计量经济学——时间序列

合集下载

《计量经济学》3.3时间序列分析

《计量经济学》3.3时间序列分析

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析第九章时间序列计量经济学模型的理论与⽅法练习题1、请描述平稳时间序列的条件。

2、单整变量的单位根检验为什么从DF检验发展到ADF检验?23、设X t cost si n t,0 t 1,其中,是相互独⽴的正态分布N(0, )随机变量,是实数。

试证:{x t,0 t 1}为平稳过程。

LB5、利⽤4中数据,⽤ADF法对居民消费总额时间序列进⾏平稳性检验。

6、利⽤4中数据,对居民消费总额时间序列进⾏单整性分析。

7、根据6中的结论,对居民消费总额的差分平稳时间序列进⾏模型识别。

8、⽤Yule Walker法和最⼩⼆乘法对7中的居民消费总额的差分平稳时间序列进⾏时间序列模型估计,并⽐较估计结果。

9、有如下AR(2)随机过程:X t 0.1X t1 0.06X t 2 t该过程是否是平稳过程?10、求MA(3)模型y t 1 u t 0.8u t 1 0.5u t 2 0.3u t 3的⾃协⽅差和⾃相关函数。

11、设动态数据x10.8,x20.7, x3 0.9, x4 0.74, x5 0.82,x6 0.92, x7 0.78,X8 0.86, X9 0.72, X10 0.84,求样本均值x,样本⽅差?。

,样本⾃协⽅差?、?2和样本⾃相关函数?1、?2。

12、判断如下ARMA过程是否是平稳过程:x t 0.7x t 1 0.1x t 2 t 0.14 t 113、以Q t表⽰粮⾷产量,A t表⽰播种⾯积,C t表⽰化肥施⽤量,经检验,他们取对数后都是I (1)变量且相互之间存在CI( 1,1)关系。

同时经过检验并剔除了不显著的变量(包括滞后变量),得到如下粮⾷⽣产模型:In Q o In Q [ 21n A t 31n C t 4In C t 1 t推导误差修正模型的表达式,并指出误差修正模型中每个待估参数的经济意义。

14、固定资产存量模型K t 0 1K t 1 2I t 3I t 1 t中,经检验,K t ~ I (2), 11 ~ I (1),试写出由该ADL模型导出的误差修正模型的表达式。

