.三、解答题17.如图,在平面直角坐标系中△ABC 的三个顶点都在格点上,点A 的坐标为(2,2),请解答下列问题:(1)画出△ABC 绕点B 逆时针旋转90°后得到△A 1B 1C 1,并写出点A 1的坐标;(2)画出和△A 1B 1C 1关于原点O 成中心对称的△A 2B 2C 2,并写出点A 2的坐标;(3)在(1)的条件下,求BC 在旋转过程中扫过的面积.18.如图,在△ABC 中,点E 在BC 边上,AE =AB ,将线段AC 绕A 点旋转到AF 的位置,使得∠CAF =∠BAE ,连接EF ,EF 与AC 交于点G .(1)求证:EF =BC ;(2)若63ABC ∠︒=,25ACB ∠︒=,求∠FGC 的度数.19.如图,正方形ABCD 中,=45°MAN ∠,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)如图1,求证:MN BM DN =+;(2)当=6AB ,5MN =时,求CMN 的面积;(3)当MAN ∠绕点A 旋转到如图2位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.20.阅读下面材料:小岩遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且PA =1,PB PC =2,求∠APB 的度数;小岩是这样思考的:如图2,利用旋转和全等的知识构造AP C '△,连接PP ',得到两个特殊的三角形,从而将问题解决.(1)请你回答:图1中∠APB 的度数等于____;(直接写答案)参考小岩同学思考问题的方法,解决下列问题:(2)如图3,在正方形ABCD 内有一点P ,且PA =1PB =,PD =APB 的度数;(3)如图4,在正六边形ABCDEF 内有一点P ,若∠APB =120︒,直接写出PA ,PB 和PF 的数量关系.21.在ABC 中,90C ∠=︒,30BAC ∠=︒,点D 是CB 延长线上一点(30ADC ∠>︒),连接AD ,将线段AD 绕点D 顺时针旋转60°,得到线段DE ,连接EC .(1)依题意,补全图形;(2)若2BD BC ==,求CE 的长.(3)延长EC 交AB 于F ,用等式表示线段CE CF ,之间的数量关系,并证明.22.在△ABC 中,∠ACB =90°,BC =AC =2,将△ABC 绕点A 顺时针方向旋转60°至AB C ''△的位置.(1)如图1,连接C C '与AB 交于点M ,则CC '=_____,BC '=_____;(2)如图2,连接BB ',延长CC '交BB '于点D ,求CD 的长.23.如图,在等腰Rt △ABC 中,将线段AC 绕点A 顺时针旋转()090αα︒<<︒,得到线段AD ,连接CD ,作∠BAD 的平分线AE ,交BC 于E .(1)①根据题意,补全图形;②请用等式写出∠BAD 与∠BCD 的数量关系.(2)分别延长CD 和AE 交于点F ,①直接写出∠AFC 的度数;②用等式表示线段AF ,CF ,DF 的数量关系,并证明.24.如图,已知抛物线经过点()1,0A -,()3,0B ,()0,3C 三点,点D 是直线BC 绕点B 逆时针旋转90︒后与y 轴的交点,点M 是线段AB 上的一个动点,设点M 的坐标为()0m ,,过点M作x 轴的垂线交抛物线于点E ,交直线BD 于点F .(1)求该抛物线所表示的二次函数的解析式;(2)在点M运动过程中,若存在以EF为直径的圆恰好与y轴相切,求m的值;ΔA O C,点A、O、C的对应点(3)连接AC,将AOC∆绕平面内某点G旋转180︒后,得到111ΔA O C的两个顶点恰好落在分别是点1A、1O、1C,是否存在点G使得AOC∆旋转后得到的111抛物线上,若存在,求出G点的坐标;若不存在,请说明理由.。

中考数学 专题22 图形的旋转(知识点串讲)(解析版)

中考数学 专题22 图形的旋转(知识点串讲)(解析版)

专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。

【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。

平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。

旋转:将一个图形绕一个顶点沿某个方向转一定角度。

轴对称:将一个图形沿一条直线对折。

2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。

旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。

轴对称:对应线段或延长线如果相交,那么交点在对称轴上。

3)确定条件不同A平移:距离与方向旋转:旋转的三要素。

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习 -九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习图形的旋转这一章节是初中几何内容中非常重要的一个章节,对于图形的运动的形式和规律以及旋转的性质都是我们在对几何的初步认识当中的一个过程,掌握其重要的性质之后,对于几何综合题型当中辅助线的运用起到了非常重要的作用。

