透射电镜观察脂质体

透射电镜观察脂质体
透射电镜观察脂质体

Energy-?ltered cryotransmission electron microscopy of liposomes prepared from human stratum corneum lipids

M. C.SCHMIDTGEN,*M.DRECHSLER,?https://www.360docs.net/doc/1912152338.html,SCH?&R.SCHUBERT*

*Department of Pharmaceutical Technology,Albert-Ludwigs-University,Hermann-Herder-Str .9,D-79104Freiburg,Germany

?Cardiological Research Laboratory of the Charite

′,Humboldt-University,Ziegelstr .5-9,D-10117Berlin,Germany

?Institute of Physiological Chemistry,Martin-Luther-University,Hollystr .1,D-06114Halle,Germany

Key words.Ceramides,cryotransmission electron microscopy (cryo-TEM),human stratum corneum lipids (hSCLs),liposomes,membranes.

Summary

We used cryo-TEM to examine the morphology of vesicles formed from lipids of the human stratum corneum (hSC).Human stratum corneum lipid liposomes (hSCLLs)were prepared in buffer at various pH values,using different preparation methods (?lm method,extrusion,ultrasonica-tion,detergent dialysis).The morphology of hSCLLs at pH 7·4differed markedly from that of liposomes formed by phospholipids,showing folds,stacks and membrane thick-ening.At pH 5·0,corresponding to natural conditions at the skin surface,membrane structures are essentially the same as those prepared at pH 7·4.Sharp edges in hSCLLs,branching membranes and stable membrane stacks were explained by the presence of ceramides,the major components and structural elements of human stratum corneum lipids (hSCLs).Thickened areas in the membranes may be caused by the local accumulation of triacylglycerols and cholesterol esters in the hydrophobic interior of the bilayer.

1.Introduction

The human stratum corneum (hSC)represents the main permeation barrier between the human body and its environment.This uppermost layer of the epidermis is continuously exposed to external stresses such as radiation of varying wavelengths,changing temperatures and moisture.It also experiences attack from pathogens and xenobiotics.Its main biological functions therefore are to guarantee impermeability to particles such as viruses,bacteria,etc.,or aggressive substances and to form a

protective layer against mechanical stresses.Furthermore,in order to prevent excessive water loss,it must also reduce water permeation to a tolerable limit.To meet these demands,human stratum corneum lipids (hSCLs)must have special properties (Elias,1981).The formation of lipid lamellae,which originate from the fusion of ?attened vesicles,the so-called lamellar discs,is one of the main factors capacitating the barrier function (Landmann,1986).The lipid composition of the hSCLs mainly differs from that of common biomembranes in its content of various ceramides,cholesterol esters,fatty acids and its lack of phospholipids.The small polar headgroups (hydroxy groups)of the components and the lack of phospholipids result in very low lipid hydration.Furthermore,owing to the infrequency of double bonds,hSCLs form gel state structures with short distances between neighbouring molecules.Ceramide 1,a lipid with one prolonged lipophilic chain,is able to connect adjacent monolayers and narrows the space between lipid bilayers (Wertz &Downing,1982;Wertz et al.,1987).The other ceramides are also of mixed chain length,which,as suggested by Swartzendruber et al.(1989),results in interdigitated chain packing.As a consequence of these unique features,hSCLs in situ seem to form tight multilamellar structures composed of several connected monolayers,which signi?cantly reduce the diffusion of water,as well as of hydrophilic or hydrophobic compounds.

In the topical administration of drugs,this barrier must be overcome in order to provide a suf?cient drug dose at the target tissue.In order to develop improved methods of topical drug administration,the properties of hSCLs are of speci?c interest.One of the ?rst approaches involved the examination of model lipid liposomes,the so-called stratum corneum lipid liposomes (SCLLs)made from commercial

Journal of Microscopy,Vol.191,Pt 2,August 1998,pp.177–186.Received 18October 1996;accepted 15January 1998

177

?1998The Royal Microscopical Society

Dedicated to Emeritus Professor Dr Kurt-Heinz Bauer.Correspondence to:M.C.Schmidtgen.

lipids(Gray&White,1979;Wertz et al.,1986).Owing to the apparent absence of ceramide1,the lamellae produced were probably non-interdigitating.Liposomes formed from hSCLs should therefore be an improved model for the in situ aggregation behaviour of these lipids.

Skin lipid structures have been investigated by small angle X-ray scattering(Bouwstra et al.,1995),wide angle X-ray scattering,electron spin resonance(Subczynski et al., 1994;Alonso et al.,1995)and nuclear magnetic resonance spectroscopy(Jendrasiak et al.,1990;Fujisawa&Komoda, 1993).Transmission electron microscopy provides direct information on structures down to nanometre size. Conventional preparation methods for electron microscopy, which involve chemical treatment for?xation,dehydration and plastic embedding of the samples,are often connected with artefacts(morphological changes due to chemical ?xation and lipid extraction due to dehydration).Cryo-TEM combines physical?xation and the potential to view,in situ, bulk ultrastructures of thin samples(Dubochet&McDowall, 1981;Lepault,1985;Schro¨der,1991).Related artefacts such as dehydration,owing to the draining of thin?lms during preparation,can be avoided or employed when necessary(Frederik et al.,1989).

The ultrastructure of the human stratum corneum has been investigated mainly by means of negative staining (Swartzendruber et al.,1989),freeze fracturing,freeze etching(Bodde′et al.,1990;Holman et al.,1990;Alonso et al.,1995;Ho?and et al.,1995),and freeze substitution (Aoki et al.,1994).As yet the structures of hSCLLs have only been studied using freeze-fracture techniques(Lasch et al.,1994).In this study we have examined frozen–hydrated dispersions of hSCLLs using cryo-TEM,thereby providing the potential to view different morphologies, which arise under various conditions,without the common artefacts caused by conventional electron-microscopical preparation procedures.

2.Materials and methods

Lipids

hSCLs were prepared using a modi?ed Bligh-Dyer extraction from chemically untreated sole scrapings(Lasch et al., 1994).Total hSCLs are composed as follows(wt%):sterols 43·5,sterol esters9·4,cholesterol sulphate2·1,ceramides 20·3,free fatty acids20·2,triglycerides4·6(Zellmer&Lasch, 1997).Phospholipids were not detectable.A ceramide-enriched fraction was prepared from total hSCLs by silica column chromatography.Activated Silicagel60was used as the stationary phase.The mobile phase consisted of chloro-form/methanol/glacial acetic acid(190:9:1,v/v).The composition of this fraction was ceramides68wt%,sterols and sterol esters26wt%and4·5wt%,respectively,with triacylglycerols making up the remainder.

Sodium cholate was purchased from Sigma Chemical Co. (St.Louis,MO,U.S.A.)and octylglucoside from Calbiochem, Behring Diagnostics(La Jolla,CA,U.S.A.).