初计量经济学之时间序列分析

初计量经济学之时间序列分析

初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。

时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。

时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。

本文将介绍时间序列分析的基本概念、方法和应用。

首先,我们将介绍时间序列分析的基本步骤和基本假设。

然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。

最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。

2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。

下面将对每个步骤进行详细介绍。

2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。

我们需要收集时间序列数据,并进行数据清洗和预处理。

数据清洗包括删除缺失值、处理异常值和去除趋势。

数据预处理包括对数据进行平滑处理、差分和变换。

2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。

我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。

可视化方法包括绘制时间序列图、自相关图和偏自相关图。

统计分析方法包括计算统计指标、分析趋势、季节性和周期性。

2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。

我们需要选择合适的时间序列模型,并进行参数估计。

常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。

2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。

我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。

然后,我们可以使用模型进行未来值的预测。

3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。

在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。

本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。

一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。

它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。

时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。

二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。

ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。

ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。

2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。

3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。

ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。

通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。

三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。

它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。

ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。

2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。

中级计量经济学-时间序列

中级计量经济学-时间序列
谈何容易?但至少需要了解分布的一些特征
考虑T期的N种资产 rit :i 1,, N;t 1,,T 1、联合分布函数 F r11,, rN1;;r1T ,, rNT ;Y;
Y为state vector Theta为分布函数的变量 给定数据rt,可以估计theta,哪怕是一部分在
既定假设模型下的theta 特例:CAPM模型,单变量时间序列分析
又叫log return
优势:多期收益率为单期收益率之和,一些统 计学的特征更容易驾驭
资产组合收益率
简单净收益率 对数收益率
考虑股息的支付
N
RP,t wi Rit i 1
N
rP,t wirit i 1
ERxt c ePtPsts1Dt
1
return
rt ln Pt Dt ln Pt1
其他非正态的stable distribution没有有限的 方差,与大部分的金融理论冲突
有些stable distribution比正态分布更能 capture厚尾现象,如Cauchy分布
Cauchy分布举例 X ~ Cauchy ,
f
x
1
2
X
2
,
X
特例:f
x
1
1 1 X
2
,
2、条件分布函数
F ri1, , riT ; F ri1 F ri2 ri1 F ri3 ri2 , ri1 F riT ri,T 1, ri,T 2 ,, ri,1
T
F ri1 F rit ri,t1, ri,T 2 ,, ri,1 t2
Temporal dependency
3、Marginal distribution
不可忽略,更容易估计,且当数据的序列相关 性较弱时,marginal与conditional很接近

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。

通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。

本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。

一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。

在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。

时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。

通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。

二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。

在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。

趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。

三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。

移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。

四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。

在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析计量经济学是应用经济学中比较基础的分支,主要研究经济学中的定量分析和增长趋势。

其中,时间序列分析作为计量经济学重要的一部分,被广泛运用于宏观经济学中的经济周期、经济增长率、通货膨胀以及个人收入等诸多领域。

时间序列分析是计量经济学中一种基本的研究方法,主要使用统计学技术处理时间序列数据,得出未来预测、检验理论假设和描述历史趋势等信息。

时间序列数据的重要性在于,它们反映了一个经济变量随着时间推移的变化规律。

这些数据可以被用来研究经济变量展现的时间趋势和季节性变化等。

因此,时间序列分析在宏观经济的长期趋势研究、短期波动分析、周期特征查验和经济结构变革判断等方面有重要的应用。

在时间序列分析中,经济变量随着时间的推移体现的规律通常被归纳为趋势、季节性、循环、随机波动四个方面。

趋势是一个时间序列中最为基本的成分,反映一项宏观经济变量的长期变化趋势,其普遍存在的原因可能是技术进步、人口变动、自然要素影响等等因素。

而季节性则是一项经济变量随着时间的相对固定的短期变化,反映的是因为季节性因素的影响而生的波动现象。

循环则是周期波动的一种体现,代表着长达数年的经济波动和周期性变化。

随机波动是时间序列中不可预测的无法被规律分析的随机性波动成分。

这种波动通常受到一些令人难以预测的特殊事件的影响,比如自然灾害、政府重大决策等。

时间序列分析方法有很多种,其中包括经典的时间序列分析方法,如白噪声检验、趋势分析、季节性分析、循环分析等。

同时也包括新兴的技术,如自回归移动平均模型(ARMA)、广义自回归条件异方差模型(GARCH)、立方样条获取非线性趋势和神经网络等。

这些方法涉及的内容比较复杂,因此初学者在学习中需要认真掌握这些方法和工具,并理解它们在数据处理和预测中的应用和限制。

总结而言,计量经济学中的时间序列分析是经济变量随时间推移表现出来的一种基本变化规律的统计学分析方法。

在宏观经济分析、政策研究、市场营销等方面有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程论文
题目:第三产业产值的影响因素分析
学院财会学院_
专业会计专硕
班级会计专硕1501 课程名称计量经济学(课程设计)
学号
学生姓名 60
指导教师赵卫亚
成绩
二○一五年十二月
第三产业产值的影响因素分析
摘要:本文利用计量经济分析方法和1990—2010年的时间序列统计资料,建立了我国第三产业产值影响因素模型。

建模过程中,处理了模型中的协整检验、自相关性等问题。

本文认为我国第三产业产值主要受GDP和我国城乡居民存款储蓄的影响,因此需要引起足够的重视,正确开展工作,促进第三产业的发展。

关键词:第三产业产值;时间序列分析;GDP;城乡居民存款储蓄
一、引言
第三产业是指除第一二产业以外的其他行业。

自从我国进入改革开放以来,我国不仅在积极发展第一产业和第二产业的同时,也在积极扶植第三产业的发展。

我国属于发展中国家,仅靠出口农产品或初级工业品很难在国际社会中立有一足之地。

进入21世纪,第三产业的发展迫切需要成为促进经济发展的主要动力。

这主要是因为第三产业基本以服务业为主,这就使其具有了行业多,范围广等特点,从而能够提供更多的就业机会,相对于其他产业服务业的就业门滥相对来说也较低,能吸纳农村等剩余劳动力,并且第三产业的发展,也能有效地促进第一产业和第二产业的发展,加速推进我国的工业化和现代化进程,提高我国的综合国力。