并且图形的旋转加上已经学习过的平移和轴对称。

对几何图形的变化有充分地了解,建立几何空间思维的正确认识,对于几何空间能力的提升起到了非常重要的促进作用。

首先,在学习图形的旋转这一章节我们主要围绕以下两个重要的内容来展开:第一,掌握图形的旋转和中心对称的概念;第二,掌握旋转的本质。

这也是我们学习过程中的重点和难点内容。

因为在旋转前后的两个图形中,对应点与旋转中心之间的距离总是相同的,所以对应点必然分别在以旋转中心为圆心,以对应点到旋转中心的距离为半径的一组同心圆上,对应点与旋转中心连线所成的角等于且等于旋转角。

唐老师提醒大家,旋转过程中保持静止的点就是旋转的中心,不变的量就是对应的元素。

其次,旋转的三个要素:旋转中心、旋转的角度和旋转方向.第三,旋转的性质:(1)图形中的每一点都绕着旋转中心旋转了同样大小的连线所成的角度;—整体角度(2)对应点到旋转中心的距离相等;(3)对应线段相等,对应角相等;——局部角度(4)图形的形状和大小都没有发生变化,即旋转不改变图形的形状和大小.—变换结果.第四,简单图形的旋转作图:(1)确定旋转中心;(2)确定图形中的关键点;(3)将关键点沿指定的方向旋转指定的角度;(4)连接这些点,得到原始图形的旋转图形。

(以上四个步骤是我们在制作简单旋转图的过程中应该遵循的步骤。

按照以上步骤画图,可以提高大家的学习效率,保证其在画图过程中的正确率。

)第五,旋转对称图形:平面图形绕某点旋转一定角度(小于圆角)后,可以与自身重叠。

中考复习 第四讲 旋转作图与计算

中考复习 第四讲 旋转作图与计算

第四讲旋转的作图及计算【基础回顾】1、已知点A(-2,3),A关于原点的对称点B的坐标是,A关于x轴的对称点C的坐标是,A关于y轴的对称点D的坐标是。

2、将教室里的三页吊扇旋转一个角度后与原图形共同形成一个中心对称图形,则旋转的角度最小为度。

3、⑴已知点A的坐标为(1,3),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为。

⑵已知点A的坐标为(-2,1),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为。

⑶已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为。

【例题解析】【例1】如图,在画有方格图的平面直角坐标系中,△ABC的三个顶点均在格点上.(1)填空:△ABC是三角形,它的面积等于平方单位.(2)将△ACB绕点B顺时针方向旋转90°,在方格图中用直尺画出旋转后对应的△A’C’B,则A’点的坐标是(,),C’点的坐标是(,)。

【练】如图,在平面直角坐标系中,点A的坐标为(1,3),点B的坐标为(2,1).(1)将△AOB绕原点O顺时针旋转90°得到△A′OB′,在图中画出△A′OB′;(2)写出点A′、点B′的坐标;(3)若点P(m,n)为△AOB内一点,则其旋转后的对应点P′的坐标为【例2】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,3),B(3,3),C (3,-1).将△ABC绕旋转中心O逆时针方向旋转3次,旋转角分别是90°,180°,270°.(1)在坐标系中画出旋转后的三角形。

(2)写出△ABC绕旋转中心O逆时针方向旋转270°后,点A,B,C所对应的坐标。

(3)△ABC关于直线y=x作轴对称变换,则点A的对应点的坐标为;(4)将线段AC绕点C旋转90°后得到线段A1C,则A1的坐标是;(5)将线段OB绕点O逆时针方向旋转75°后得到线段OB2,在则B2的坐标是;【练】作图:(1)把△ABC向下平移2格,再绕原点顺时针旋转180°,得到△A1B1C1;(2)把△ABC各点坐标做如下变化:横坐标乘以2,纵坐标不变,得到△A2B2C2.【例3】在平面直角坐标系中,小方格都是边长为1的正方形,△ABC≌△DEF,其中点A、B、C、D都在格点上,点E、F在方格线上.请你解答下列问题:(1)将△DEF绕点D顺时针旋转度,再向左平移个单位可与△ABC拼成一个正方形;(2)画出△ABC关于y轴对称的△A1B1C1;画出△ABC绕点P(1,-1)顺时针旋转90°后的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出对称中心的坐标;若不成中心对称图形,则说明理由。