Preparation of liposomes

For?lm method liposomes,a lipid?lm was prepared by dissolving the lipids in a mixture of dichloromethane and methanol(2:1,v/v),and by subsequent rotary evaporation of the solution in a round-bottomed?ask.Glass beads (2mm)and either phosphate buffer or distilled water were then added and?ask was shaken for a few minutes. When required,these lipid suspensions were sized by extrusion through polycarbonate membranes,using a LiposoFast extruder(Avestin,Ottawa,Canada)and passing them through membranes with pore sizes of0·2m m and subsequently of0·08m m(Nuclepore,Tu¨bingen,Germany). The device consists of two syringes connected with the membrane in a suitable holder.During extrusion,the lipid suspension is forced from one syringe through the membrane holder into the other syringe.To ensure that the suspended lipid has passed through the membrane, extruded lipids have to be taken from the acceptor syringe. Therefore,an odd number of extrusion steps is required.We performed the extrusion51times with each membrane ?lter to ensure complete sizing of the lipid suspension.To decrease the rigidity of the lipid aggregates,ceramide-enriched liposomes were extruded at55?C,thus minimizing clogging of the lipids on the polycarbonate membrane. Ultrasonication of?lm method liposomes was performed by continuous tip sonication(Branson Co.,Danbury, Canada)at a power of50W without cooling for10min. After that time the lipid suspension had the same temperature as used for the extrusion to achieve a similar mechanism of formation of lipid aggregates.

For partial solubilization and reconstitution of hSCLs, lipids and cholate(at a molar ratio of0·77),or lipids and octylglucoside(at a molar ratio of0·35)were mixed and dissolved in a mixture of dichloromethane and methanol (2:1,v/v)in a round-bottomed?ask.Solvent was removed under reduced pressure.After adding glass beads and phosphate buffer pH7·4and then shaking the mixture, mixed micelles,co-existing with dispersed lipids,were formed.This suspension was dialysed against buffer for 24h in a MiniLipoprep TM dialyser(Dianorm,Munich, Germany)using a highly permeable dialysis membrane (cut-off10kDa;Diachema AG,Langnau,Switzerland).In previous studies it was shown that vesicles prepared by this fast and controlled dialysis are essentially free of octylgluco-side or cholate,i.e.the amount of detergent was found to be less than1mol%(Schubert et al.,1986).

Phosphate buffer for hSCLLs consisted of10mmol NaH2PO4and150mmol NaCl and was adjusted with NaOH or HCl,respectively,to the required pH of7·4or5·0.

178M. C.SCHMIDTGEN ET AL.

?1998The Royal Microscopical Society,Journal of Microscopy,191,177–186

?1998The Royal Microscopical Society ,Journal of Microscopy ,191,

177–186

Fig.1.Liposomes from human stratum cor-neum lipids prepared by the ?lm method in phosphate buffer pH 7·4:e,edge of holey carbon ?lm;A,oligovesicular vesicle;B,membrane aggregate;a,membrane folds;b,free membrane edges;c,protruding membrane

sheet.

Fig.2.Liposomes from human stratum corneum lipids prepared by detergent dialysis with octylglucoside at pH 7·4:a,bilamellar vesicle;b,thickening of membrane;i,ice crystals as artefacts.

CRYO-TEM OF LIPOSOMES

179

For the preparation of extruded ceramide liposomes only distilled water was used as a suspending medium.The use of a high ionic strength buffer media had to be avoided,because it resulted in large aggregates,which could be only partially sized by extrusion.

Cryotransmission electron microscopy

Grids for specimen preparation were prepared according to Fukami &Adachi (1965).Copper grids (200mesh,Science Services,Munich,Germany)were coated with a holey ?lm prepared from Triafol-BN-foil (Merck KGaA,Darmstadt,Germany)and subsequently vapour-deposited with carbon.Finally ,the Triafol ?lm was removed by washing the grid with ethylacetate to obtain a pure holey carbon ?lm.The size of the holes,varying between 2and 12m m,depended on the conditions during preparation (i.e.temperature and humidity of the environment).

A drop of the sample was put on the untreated coated grid.Most of the liquid was removed with blotting paper leaving a thin ?lm stretched over the holes.The best hole coverage yield was achieved using a hydrophobic ?lm surface.The specimens were instantly shock-frozen by plunging them into liquid ethane,cooled to 90K by liquid nitrogen in a temperature-controlled freezing unit (Zeiss,Oberkochen,Germany).The temperature was monitored and kept constant at 90K in this cryo-preparation box during all the sample preparation steps.After freezing the specimens,the remaining ethane was removed using blotting paper.The specimens were inserted into a cryo-transfer holder (Zeiss,Oberkochen,Germany)and trans-ferred to a Zeiss CEM 902,equipped with a cryo-stage.Examinations were carried out at a constant temperature of 90K.The TEM was operated at an accelerating voltage of 80kV and a beam current of 12m A,with a condensor diaphragm of 100m m and an objective entrance aperture

of

Fig.3.Liposomes from human stratum cor-neum lipids made by detergent dialysis with octylglucoside at pH 7·4:a,swollen membrane region;b,bug-like

vesicle.

Fig. 4.Schematic model of a membrane pocket formed by human stratum corneum lipids ?lled with cholesterol esters and tri-acylglycerols.

180

M. C.SCHMIDTGEN ET AL.

?1998The Royal Microscopical Society ,Journal of Microscopy ,191,177–186

17mrad (i.e.with a diameter of 90m m).The focal length of the objective lens was 2·6mm.Zero-loss ?ltered images (D E ?0eV)were taken under low-dose conditions,https://www.360docs.net/doc/1912152338.html,ing the minimal dose focusing device.The cumulative specimen

dose was calculated according to Drechsler &Cantow (1991)as ?0·7ke nm 12for a primary microscopical magni?cation of 20000and 1·4ke nm 12for a magni?ca-tion of 30000.Representative micrographs of the different liposome preparations are shown below.

3.Results and discussion

According to Abraham et al.(1988),SCLLs are generally stable at neutral pH.Representative micrographs of similar hSCLLs made by the ?lm method are shown in Fig.1.The dark lines (e)next to the liposomes in the micrographs indicate the edge of the holey carbon ?lm.A characteristic feature of this preparation at pH 7·4was the presence of neat,round vesicles.In particular,vesicle A shows some irregularities in its membrane.In this case it is not clear whether the smaller vesicles are entrapped,or attached above or below the larger vesicle.In the complex membrane aggregate (B),probable features such as membrane folds (a)and free membrane edges (b)were common structures.

?1998The Royal Microscopical Society ,Journal of Microscopy ,191,

177–186

Fig.5.Schematic model of the contact area between vesicle wall and partition wall in a bug-like vesicle formed by human stratum corneum

lipids.

Fig.6.Liposomes from human stratum corneum lipids prepared by detergent dialysis with sodium cholate at pH 7·4:a,cauli?ower-like struc-ture formed by aggregated vesicles;b,stacks of membranes;c,broadened membranes.

CRYO-TEM OF LIPOSOMES

181

Ceramides appear to have a stabilizing effect on free membrane edges (see also the suggested structure of an edge in Fig.11),similar to detergents such as octylgluco-side,which stabilize free edges in opened vesicles during the solubilization of egg lecithin membranes (Vinson et al.,1989).Branching membranes,which can also be observed in native hSC,exist in (c),where a membrane sheet protrudes from an open vesicular structure.This may also be explained by the presence of ceramides,a major compound and structural element of hSCLs,which may act as a source of branching.