我国的第三产业较其他发达国家仍有很大的差距,所以加快本国第三产业发展迫在眉睫。

第三产业不仅在占国民生产总值比重方面不断提高,其内部的产业结构也在不断地发生着变化。

最初我国第三产业的发展主要集中以餐饮等为主的传统服务业上,而随着新型服务业的产生,我国开始侧重向金融保险业、房地产业等方面的发展,其数量和质量的提高使得第三产业在我国经济发展的过程中产生的作用也越来越显著。

因此,研究第三产业产值的影响因素分析具有实际意义。

二、文献综述
江小涓、李辉(2004)建立了一个多元回归模型来分析收入水平、消费结构、城市化以及其他因素对第三产业未来发展的影响,提出第三产业比例随着人均GDP水平增长而增加[1]。

郭彩霞(2009)对1978到2008年相关数据进行实证分析,得到要想加快农村现代化就必须要促进第三产业的发展结论[2]。

王小宁(2009)认为第三产业固定资产的投资对第三产业产值具有重大的影响[3]。

徐群、于德淼、赵春阁在对第三产业发展研究时主要是利用线性回归模型来对我国第三产业的影响因素进行分析,对我国第三产业发展现状的研究和趋势预测就是利用的主成分分析和逐步回归分析方法[4]。

三、理论模型与数据
(一)变量选择和数据收集
根据以上分析,本文选取1990年到2010年间国内生产总值(X1t)和城乡居民存款储蓄(X2t)这两个指标作为计量模型的解释变量,被解释变量则为第三产业产值(Y t)。

数据来源于《中国统计年鉴》和国泰安数据库。

选取1990—2010年作为研究样本,数据见表1。

(二)图形分析
通过对样本数据做散点图(图1、图2)发现,Y t与X1t、X2t呈近似直线关系,根据图3的趋势图,三者同趋势变化,考虑时间序列模型,初步判断其不平稳,存在二阶可能性。

于是得到该模型的理论方程为:
Y t=β0+β1X1t+β2X2t+μt (1)
式中,μt为随机误差项,描述变量外的因素对模型的干扰;β0为样本回归函数的截距系数;β1、β2为样本回归函数的斜率系数;下标t为年份,t=1990,1991,⋯,2010。

图1 Y与X1散点图图2 Y与X2散点图
图3 趋势图
(三)单位根检验
经过差分后,Y t与X1t、X2t 均平稳,但是Y t为二阶单整,X1t、X2t三阶单整,可能存在线性后降阶,因此可以尝试建立回归模型。

(四)建立回归模型
1.LS Y C X1 X2
得到方程:Y = -3725.7829016 + 0.350915608536*X1 + 0.116993116659*X2 t:(-4.260)(8.438)(2.180)
R2 = 0.998,DW = 0.678,F = 6857.838
图4 第一次模型
2.自相关性检验
(1)残差图分析:
图5 残差图
α=0.05,k=2,查表得到d L =1.125,因为DW=0.678小于d L,因此存在一阶自相关性。

图6 DW 检验
(3)偏相关系数检验:
图7 偏相关洗漱检验
由图可见,当绝对值PAC大于0.5时,即超出PC图中虚线部分时,存在一阶自相关性。

图8 BG检验
nR2=8.3277,临界概率0.0155小于0.05,因此拒绝假设H0,存在自相关性。

又因为e t-1回归系数显著不为0,因此模型存在一阶自相关性。

3.自相关性处理
得到调整后的方程:
Y = -5417.76973503 + 0.390265879342*X1 + 0.0736268142467*X2 + [AR(1)=0.668162678879]
简化后:
Y = -5417.77 + 0.39*X1 + 0.07*X2 + [AR(1)=0.67]
t= (11.594) (1.755) (3.759)
R2 = 0.999,DW = 1.953,F = 7829.251
图9 调整后方程
4.调整后自相关性检验
(1)调整后偏相关系数检验:
图10 调整后偏相关系数检验
经调整,PC图中不存在超出虚线部分,说明自相关性已消除。