图形的旋转(分层练习)(解析版)-八年级数学 下册

 图形的旋转(分层练习)(解析版)-八年级数学 下册

第三章图形的平移与旋转3.2图形的旋转一、单选题1.(2023秋·广东珠海·七年级统考期末)下列平面图形绕虚线旋转一周,能形成如图这种花瓶形状的几何体的是()A.B.C.D.【答案】C【分析】根据立体图形的形状,平面图形旋转的性质即可求解.【详解】解:A.旋转后不是所需立体图形,故不符合题意;B.旋转后是圆柱体,不是所需立体图形,故不符合题意;C .旋转后是所需立体图形,符合题意;D .旋转后不是所需立体图形,故不符合题意;故选:C .【点睛】本题主要考查平面图形与立体图形,理解并掌握平面图形旋转的性质,立体图形的形状特点是解题的关键.2.(2022秋·河北石家庄·七年级统考期末)如图,图形绕点O 旋转后可得到下列哪个图形()A .B .C .D .【答案】A 【分析】根据旋转的性质即可求解.【详解】解:将图形绕点O 顺时针旋转90 得到而其他选项的图形不能由原图形旋转得出,故选:A .【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.3.(2023秋·四川绵阳·九年级校联考期末)如图,在ABC 中,AB AC ,70ACB ,若将AC 绕点A 逆时针旋转60 后得到AD ,连接BD 和CD ,则BDC ()A .19B .20C .21D .22 【答案】B 【分析】由已知条件可求出CAB 的度数,根据旋转的性质可得ACD 为等边三角形,可求出BAD 、ADC 的度数以及得到AB AD ,进而求出ADB 的度数,由角的和差关系可得BDC 的度数.【详解】由旋转得:AC AD ,60CAD ,∴ACD 为等边三角形,∴60ADC ,∵AB AC ,70ACB ,∴AB AD ,ACB ABC Ð=Ð,∴180240CAB ACB ,604020BAD CAD CAB ,∵AB AD ,∴(18020)280ABD ADB ,∴806020BDC ADB ADC .故选:B .【点睛】本题考查了旋转的性质、等边三角形的性质,熟练掌握旋转的性质,依据性质求角度是解题的关键.4.(2023秋·河北石家庄·七年级统考期末)如图,将三角形AOB 绕点O 按逆时针方向旋转40°后得到三角形COD ,若10AOB =,则AOD 的度数是()A .40°B .50°C .60°D .65°【答案】B 【分析】根据旋转的性质确定旋转角,再由AOD AOB BOD 求解即可.【详解】根据旋转的性质可知:40BOD ,又10AOB=104050AOD AOB BOD ,故选:B .【点睛】本题考查旋转的性质,根据题意确定旋转角是解题关键.5.(2022秋·贵州遵义·九年级校考期中)如图,在平面直角坐标系xOy 中,AOB 可以看作是将DCE △绕某个点旋转而得到,则这个点的坐标是()A .(1,0)B .(2,0)C .(2,1)D .(2,2)【答案】D 【分析】根据旋转中心到对应点距离相等,可知旋转中心是OC 、BE 的垂直平分线的交点.【详解】解:如图,旋转中心是OC 、BE 的垂直平分线的交点,旋转中心的坐标为(2,2),故选D .【点睛】本题主要考查了图形的旋转,明确旋转中心到对应点距离相等是解题的关键.6.(2023秋·广东江门·九年级统考期末)AOB 绕点O 逆时针旋转65 后得到COD △,若30AOB ,则BOC 的度数是()A .25B .30C .35D .65 【答案】C 【分析】根据旋转的性质可得65AOC BOD ,结合30AOB ,即可求BOC 的度数.【详解】解:∵AOB 绕点O 逆时针旋转65°得到COD △,∴65AOC BOD ,∵30AOB ,∴35BOC AOC AOB ,故选C .【点睛】本题考查旋转的性质,旋转角的含义,掌握旋转角的含义是解本题的关键.二、填空题7.(2023秋·上海浦东新·七年级校考期末)如图,如果三角形BCD 旋转后能与等边三角形ABC 重合,那么图形所在的平面内可以作为旋转中心的点共有_______个.【答案】3【分析】根据三角形BCD 旋转后能与等边三角形ABC 重合,确定旋转中心,即可得到答案.【详解】解:以点B 为旋转中心,BCD △顺时针旋转60 ,能与等边三角形ABC 重合;以C 为旋转中心,BCD △逆时针旋转60 ,能与等边三角形ABC 重合;以BC 的中点为旋转中心,BCD △旋转180 ,能与等边三角形ABC 重合;则图形所在的平面内可以作为旋转中心的点共有3个.故答案为:3【点睛】此题考查了图形的旋转,熟练掌握旋转的三要素:旋转中心,旋转方向,旋转角是解题的关键.8.(2023秋·山东泰安·八年级统考期末)如图,点A ,B 的坐标分别为 1,1、 3,2,将ABC 绕点A 按逆时针方向旋转90 ,得到A B C ,则B 点的坐标为________.