In Fig.2,vesicles prepared from hSCLs by detergent dialysis with octylglucoside (OG)at pH 7·4are shown.The dark,and sometimes aggregated particles (i)are ice crystals,resulting from water contamination during sample pre-paration and subsequent transfer to the electron micro-scope.Such artefacts are also visible in Figs.7–10.This preparation using OG resulted predominantly in rather homogeneous larger unilamellar vesicles,which were essentially free of detergent after dialysis.In this specimen the vesicles are embedded in a frozen water ?lm with a thickness of ?https://www.360docs.net/doc/1912152338.html,rger vesicles form a thickening in the ?lm,which is visible by a continuous darkening to the middle of the vesicles,resulting from an increased

scattering

Fig.7.Liposomes from human stratum cor-neum lipids prepared by ultrasonication at pH 5·0:a,stacks of membrane sheets;b,membrane folds;c,twisted membrane disc;i,ice

crystals.

Fig.8.Liposomes from human stratum cor-neum lipids prepared by ultrasonication at pH 5·0:a,membrane folds;i,ice crystals.

182

M. C.SCHMIDTGEN ET AL.

?1998The Royal Microscopical Society ,Journal of Microscopy ,191,177–186

of electrons.Vesicle a is probably bilamellar,i.e.a smaller vesicle is trapped in the larger one.A position of the smaller vesicle on the outside of the larger one would result in a more pronounced shadowing owing to a thicker water?lm, as explained above.Vesicle b shows a thickening of the well-reproduced bilayer.One explanation may be the branching of one bilayer into two,which remain in close contact.The brightness of both bilayer projections is almost the same as in the other parts of the vesicle.This points to real membrane branching rather than to a double projection of the membrane caused by different local orientation within one bilayer.Thickened areas in the membranes may also be caused by local separation of long-chain ceramides from ceramides of normal size,the major bilayer-forming component.An even more pronounced example of mem-brane thickening is shown in Fig. 3.The edges of the ‘swollen’membrane region(a)show only a blurred contour with no resolved membrane.This very thick area may be explained by the presence of non-polar triacylglycerols and cholesterol esters,which?ll the hydrophobic space between two monolayers(see Fig.4).The smaller vesicle has a bug-like shape,with two aqueous compartments separated by one joint membrane.The sharp angles between the vesicle wall and the partition wall indicate the presence of exceptional lipids,which stabilize these structures.As depicted in Fig.5,such membrane branching can be induced by the presence of ceramides.

Figure6shows hSCL vesicles prepared by detergent dialysis with sodium cholate at pH7·4.This was the most remarkable structure found.On both the right and the left, small vesicles are entrapped in a large membrane system. The central membrane structure encloses an aggregate of small vesicles that stick together like foam bubbles,forming a cauli?ower-like structure(a).The area in which the large membrane structures(a)make contact shows stacks of membranes in very close proximity,resembling structures observed in native hSC samples(Landmann,1986).Again some membranes appear widened(c)owing to the apparent stacking of two bilayers.These structures cannot be formed in phosholipid preparations.

In human skin there exists a pH gradient from pH5at the top to pH7at deeper layers(O¨hman&Vahlquist,1994). Lipid association in situ may vary owing to different proton concentrations.We therefore prepared hSCLLs by ultra-sonication at pH5·0and pH7·4,to see if there was much difference in morphology.Figure7presents a micrograph of the structures found in a sample prepared at pH5·https://www.360docs.net/doc/1912152338.html,rge membrane sheets were stacked(a)and folded(b).Some smaller and?attened,similarly folded vesicles formed twisted membrane discs(c).These structures are similar to those in the stratum granulosum(the layer immediately below the stratum corneum),in which?at membrane discs are formed.These membrane disks then fuse at the edges to form a system of multiple double layers that lie on top of each other‘leaf on leaf’,which thus form the lipid barrier between the corneocytes(Landmann et al.,1984).

Figure8shows similar structures at pH5·0.Again,well-de?ned folds(a)are predominant.In the area in which the membrane sheets protrude from the underlying membrane, no ultrastructural detail could be resolved.

Figure9is a micrograph of vesicles prepared by ultrasonication at a pH of7·4.They also show folds(a), which are in part tightly stacked(b),in addition to membrane undulations,which resemble ripple structures (c).

Based on the evaluation of additional numerous

?1998The Royal Microscopical Society,Journal of Microscopy,191,

177–186

Fig.9.Liposomes from human stratum cor-

neum lipids prepared by ultrasonication at

pH7·4:a,membrane folds;b,stacked mem-

brane folds;c,membrane undulations;i,ice

crystals.

CRYO-TEM OF LIPOSOMES183

micrographs not shown,it may be concluded that the pH gradient between 5·0and 7·4has only a negligible in?uence on the structure of the lipid layers in the stratum corneum.However,as pointed out in Materials and Methods,an in?uence of the ion strength on the aggregation behaviour of skin ceramides is obvious.

As ceramides are predominant and structuring compo-nents of hSCLs,we studied the structures formed by enriched human stratum corneum ceramides to establish their in?uence on hSCL in vitro structures.A typical sample of these vesicles,produced by extrusion in distilled water,is shown in Fig.10(A)and 10(B).Drop-like vesicles with sharp tips or edges (a),hemispheres with one ?attened part of the membrane (b),and bug-like liposomes with two hemispheres (c)are the most prominent features aside from the spherical vesicles.

The mechanism controlling edge formation in mem-branes is related to the presence of structuring molecules.As ceramides are the main component in this preparation (68wt%),it suggests that these molecules are involved in non-vesicular membrane structures.The molecular model portrayed in Fig.11proposes the molecular arrangement.In this model,acylceramide (ceramide 1)is an integral component.It has two hydrophilic centres and,through folding,is able to protect the membrane’s hydrophobic core from its aqueous surrounding.

We found that the method of preparation was very important for the appearance of the vesicles.

After

Fig.10.Vesicles prepared from enriched human stratum corneum ceramides by extrusion:a,drop-like vesicle;b,vesicles with ?attened side;c,bug-like vesicle;i,ice

crystals.

184

M. C.SCHMIDTGEN ET AL.

?1998The Royal Microscopical Society ,Journal of Microscopy ,191,177–186

destroying the in situ structures by extraction of the lipids with organic solvent,the dried lipids are arranged differently by using mechanical forces or detergents.This ?nally results in a variety of ultrastructures of lipids,most of which are also seen in the stratum corneum.On the one hand,by ultrasonication a higher mechanical energy is exerted on the membranes than by a mild hand shaking when using the ?lm method.This results in folds with uncommon features.Notably ,sonicated hSCLs seemed to preserve these structures for several weeks (results not shown).On the other hand,when using detergents such as sodium cholate or octylglucoside,only parts of the skin lipids are extracted into mixed micelles and reorganize to membrane structures with a particular lipid composition after complete detergent removal.

In conclusion,when aqueous dispersions of isolated skin lipids are used as models for the study of the ultrastructure of stratum corneum lipids,of their permeability properties,or of their speci?c interaction with drugs or excipients,the interpretation of the data should take into account the method of hSCLL preparation.However,all hSCLL prepara-tions showed membrane structures remarkably different from phosphatidylcholine vesicle preparations.From our studies it is obvious that ceramides are responsible for membrane branching,as found in intact stratum corneum,whereas very high local ceramide concentration results in the formation of free membrane edges.It could also be shown that cholesterol esters or triglycerides in the stratum corneum can be accumulated in the hydrophobic interior of a ceramide-rich membrane.The in?uence of cholesterol sulphate and fatty acids upon the ultrastructure of the skin lipid lamellae has to be elucidated in additional studies.