(2)调整后BG检验:
图11调整后BG检验
因为nR2的临界概率0.9928已经非常大,大于0.05,因此接受假设H0,不存在自相关性。

5.异方差检验:
图12 WHITE检验
因为显著性水平α=0.05,nR2的概率0.0813大于0.05,落入接受域,原假设成立,不存在异方差性。

6.协整检验
生成残差序列后,检验e t平稳性,结果如下表:
因此模型是协整回归的。

四、结论
Y = -5417.77 + 0.39*X1 + 0.07*X2 + [AR(1)=0.67]
t= (11.594) (1.755) (3.759)
R2 = 0.999,DW = 1.953,F = 7829.251
根据协整检验可知,尽管我国的第三产业产值、国内生产总值和城乡居民存款储蓄水平都是非平稳的,但是二阶差分后他们都平稳,且方程通过协整检验,因此它们之间具有长期稳定的协整关系。

且就长期而言,通过模型的回归分析,可以看出我国第三产业产值增长与GDP的增长以及城乡居民存款储蓄的增长成正比关系。

从系数大小来看,GDP每增长1亿元,第三产业产值便会增长0.39亿元;城乡居民存款储蓄每增长1亿元,第三产业产值将会增长0.07亿元。

国内生产总值的增长和城乡居民存款储蓄的增加对第三产业的发展促进具有重要的作用,同时第三产业的发展也会促进我国国内生产总值的增长。

第三产业的发展有利于吸收剩余劳动力,从而增加就业增加居民的储蓄,提高居民的生活水平。

以下建议:
1.从国家的角度,加速城镇化进程,改革幵放以来,城镇化水平处于平稳快速发展当中,城镇化水平的提高,不仅仅在于城镇人口数量的增多,更在于城镇化的加速,使我国旳人口数量进一步集中到了一起。

人口的集中,消费需求也因而集中起来,这更便于向需求者提供服务。

城镇人口数量的增加,就带动了邮电、餐饮等服务业的发展,因而会刺激第三产业的发展,随着城镇化的加速,人民生活水平不断地提高与改善,传统服务业也已满足不了人民的需求,因此会逐渐地向更高层次的服务业寻求满足。

在保证优势行业快速发展的前提下,
提高新兴行业的发展步伐,不断找到经济的新增长点。

2.从社会角度以引进优质教育医疗资源等作为突破口,提高就业人员的素质,改善社区的配套设施建设,提高入住率,从而促进新城区第三产业的繁荣和发展。

固定资产投资的结构需要不断优化,第三产业的发展离不开投资。

在我国社会主义发展的初级阶段,主要依靠投资的增加来刺激经济的增长,随着社会的发展,固定资产投资占社会总投资的比重也在不断地增加,因而我们也应该更加重视固定资产投资的质量与总量。

以前年度我国将更多的固定资产投资倾向于加强对交通运输业、邮电通信业、餐饮业等服务业的基础设施的建设,其次就是对教育文化事业、公共服务业的投资,而对于新兴服务业的投资方面有待进一步的增加。

参考文献
[1] 江小涓,李辉.服务业与中国经济:相关性和加快增长的潜力[J].经济研究, 2004,
(1);64-65.
[2] 郭彩霞.我国第三产业发展与城镇化建设的实证研究[J].特区经济,2009,(第12期).
[3] 王小宁.第三产业固定资产投资与第三产业增长之间的实证分析[J].北方经济,2009,(第22期).
[4] 徐群,于德淼,赵春阁.我国第三产业发展现状研究及趋势预测:基于主成分分析和逐步回归分析[J].巢湖学院学报,2014,(第2期).。

相关文档
最新文档