【答案】0,3【分析】根据题意画出图形,然后结合直角坐标系即可得出B 的坐标.【详解】解:如图,根据图形可得:点B 坐标为 0,3,故答案为: 0,3.【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.9.(2023春·江苏泰州·八年级校考周测)如图,将等边三角形CBA 绕点C 顺时针旋转 得到CB A ⅱV ,使得B ,C ,A 三点在同一直线上,则 ___________________.【答案】120 ##120度【分析】根据旋转的性质和等边三角形的性质,利用180ACB ,求出ACA 的度数,即为 的度数.【详解】解:∵将等边三角形CBA 绕点C 顺时针旋转 得到CB A ⅱV ,∴ACA ,60ACB ,∵B ,C ,A 三点在同一直线上,∴180120ACA ACB ;故答案为:120 .【点睛】本题考查求旋转角,等边三角形性质.熟练掌握对应点与旋转中心形成的夹角即为旋转角,是解题的关键.10.(2023秋·广西南宁·九年级统考期末)如图,在ABC 中,90ACB ,4AC ,3BC ,将ABC 绕点A 顺时针旋转得到AB C △,使点B 在AC 的延长线上,则B C 的长为________.三、解答题11.(2022秋·广西钦州·九年级校考阶段练习)如图,下列的图案是由什么基本图案经怎样的旋转得到的,把它画出来?【答案】见解析【分析】根据旋转的性质进行求解即可.【详解】解:(1);(2);(3);以上基本图案绕着对称轴旋转一周得到.【点睛】本题考查了旋转的性质,根据旋转的性质正确作图是解本题的关键.12.(2023春·江苏·八年级专题练习)如图,网格中每个小正方形的边长都是单位1.(1)画出将ABC 绕点O 顺时针方向旋转90 后得到的A B C ;(2)请直接写出A ,B ,C 三点的坐标.【答案】(1)见解析(2) 4,0A , 0,1B ,2,2C【分析】(1)利用旋转变换的性质分别作出A ,B ,C 的对应点A ,B ,C 即可;(2)根据点的位置写出坐标即可.【详解】(1)解:如图,A B C 即为所求;(2)解:由坐标系中图形的位置可知: 4,0A , 0,1B , 2,2C .【点睛】本题考查作图-旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.提升篇一、填空题1.(2022秋·山东济宁·九年级统考期末)如图,在平面直角坐标系中,点A 的坐标为 0,6,点B 的坐标为 8,0,连接AB ,若将Rt ABO △绕点B 顺时针旋转90 ,得到Rt A BO △,则点A 的坐标为___________.【答案】14,8【分析】根据旋转的性质,得到8,6O B OB O A OA ,90,90OBO BO A BOA ,得到 8,8O ,O A x ∥,进而求出A 的坐标即可.【详解】解:∵点A 的坐标为 0,6,点B 的坐标为 8,0,∴6,08OA B ,∵将Rt ABO △绕点B 顺时针旋转90 ,得到Rt A BO △,∴8,6O B OB O A OA ,90,90OBO BO A BOA ,∴90OBO BO A , 8,8O ,∴O A x ∥轴,∴ 86,8A ,即: 14,8A ;故答案为: 14,8.【点睛】本题考查坐标轴下的旋转.熟练掌握旋转的性质,利用数形结合的思想求解,是解题的关键.2.(2023秋·广西柳州·九年级统考期末)如图,在ABC 中,108BAC ,将ABC 绕点A 按逆时针方向旋转得到AB C △.若点B 恰好落在BC 边上,且AB CB ,则C 的度数为________.【答案】24【分析】设C x ,根据题意可得AB AB B C ,根据等边对等角可得,C CAB ,B AB B ,利用三角形外角的性质可得2AB B C ,根据题意,列方程求解即可.【详解】解:设C x ,根据旋转的性质可得AB AB B C则C CAB ,B AB B ,∴22B AB B C x ,由180BAC B C 可得1082180x x ,解得24x ,即24C 故答案为:24【点睛】此题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理的应用,解题的关键是熟练掌握相关基础性质.3.(2023秋·广东深圳·八年级深圳中学校考期末)如图,点E 为正方形ABCD 内一点,90AEB ,将Rt ABE △绕点B 按顺时针方向旋转90 ,得到CBE △(点A 的对应点为点)C ,连接DE ,延长AE 交CE 于点F ,则四边形BE FE 为正方形,若15AB ,3CF ,则DE 的长为____________.则90DGA AEB ,20cm BC .