Acknowledgments

This project was supported by the Deutsche Forschungsge-meinschaft and Woelm Pharma GmbH.We gratefully acknowledge the help of M.Brandl and N.Skalko for the ?nal corrections.

References

Abraham,W .,Wertz,P .W .&Downing, D.T.(1988)Effect of epidermal acylglucosylceramides ana acylceramides on the morophology of liposomes prepared from stratum corneum lipids.Biochim.Biophys.Acta ,939,403–408.

Alonso,A.,Meirelles,N.C.&Tabak,M.(1995)Stratum Corneum intercellular lipid as compared to erythrocyte ghosts:an ESR study of thermotropic behaviour and nitroxide reduction.Physiol.Chem.Phys.Med.27,63–72.

Aoki,N.,Ito,M.,Ejiri,S.&Ozawa,H.(1994)Ultrastructure of human skin by a rapid freezing technique:structural preserva-tion and antigenicity .J.Invest.Dermatol .102,354–361.

Bodde

′,H.E.,Holman,B.,Spies,F .,Weerheim,A.,Kempenaar,J.,Mommaas,M.&Ponec,M.(1990)Freeze–fracture electron microscopy of in vitro reconstructed human epidermis.J.Invest.Dermatol.95,108–116.

Bouwstra,J.A.,Gooris,G.S.,van der Spek,J.A.&Bras,W .(1995)Structural investigations of human stratum corneum by small-angle X-ray scattering.J.Invest.Dermatol .97,1005–1012.Drechsler,M.&Cantow,H.-J.(1991)EELS data acquisition,processing and display for the Zeiss CEM 902based on Lotus 1-2-3?:application examples from a biological system and inorganic transition metal compounds.J.Microsc .162,61–76.Dubochet,J.&McDowall,A.W .(1981)Vitri?cation of pure water for electron microscopy .J.Microsc.124,3–4.

Elias,P .M.(1981)Lipids and the epidermal permeability barrier.Arch.Dermatol.Res .270,95–117.

Frederik,P .M.,Stuart,M.C.A.,Bomans,P .H.&Busing,W .M.(1989)Phosholipid,nature’s own slide and coverslip for cryo-electron microscopy .J.Microsc .153,81–92.

Fukami,A.&Adachi,K.(1965)A new method of preparation of a self-perforated micro plastic grid and its application.J.Electron Microsc .14,112–118.

Fujisawa,S.&Komoda,Y .(1993)Further NMR-spectroscopic studies of interaction of phospholipid liposomes with methacry-loyloxydecyl dihydrogen phosphate (MDP)in dental adhesives.Dent.Mater .J .12,69–74.

Gray ,G.M.&White,R.J.(1979)Epidermal lipid liposomes:a novel non-phospholipid membrane system.Biochem..Soc.Trans .7,1129–1131.

Ho?and,H.E.J.,Bouwstra,J.A.,Bodde

′,H.E.,Spies,F .&Junginger,H.E.(1995)Interactions between liposomes and human stratum corneum in vitro :freeze fracture electron microscopical visuali-zation and small angle X-ray scattering studies.Br .J.Dermatol .132,853–866.

Holman,B.P .,Spies,F .&Bodde

′,H.E.(1990)An optimized freeze-fracture replication procedure for human skin.J.Invest.Dermatol .94,332–335.

Jendrasiak,G.L.,McIntosh,T.J.,Ribeiro,A.&Porter,R.S.(1990)Amiodarone–liposome interaction:a multinuclear NMR and X-ray diffraction study .Biochim.Biophys.Acta ,1024,19–31.

?1998The Royal Microscopical Society ,Journal of Microscopy ,191,

177–186

Fig.11.Schematic model of an edge or a tip in membranes formed by human stratum corneum lipids.

CRYO-TEM OF LIPOSOMES

185

Landmann,L.(1986)Epidermal permeability barrier:transforma-tion of lamellar granule disks into intercellular sheets by a membrane fusion process.J.Invest.Dermatol.87,202–209. Landmann,L.,Wertz,P.W.&Downing,D.T.(1984)Acylglucosyl-ceramide causes stacking and?attening of liposomes:an analogy for assembly of the epidermal barrier.Biochim.Biophys. Acta,778,412–418.

Lasch,J.,Schmitt,U.,Sternberg,B.&Schubert,R.(1994)Human stratum corneum lipid-based liposomes(hSCLLs).J.Liposome Res.4,93–106.

Lepault,J.(1985)Cryo-electron microscopy of helical particles TMV and T4polyheads.J.Microsc.140,73–80.

O¨hman,H.&Vahlquist,A.(1994)In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis.Acta Derm.Venereol.74,375–379.

Schro¨der,R.R.(1991)Zero-loss energy-?ltered imaging of frozen-hydrated proteins:model calculations and implications for future developments.J.Microsc.166,389–400.

Schubert,R.,Beyer,K.,Wolburg,H.&Schmidt,K.H.(1986) Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate.Biochemistry,25, 5263–5269.

Subczynski,W.K.,Wisniewska,A.,Yin,J.J.,Hyde,J.S.&Kusumi,A.

(1994)Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol.Biochemistry,33,7670–7681. Swartzendruber, D.C.,Wertz,P.W.,Kitko, D.J.,Madison,K.C.& Downing,D.T.(1989)Molecular models of the intercellular lipid lamellae in mammalian stratum corneum J.Invest.Dermatol.92, 251–257.

Vinson,P.K.,Talmon,Y.&Walter, A.(1989)Vesicle–micelle transition of phosphatidylcholine and octylglucoside elucidated by cryo-transmission electron microscopy.Biophys.J.56,669–681. Wertz,P.W.,Abraham,W.,Landmann,L.&Downing,D.T.(1986) Preparation of liposomes made from stratum corneum lipids. J.Invest.Dermatol.87,582–584.

Wertz,P.W.&Downing,D.T.(1982)Glycolipids in mammalian epidermis:structure and function in the water barrier.Science, 217,1261–1262.

Wertz,P.W.,Swartzendruber,D.C.,Abraham,W.,Madison,K.C.& Downing, D.T.(1987)Essential fatty acids and epidermal integrity.Arch.Dermatol.123,1381–1384.

Zellmer,S.&Lasch,J.(1997)Individual variation of human plantar stratum corneum lipids,determined by automated multiple development of high-performance thin-layer chromatography plates.J.Chromatogr.B,691,321–329.

186M. C.SCHMIDTGEN ET AL.

?1998The Royal Microscopical Society,Journal of Microscopy,191,177–186

扫描、透射电镜的基本原理及其应用

扫描、透射电镜在材料科学中的应用 摘要:在科学技术快速发展的今天,人们不断需要从更高的微观层次观察、认识 周围的物质世界,电子显微镜的发明解决了这个问题。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描、透射电镜工作原理、结构特点及其发展,阐述了其在材料科 学领域中的应用。 1扫描电镜的工作原理 扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 电子束和固体样品表面作用时的物理现象:当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪可以获得且具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,则 可以得到反映试样表面形貌的二次电子像[1]。 2扫描电镜的构成 主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为一定强度的电子束。由两级聚光镜组合而成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。 调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、 电流及完成控制功能。

透射电镜观察脂质体

Energy-?ltered cryotransmission electron microscopy of liposomes prepared from human stratum corneum lipids M. C.SCHMIDTGEN,*M.DRECHSLER,?https://www.360docs.net/doc/1912152338.html,SCH?&R.SCHUBERT* *Department of Pharmaceutical Technology,Albert-Ludwigs-University,Hermann-Herder-Str .9,D-79104Freiburg,Germany ?Cardiological Research Laboratory of the Charite ′,Humboldt-University,Ziegelstr .5-9,D-10117Berlin,Germany ?Institute of Physiological Chemistry,Martin-Luther-University,Hollystr .1,D-06114Halle,Germany Key words.Ceramides,cryotransmission electron microscopy (cryo-TEM),human stratum corneum lipids (hSCLs),liposomes,membranes. Summary We used cryo-TEM to examine the morphology of vesicles formed from lipids of the human stratum corneum (hSC).Human stratum corneum lipid liposomes (hSCLLs)were prepared in buffer at various pH values,using different preparation methods (?lm method,extrusion,ultrasonica-tion,detergent dialysis).The morphology of hSCLLs at pH 7·4differed markedly from that of liposomes formed by phospholipids,showing folds,stacks and membrane thick-ening.At pH 5·0,corresponding to natural conditions at the skin surface,membrane structures are essentially the same as those prepared at pH 7·4.Sharp edges in hSCLLs,branching membranes and stable membrane stacks were explained by the presence of ceramides,the major components and structural elements of human stratum corneum lipids (hSCLs).Thickened areas in the membranes may be caused by the local accumulation of triacylglycerols and cholesterol esters in the hydrophobic interior of the bilayer. 1.Introduction The human stratum corneum (hSC)represents the main permeation barrier between the human body and its environment.This uppermost layer of the epidermis is continuously exposed to external stresses such as radiation of varying wavelengths,changing temperatures and moisture.It also experiences attack from pathogens and xenobiotics.Its main biological functions therefore are to guarantee impermeability to particles such as viruses,bacteria,etc.,or aggressive substances and to form a protective layer against mechanical stresses.Furthermore,in order to prevent excessive water loss,it must also reduce water permeation to a tolerable limit.To meet these demands,human stratum corneum lipids (hSCLs)must have special properties (Elias,1981).The formation of lipid lamellae,which originate from the fusion of ?attened vesicles,the so-called lamellar discs,is one of the main factors capacitating the barrier function (Landmann,1986).The lipid composition of the hSCLs mainly differs from that of common biomembranes in its content of various ceramides,cholesterol esters,fatty acids and its lack of phospholipids.The small polar headgroups (hydroxy groups)of the components and the lack of phospholipids result in very low lipid hydration.Furthermore,owing to the infrequency of double bonds,hSCLs form gel state structures with short distances between neighbouring molecules.Ceramide 1,a lipid with one prolonged lipophilic chain,is able to connect adjacent monolayers and narrows the space between lipid bilayers (Wertz &Downing,1982;Wertz et al.,1987).The other ceramides are also of mixed chain length,which,as suggested by Swartzendruber et al.(1989),results in interdigitated chain packing.As a consequence of these unique features,hSCLs in situ seem to form tight multilamellar structures composed of several connected monolayers,which signi?cantly reduce the diffusion of water,as well as of hydrophilic or hydrophobic compounds. In the topical administration of drugs,this barrier must be overcome in order to provide a suf?cient drug dose at the target tissue.In order to develop improved methods of topical drug administration,the properties of hSCLs are of speci?c interest.One of the ?rst approaches involved the examination of model lipid liposomes,the so-called stratum corneum lipid liposomes (SCLLs)made from commercial Journal of Microscopy,Vol.191,Pt 2,August 1998,pp.177–186.Received 18October 1996;accepted 15January 1998 177 ?1998The Royal Microscopical Society Dedicated to Emeritus Professor Dr Kurt-Heinz Bauer.Correspondence to:M.C.Schmidtgen.

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

透射电子显微镜的结构、原理和衍衬成像观察

透射电子显微镜的结构、原理和衍衬成像观察实验报告 一、实验目的 1、了解透射电子显微电镜的基本结构; 2、熟悉透射电子显微镜的成像原理; 3、了解基本操作步骤。

二、实验内容 1、了解透射电子显微镜的结构; 2、了解电子显微镜面板上各个按钮的位置与作用; 3、无试样时检测像散,如存在则进行消像散处理; 4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 (一)、透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 (1)照明系统 照明系统主要由电子枪和聚光镜组成。

电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。 图1 热发射电子枪图2 场发射电子枪 聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。电镜一般都采用双聚光镜系统。 图3 双聚光镜的原理图 (2)成像系统 成像系统由物镜、中间镜和投影镜组成。 物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。物镜的质量好坏直接影响到整过系统的成像质量。物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。提高物镜分辨率是提高整个系统成像质量的关键。

透射电镜实验报告

透射电镜实验报告 实验报告 课程名称电镜技术成绩姓名学号实验日期 2013.3.27 实验名称透射电子显微镜原理、结构、性能及成像方指导教师 式 一、实验目的与任务 1. 初步了解透射电镜操作过程 2. 初步掌握样品的制样方法(主要是装样过程) 3.拍摄多晶金晶体的低分辨率照片(<300000倍)和高分辨率照片(>300000 倍),并对相关几何参数、形态给予描述。用能谱分析仪对样品的成分进行分析。 二、实验基本原理 1.仪器原理 透射电子显微镜是以图像方式提供样品的检测结果,其成像的决定因素是样品对入射电子的散射,包括弹性散射和非弹性散射两个过程。样品成像时,未经散射的电子构成背景,而像的衬底取决于样品各部分对电子的不同散射特性。采用不同的实验条件可以得到不同的衬底像,透射电子显微镜不仅能显示样品显微组织的形貌,而且可以利用电子衍射效应同样获得样品晶体学信息。本次实验将演示透射电镜的透射成像方式和衍射成像方式。 (1)成像方式 电子束通过样品进入物镜,在其像面形成第一电子像,中间镜将该像放大,成像在自己的像面上,投影镜再将中间镜的像放大,在荧光屏上形成最终像。 (2)衍射方式

如果样品是晶体,它的电子衍射花样呈现在物镜后焦面上,改变中间镜电流,使其对物镜后焦面成像,该面上的电子衍射花样经中间镜和投影镜放大,在荧光屏上获得电子衍射花样的放大像。 2.仪器结构 主机主要由:照明系统、样品室、放大系统、记录系统四大部分构成。 3.透射电子显微镜的样品制备技术 4.图像观察拍照技术 透射电镜以图像提供实验结果。在观察样品之前对电子光学系统进行调查,包括电子枪及象散的消除。使仪器处于良好状态。观察过程中选合适的加速电压和电流。明场、暗场像及选区电子衍射的观察和操作方法不同,应按况选择。三、实验方法与步骤 1( 登陆计算机 2( 打开操作软件 3( 检查电镜状态 4( 装载样品 5( 插入样品杆 6( 加灯丝电流 7( 开始操作 8( 结束操作 9( 取出样品杆 10( 卸载样品 11( 刻录数据 12( 关闭操作软件 13( 退出计算机