如图2,将ABC 绕点O 顺时针旋转60 ,AC 与EF 相交于点G ,则FG 的长是______.由题意得,EDF 20cm BC DF ,根据O 是边()BC DF 的中点,可得:∵ABC 绕点O 顺时针旋转∴60BOD NOF旋转180 ,得到11O AB △,再将11O AB △绕点1O 旋转180 ,得到112O A B △,再将112O A B △绕点1A 旋转180 ,得到213O A B △,……,按此规律进行下去,若点(2,0)B ,则点6B 的坐标为___________.【答案】(8,63)【分析】根据中心对称的性质,可得1(0,23)B ,1(2,23)O ,再根据1B 、2B 、3B ……的坐标,根据规律即可得出答案.【详解】解:∵ABO 是等边三角形,(2,0)B ,∴2OB OA AB ,60AOB .过点A 作AM OB ,交OB 于点M ,交11O B 于点N ,∴30OAM ,∴112OM OA ,∴22213AM ,∴(1,3)A ,∵将等边OAB 绕点A 旋转180 ,得到11O AB △,∴11AO B AOB ≌,∴111,2AN AM O B OB ,∴1(0,23)B ,1(2,23)O ,同理2(4,23)B ,3(2,43)B ,4(6,43)B ,5(4,63)B ,6(8,63)B ,故答案为:(8,63).【点睛】本题主要考查了旋转的性质,等边三角形的性质,以及直角三角形的性质,规律问题,根据题意,找到图形变化的规律是解题的关键.二、解答题6.(2022秋·贵州黔西·九年级统考期中)如图,在平面直角坐标系中,已知点 1,0A , 3,4B , 2,4C , 6,6D .(1)沿水平方向移动线段AB ,使点A 和点C 的横坐标相同,画出平移后所得的线段11A B ,并写出点1B 的坐标;(2)将线段11A B 绕某一点旋转一定的角度,使其与线段CD 重合(点1A 与点C 重合,点1B 与点D 重合),请作出旋转中心点P .【答案】(1)图见解析,点1B 的坐标为(0,4)(2)见解析【分析】(1)利用C 点的横坐标为2,把AB 向右平移2个单位即可;(2)作1CA 与1DB 的垂直平分线,它们的交点为P .【详解】(1)如图,线段11A B 为所作,点1B 的坐标为(0,4);(2)如图,点P 为所作.【点睛】本题考查了平移作图,以及旋转中心的确定方法:把旋转前后重合的点看成是两图的对应点;找出两组对应点,分别连接每组对应点并作连线的垂直平分线,交点就是旋转中心.7.(2023春·江苏泰州·八年级校考周测)如图,ABC 中,点E 在BC 边上,AE AB ,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ,连接EF ,EF 与AC 交于点G.(1)求证:EF BC ;(2)若65ABC ,28ACB ,求FGC 的度数.【答案】(1)见解析(2)78【分析】(1)由旋转的性质可得AC AF ,利用SAS 证明ABC AEF ≌△△,根据全等三角形的对应边相等即可得出EF BC ;(2)根据等腰三角形的性质以及三角形内角和定理求出18065250BAE ,那么50FAG .由ABC AEF ≌△△,得出28AFE ACB ,再根据三角形外角的性质即可求出78FGC FAG AFG .【详解】(1)证明:∵CAF BAE ,∴BAC EAF .∵将线段AC 绕A 点旋转到AF 的位置,∴AC AF .在ABC 与AEF △中,AB AE BAC EAF AC AF,∴ABC AEF ≌△△(SAS ),∴EF BC ;(2)解:∵AB AE ,65ABC ,∴AEB ABC ,∴18065250BAE ,∴50FAG BAE .∵ABC AEF ≌△△,∴28AFE ACB ,∴502878FGC FAG AFG .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明ABC AEF ≌△△是解题的关键.8.(2023秋·河北唐山·九年级统考期末)如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD ,10DM .(1)在旋转过程中:①当A 、D 、M 三点在同一直线上时,求AM 的长;②当A 、D 、M 三点是同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90 ,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连接12D D ,如图2,此时2BD 260CD ,求2 AD C 的度数.【点睛】题目主要考查勾股定理解三角形及其逆定理,旋转的性质,全等三角形的判定和性质等,理解题意,综合运用这些知识点是解题关键.。