甘草酸脂质体的处方及制备工艺

甘草酸脂质体的处方及制备工艺作者:程建峰,扈本荃,刘梅,贺建荣,扬胜,王弼时 【关键词】 ,甘草酸 Formulation and preparation of glycyrrhizic acid liposome 【Abstract】 AIM: To optimize the prescription and preparation of encapsulated liposome. METHODS: The liposomes were prepared by conventional rotaryevaporated filmultrasonication method. The prescription and preparation of liposome were optimized by uniform design. Its shape and size distribution were detected under transmission electron microscope. A method to determine the encapsulated rate of the liposome by high performance liquid (HPLC) was established. RESULTS: Glycyrrhizic acid liposome was regular under its microphotograph and the diameter was 40-60 nm. The entrapment efficiency of the glycyrrhizic acid liposome was 63.0%-89.0%. CONCLUSION: The entrapment efficiency of glycyrrhizic acid liposome and the stability of glycyrrhizic acid liposome prepared by conventional rotaryevaporated filmultrasonication method is good. 【Keywords】 glycyrrhizic acid;liposome;uniform design;encapsulation 【摘要】目的: 优化甘草酸脂质体的处方及制备工艺. 方法:

透射电镜的样品制备方法详解

透射电镜的样品制备 透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束"透明"的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好). 透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备. (1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可. (2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤: a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直

接切割. b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来. c预减薄使用凹坑减薄仪可将薄圆片磨至10μm厚.用研磨机磨(或使用砂纸),可磨至几十μm. d终减薄对于导电的样品如金属,采用电解抛光减薄,这方法速度快,没有机械损伤,但可能改变样品表面的电子状态,使用的化学试剂可能对身体有害.对非导电的样品如陶瓷,采用离子减薄,用离子轰击样品表面,使样品材料溅射出来,以达到减薄的目的.离子减薄要调整电压,角度,选用适合的参数,选得好,减薄速度快.离子减薄会产生热,使样品温度升至100~300度,故最好用液氮冷却样品.样品冷却对不耐高温的材料是非常重要的,否则材料会发生相变,样品冷却还可以减少污染和表面损伤.离子减薄是一种普适的减薄方法,可用于陶瓷,复合物,半导体,合金,界面样品,甚至纤维和粉末样品也可以离子减薄(把他们用树脂拌合后,装入φ3mm金属管,切片后,再离子减薄).也可以聚集离子术(FIB)对指定区域做离子减薄,但FIB很贵.对于软的生物和高分子样品,可用超薄切片方法将样品切成小于100nm的薄膜.这种技术的特点是样品不会改变,缺点是会引进形变.(3)金属试样的表面复型即把准备观察的试样的表面形貌(表面显微组织浮凸)用适宜的非晶薄膜复制下来,然后对这个复制膜(叫做复型)进行透射电镜观察与分析.复型适用于金相组织,断口形貌,形变条纹,磨损表面,第二相形态及分布,萃取和结构分析等. 制备复型的材料本身必须是"无结构"的,即要求复型材料在高倍成像时也

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

透射电镜生物样品前处理步骤

电镜样品制备步骤 1、取材:放入2.5%戊二醛溶液中固定2-4h(4℃可保存1-2周,冷冻可保存2年) 注:不可用自来水冲洗,被钳、镊夹取造成机械损伤的组织不可 部分可取较大面积,但厚度必须小于1mm(戊二醛固定能力小于0.5mm) 2、漂洗:牙签取出样品至新的1.5ml离心管,用0.1M pH7.0磷酸缓冲液(PBS)漂洗样品三次(摇床),每次15min 3、锇酸固定与再漂洗:1%锇酸溶液固定样品1-2h(临用前计算用量≤50ul/样,用0.1M PBS将2%锇酸稀释至1%,通风橱操作),吸出固定液,用0.1M pH7.0 PBS漂洗样品三次,每次15min 注:漂洗以清除固定液,避免产生沉淀物干扰结构观察 4、脱水剂梯度脱水:用梯度浓度(50%,70%,80%,90%和95%)乙醇溶液对样品进行脱水处理,每个浓度处理15min 再用100%乙醇处理20min (乙醇细胞内抽提少,但与包埋剂相容性差) 最后用纯丙酮处理20min(若包埋剂为Epon改用环氧乙烷置换) 注:脱水以清除游离水以便包埋剂均匀渗透;脱水剂易吸收空气中水分,密封,置换时应该迅速由低到高逐级脱水而不能急剧脱水,更换溶液时应迅速,以免组织内外产生气泡。 5、包埋剂梯度渗透:①用包埋剂丙酮混合液(V/V=1/1)处理样品1h:计算用量80ul/样再配制(参考样品大小) ②用包埋剂丙酮混合液(V/V=3/1)处理样品3h:计算用量80ul/样再配制(参考样品大小) ③纯包埋剂渗透样品过夜:将样品移至干燥的新离心管中,常温过夜(所用器具均应干燥) 注:样品周围不能有气泡 6、加热聚合:牙签取出经渗透处理的样品至0.5ml干燥离心管(预先装入约300ul包埋剂),加热聚合仪70℃加热过夜。 7、莱卡EM UC 7超薄切片仪修快、切片(50-70nm) 8、正染色:塑料包埋模具(刀划几道缝隙),染色时温度低影响染色效果,冬天空调 醋酸双氧铀50%乙醇饱和溶液100ul染色(15min-1h),双蒸水冲洗 柠檬酸铅100ul染色15min(极易吸收空气中CO2产生PbCO3,染色时毋对着说话、呼吸,同时放置数块NaOH)9、日立H-7650透射电镜观察 spurr包埋剂配制:ERL 2.5g NSA 5.2 g 混合均匀后再加入催化剂DMAE,搅拌30min;低温干燥保存 DER 2.5 g DMAE 0.1g 宜新鲜配制但由于使用期限长(3-4天),混合物可在使用前一天制备。Spurr树脂是嗜氧,聚合时不加盖 不同处理方法 7d后将培养基上的纤维素膜取出用水冲洗(除去膜表面杂质和残余培养基),浸泡于0.1mol/L浓度的NaoH溶液80℃保温一小时(去除非纤维结构和残余菌体),取出用去离子水冲洗至pH中性后干燥 碱煮:浸泡于0.1mol/L浓度的NaoH中,100℃煮沸30min,除去残留菌体与培养基杂质,再用0.5%的乙酸浸泡5min,后用水多次冲洗,至薄膜呈乳白色半透明,用吸水纸吸取表面水分,测试pH值,80℃干燥至恒重水煮:浸泡于蒸馏水中,100℃煮沸30min,后用水多次冲洗,用吸水纸吸取表面水分,测试pH值,80℃干燥至恒重 实验步骤 1,7d后将培养基上的纤维素膜取出用水冲洗,浸泡于0.1mol/L浓度的NaoH,取出冲洗后干燥 2,挖取一小块作为对照组A,电镜下观察微观结构 3,挖取两小块作为实验组B与C,分别碱煮与水煮,之后干燥,电镜下观察微观结构 实际应用 1,细菌纤维素有大表面积网状结构,因此具有很强抗压抗拉能力。(造纸,纸张耐折度与强度能够大幅度提高) 2,细菌纤维素内部有很多“孔道",因而有良好的透水和透气性。(人造皮肤,创可贴,纱布,绷带)

盐酸小檗碱前体脂质体的制备及理化性质研究

盐酸小檗碱前体脂质体的制备及理化性质研究目的制备盐酸小檗碱前体脂质体,并对其理化性质进行考察。方法采用 薄膜载体沉积法制备盐酸小檗碱前体脂质体,正交实验优选处方;透射电镜观察形态;马尔文激光粒度仪测定粒径;高效液相色谱法测定包封率。结果电镜下观察脂质体形态多为圆形或椭圆形,平均粒径为741 nm,包封率为(29.93±1.32)%。结论该方法制备工艺简单,易于工业化生产。 [Abstract] Objective To prepare berberine hydrochloride proliposomes and investigate its physicochemical properties. Methods Proliposomes were prepared by film-deposition oncarriers. Orthogonal design was used to select the optimum formulation. The shape and particle size of proliposomes were investigated by transmission electron microscope and laser scatter. The encapsulation efficiency was determined by HPLC. Results The berberine hydrochloride liposome vesicles were globular or elliptic under the electronic microscopy. The average size of the liposomes was 741nm. The encapsulation efficiency was(29.93±1.32)%. Conclusion The preparation method is simple and easily industrialized preparation . [Key words] Berberine hydrochloride;Proliposomes;Liposomes 小檗碱(berberine)又称黄连素,常用于治疗肠道炎症。现代研究发现它对于心律失常、高血压、高脂血症、糖尿病和肿瘤等也具有较好的治疗作用[1]。但由于盐酸小檗碱口服血药浓度低,维持时间短,难以达到有效的治疗浓度,若长期大剂量给药,又会产生诸多不良反应。1986年,英国学者Payne等[2]首次提出了前体脂质体(proliposomes)这一概念,是指将脂质材料吸附于水溶性载体上,制备成的干燥颗粒或粉末。当口服给药时,与体液接触,脂质溶胀而载体迅速溶解,在水相中形成脂质体,能促进药物的吸收[3]。为解决盐酸小檗碱吸收差及生物利用度低和普通脂质体不稳定等问题,本实验首次探讨了盐酸小檗碱前体脂质体的制备工艺并对其理化性质进行研究。 1仪器与试药 日本岛津高效液相色谱仪(LC-20AT四元泵、CTO-10ASVP柱温箱、SPD-20A 紫外检测器);752紫外可见分光光度计(上海现科分光仪器有限公司);RE-2000A型旋转蒸发器(上海亚荣生化仪器厂);SHZ-D(III)循环水式真空泵(巩义市英峪予华仪器厂);pHS-3C精密酸度计(上海伟业仪器厂);BSl10S 型1/万电子分析天平(北京赛多利斯仪器系统有限公司);JEM-1230透射电子显微镜(日本电子公司);Zetasize Nano ZS纳米粒度仪(英国马尔文);Olympus CX21 型显微镜(日本)。 盐酸小檗碱对照品(中国药品生物制品检定所,批号 110713-200911);盐酸小檗碱提取物(四川什邡鸿鸣药物原料有限公司);

透射电镜实验

实验:透射电镜 姓名:张露露 学号:201414010427 班级:材料1411 小组成员:赵丰、张倩

一、实验目的 1、了解透射电子显微镜的结构和工作原理。 2、了解透射电子显微镜样品制备的方法。 3、了解并掌握透射电子显微镜的分析方法。 二、实验原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学显微镜。透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。 三、透射电镜的结构 透射电子显微镜由三大部分组成:1、电子光学系统(镜体):照明源(电子枪聚光镜)、成像系统(样品镜、物镜、中间镜、投影镜)、观察记录系统。2、真空系统。3、电源与控制系统 1、电子光学系统 TEM照明源:照明系统包括电子枪和聚光镜2个主要部件,它的功用主要在于向样品及成像系统提供亮度足够的光源和电子束流,对它的要求是输出的电子束波长单一稳定,亮度均匀一致,调整方便,像散小。 TEM成像系统由物镜、中间镜、投影镜、样品室构成。 (1)物镜成一次像,决定透射电镜的分辨本领。要求它有尽可能高的分辨本领、足够高的放大倍数和尽可能小的相差。通常采用强激磁,短焦距的物镜。放大倍数较高, 一般为100-300倍。目前高质量物镜分辨率可达0.1nm左右。 特点物镜是一块强磁透镜,焦距很短,对材料的质地纯度、加工精度、使用中污染的状况等工作条件都要求极高。致力于提高一台电镜的分辨率指标的核心问题,便 是对物镜的性能设计和工艺制作的综合考核。尽可能地使之焦距短、像差小,又希 望其空间大,便于样品操作,但这中间存在着不少相互矛盾的环节。 (2)中间镜成二次像。中间镜是一个弱激磁的长焦距变倍透镜,可在0-20倍范围调节。

透射电子显微镜样品制备技术

透射电子显微镜样品制备技术 样品制备的方法随生物材料的类型以及研究目的而各有不同。对生物组织和细胞等,一般多用超薄切片技术,将大尺寸材料制成适当大小的超薄切片,并且利用电子染色、细胞化学、免疫标记及放射自显影等方法显示各种超微结构、各种化学物质的部位及其变化。对生物大分子(蛋白质、核酸)、细菌、病毒和分离的细胞器等颗粒材料,常用投影、负染色等技术以提高反差,显示颗粒的形态和微细结构。此外还有以冷冻固定为基础的冷冻断裂──冰冻蚀刻、冷冻置换、冷冻干燥等技术。 超薄切片术将小块生物材料,用液态树脂单体浸透和包埋,并固化成塑料块,后用超薄切片机切成厚度为500埃左右,甚至只有50埃的超薄切片。超薄切片的制备程序与光学显微镜的切片程序类似,但各步骤的要求以及所使用的试剂和操作方法有很大差别。 固定选用适宜的物理或化学的方法迅速杀死组织和细胞,力求保持组织和细胞的正常结构,并使其中各种物质的变化尽可能减小。固定能提高细胞承受包埋、切片、染色以及电子束轰击的能力。主要固定方法有: ①快速冷冻,用致冷剂(如液氮、液体氟利昂、液体丙烷等)或其他方法使生物材料急剧冷冻,使组织和细胞中的水只能冻结成体积极小的冰晶甚至无定形的冰──玻璃态。这样,细胞结构不致被冰晶破坏,生物大分子可保持天然构型,酶及抗原等能保存其生物活性,可溶性化学成分(如小分子有机物和无机离子)也不致流失或移位。用冷冻的组织块,可进行切片、冷冻断裂、冷冻干燥和冷冻置换等处理。用此法固定的样品既可提供组织、细胞结构的形态学信息,又可提供相关的细胞化学信息。②化学固定,固定剂有凝聚型和非凝聚型两种,前