中考数学 图形的旋转考点课件

中考数学 图形的旋转考点课件
(1)如图①,观察并猜想,在旋转过程中,线段 EA1 与 FC 有怎样的数量关系?并证明你 的结论;
(2)如图②,当 α=30°时,试判断四边形 BC1DA 的形状,并说明理由; (3)在(2)的情况下,求 ED 的长.
解:(1)EA1=FC(提示:证明△ABE≌△C1BF) (2)菱形(证明略) (3)过点 E 作 EG⊥AB,则 AG=BG=1. 在 Rt△AEG 中,AE=cAosGA=cos130°=23 3. 由(2)知 AD=AB=2,∴ED=AD-AE=2-32 3
类型二 旋转作图
如图,在矩形 OABC 中,点 B 的坐标为(-2,3). 画出矩形 OABC 绕点 O 顺时针 旋转 90°后的矩形 OA1B1C1,并直接写出点 A1、B1、C1 的坐标.
【点拨】本题重点考查旋转作图,在作图前要先由已知条件明确:旋转中心、旋转方向、 旋转角以及关键点的个数,作图时只要把每一个关键点都按相同方向、转动相同角度得到相 应对应点即可,最后把各对应点按顺序实线相连.
A.180° B.120° C.9 Nhomakorabea° D.60° 解析:正六边形每个内角为 120°,所以转动 60°即可与原图形重合. 答案:D
8.△ABC 在如图所示的平面直角坐标系中,将△ABC 向右平移 3 个单位长度后得到 △A1B1C1,
再将△A1B1C1 绕点 O 旋转 180°后得到△A2B2C2,则下列说法正确的是( ) A.A1 的坐标为(3,1) B.S 四边形 ABB1A1=3 C.B2C=2 2 D.∠AC2O=45° 解析:根据题意画出图来解答. 答案:D
第 3 讲 图形的旋转
图形的旋转与作图.
1.(2008·丽水)如图,以点 O 为旋转中心,将∠1 按顺时针方向旋转 110°,得到∠2.若∠1 =40°,则∠2=________度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《中考旋转作图题》专题
班级姓名
【2013•鸡西•第22题•6分】如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.
(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.
(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)
【2012•鸡西•第22题•6分】顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC. 设网格中小正方形的边长为1个单位长度.
⑴在网格中画出△ABC向上平移4个单位后得到的△A1B1C1 .
⑵在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2.
⑶在⑴中△ABC向上平移过程中,求边AC所扫过区域的面积.
C
A B
【2011•鸡西•第22题•6分】如图,每个小方格都是边长为1个单位长度的小正方形. (1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.
(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.
(3)画出一条直线将△AC1A2的面积分成相等的两部分.
【2010•鸡西•第22题•6分】
△ABC在如图所示的平面直角坐标系中.
⑴画出△ABC关于原点对称的△A1B1C1.
⑵画出△A1B1C1关于y轴对称的△A2B2C2.
⑶请直接写出△AB2A1的形状.
【2009•鸡西•第22题•6分】
△ABC在如图所示的平面直角坐标系中.
(1)画出△ABC关于y 轴对称的△A1B1C1.
(2)画出将△ABC绕点O顺时针旋转90°得到的
△A2B2C2.
(3)求∠CC2C1的度数.。

相关文档
最新文档