者如光学显微术中常用的乙醇、二氯化汞等,此法常使大多数蛋白质凝聚成固体,结构发生重大变化,常导致细胞的细微结构出现畸变。非凝聚型固定剂包括戊二醛、丙烯醛和甲醛等醛类固定剂和四氧化锇,四氧化钼等,适用于电子显微。它们对蛋白质有较强的交联作用,可以稳定大部分蛋白质而不使之凝聚,避免了过分的结构畸变。它们与细胞蛋白质有较强的化学亲和力,固定处理后,固定剂成为被固定的蛋白质的一部分。如用含有重金属元素的固定剂四氧化锇(也是良好的电子染色剂)进行固定,因为锇与蛋白质结合,增强了散射电子的能力,提高了细胞结构的反差。采用一种以上固定剂的多重固定方法,如采用戊二醛和四氧化锇的双固定法,能较有效地减少细胞成分的损失。此外,固定剂溶液的浓度、pH 及所用的缓冲剂类型、渗透压、固定时间和温度等对固定效果都有不同程度的影响。 固定操作方法通常是先将材料切成1立方毫米左右小块,浸在固定液中,保持一定温度(通常为4℃),进行一定时间的固定反应。取材操作要以尽可能快的速度进行,以减少组织自溶作用造成的结构破坏。对某些难以固定的特殊组织,如脑、脊髓等,最好使用血管灌注方法固定,即通过血管向组织内灌注固定液,使固定液在组织发生缺氧症或解剖造成损伤之前,快速而均匀地渗透到组织的所有部分。灌注固定的效果比浸没固定好得多。 脱水化学固定后,将材料浸于乙醇、丙酮等有机溶剂中以除去组织的游离水。为避免组织收缩,所用溶剂需从低浓度逐步提高到纯有机溶剂,逐级脱水。 浸透脱水之后,用适当的树脂单体与硬化剂的混合物即包埋剂,逐步替换组织块中的脱水剂,直至树脂均匀地浸透到细胞结构的一切空隙中。 包埋浸透之后,将组织块放于模具中,注入树脂单体与硬化剂等混合物,通

透射电子显微镜实验报告

透射电子显微镜(TEM)实验报告 学院: 班级: 姓名: 学号: 2016年6月21日

实验报告 一、实验目的与任务 1.熟悉透射电子显微镜的基本构造 2.初步了解透射电镜操作过程。 3.初步掌握样品的制样方法。 4.学会分析典型组织图像。 二、透射电镜的结构与原理 透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 1.电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.真空系统 为保证电镜正常工作,要求电子光学系统应处于真空状态下。电镜的真空度一般应保持在10-5托,这需要机械泵和油扩散泵两级串联才能得到保证。目前的透射电镜增加一个离子泵以提高真空度,真空度可高达133.322×10-8Pa或更高。如果电镜的真空度达不到要求会出现以下问题: 1)电子与空气分子碰撞改变运动轨迹,影响成像质量。

透射电镜观测微粒给药制剂方法探讨

透射电镜观测微粒给药制剂方法探讨 高晓黎1Ξ ,季兴梅1,谢瑶芸2,汤建安2 (新疆医科大学1药学院药剂教研室,2电镜室,新疆 乌鲁木齐 830054) 摘要:目的:考察不同制样方法对透射电镜观测微粒给药制剂的影响。方法:制备含有乳剂的琼脂小胶囊,分别采用醋酸铀直接负染法、锇酸固定法及戊二醛、锇酸双重固定法,观测去氢骆驼蓬静脉注射用乳剂的微观形态;分别采用负染法和冷冻蚀刻技术制备样品,观测替加氟脂质体的微观形态。结果:先制备琼脂小胶囊,再用戊二醛、锇酸双重固定后染色,可得亚微型静脉乳的清晰图像;采用冷冻蚀刻技术制备样品,可观测脂质体微粒的三维结构构象,成像清晰。结论:应用透射电镜观测微粒给药制剂时,可根据观测对象特点,灵活选择制样方法。 关键词:透射电镜;微粒给药制剂;静脉乳;脂质体 中图分类号:Q 2336;R 94 文献标识码:A 文章编号:100925551(2003)022******* 微粒给药制剂因其自身的物理靶向性,具有定 位浓集、控制释药的特性,已引起药剂学领域的深入研究和广泛应用1。其质量控制除要符合有关制剂通则的规定外,还有自身特殊控制项目,其中形态观测和粒径分布控制是一项重要内容。一般可用光学显微镜观测,但粒径小于2Λm 时须用扫描电镜或透射电镜进行观测。为考察不同制样方法对透射电镜观测微粒给药制剂的影响,本文对不同制样方法进行了探讨。 1 材料与仪器 1.1 材料 去氢骆驼蓬碱静脉注射用乳剂(自制),替加氟脂质体(自制)。 1.2 仪器 100CX 2 型电子显微镜(日本)。 2 实验方法与结果 2.1 静脉乳 将生物体系电镜样品常用的固定与 染色技术运用于乳液样品的制备上,对文献2报道的方法进行了改进。 2.1.1 样品制备方法 用直径1mm 的细玻棒沾取3%琼脂浆,将其覆盖在玻棒表面上,待冷却后,缓缓从玻棒上剥离琼脂薄膜形成的小胶管,抽出玻棒的同时将乳剂吸入小胶管中,将小胶管平放在玻片上,两端各滴1滴热琼脂浆封口,凝固后用刀片修 整成1~2mm 长的内含乳剂的琼脂小胶囊。2.1.2 样品固定方法 2.1.2.1 无固定——直接染色法3 将被测乳剂滴在有支持膜的铜网上,稍候,滴1滴戊二醛溶液在铜网上,固定,漂洗,待快要干燥时,滴上醋酸铀溶液染色,20m in 后,电镜观察并照相。可见粒子聚集在一起,无法测量单个粒子(图1.a )。 2.1.2.2 锇酸固定法2 按上法制备含有乳剂的琼脂小胶囊,将小胶囊置于2%锇酸中固定2h ,70%~100%的丙酮梯度脱水,浸透,环氧树脂(E 2pon 812)包埋,超薄切片机切片,醋酸铀染色,电镜 观察并放大1.3万倍照相,清晰可见单个乳粒,但反差较小,粒子边缘界限较模糊(图1.b )。2.1.2.3 戊二醛、锇酸双重固定法 同上制备含有乳剂的琼脂小胶囊,随即将小胶囊浸泡入4%戊二醛溶液中固定2h ,磷酸缓冲液漂洗,1%锇酸固定1h ,漂洗,50%~100%的丙酮梯度脱水,浸透,环氧树脂(Epon 812)包埋,切片,醋酸铀染色,电镜观察并放大1.3万倍照相,可见乳粒边缘界面清晰,膜结构清楚,反差大,图像质量好,推断乳滴边缘排列着磷脂等复合乳化剂的分子层(图1.c ) 。 a .直接染色法 b .锇酸固定法 c .戊二醛,锇酸双重固定法 图1 去氢骆驼蓬碱静脉乳电镜照片 7 11新疆医科大学学报 JOU RNAL O F X I N J I AN G M ED I CAL UN I V ER S IT Y 2003A p r .,26(2)Ξ作者简介:高晓黎(1962-),女,教授,博士,研究方向:药物新剂型。

相关文档
最新文档