静电场中的导体和介质习题
大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
第十四章静电场中的导体与电介质自测题(精)

第十四章静电场中的导体与电介质自测题一、选择题*1. 对于带电的孤立导体球()(A) 导体内的场强与电势大小均为零(B) 导体内的场强为零,而电势为恒量(C) 导体内的电势比导体表面高(D) 导体内的电势与导体表面的电势高低无法确定*2. 关于导体有以下几种说法正确的是()(A) 接地的导体都不带电。
(B) 接地的导体可带正电,也可带负电。
(C) 导体的电势为零,则该导体不带电。
(D) 任何导体,只要它所带的电量不变,则其电势也是不变的。
*3. 对于静电平衡的导体,下列说法中正确的有()(A)表面曲率半径大处电势高(B)表面面电荷密度大处电势高;(C)导体内各点的电场强度都为零(D)导体内各点的电势都为零.**4. 一个中性空腔导体,腔内有一个带正电的带电体,当另一中性导体接近空腔导体时,腔内各点的电势()(A) 升高 (B) 降低 (C) 不变 (D) 不能确定**5. 如图,两孤立同心金属球壳,内球壳接地,外球壳带有正电荷,则内球壳()(A) 不带电荷 (B) 带正电荷(C) 带负电荷 (D) 无法判断**6. 如图,当把带正电荷的小球Q靠近不带电的导体AB时,A、B两端将()(A) A端带负电荷,B端带正电荷 Q ⊕B (B) B端带负电荷,A端带正电荷(C) A端、B端均带负电荷(D) A端、B端均带正电荷**7. 导体A接地方式如图,导体B带电为+Q,则导体A()(A) 带正电.(B) 带负电. (C) 不带电.(D) 左边带正电,右边带负电.**8. 如图, 一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为()(A) 0 (B) -Q(C) +Q/2 (D) –Q/2 Q**9. 如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电-Q,则B球()(A) 带正电(B) 带负电 Q (C) 不带电(D) 上面带正电,下面带负电***10.两球带电量重新分配的结果是()(A) 各球所带电量不变 (B) 半径大的球带电量多(C) 半径大的球带电量少 (D) 无法确定哪一个导体球带电量多***11. 半径不等的两金属球A、B,RA = 2RB,A球带正电Q,B球带负电2Q,今用导线将两球联接起来,则()(A) 两球各自带电量不变(B) 两球的带电量相等(C) 两球的电势相等(D) A球电势比B球高***12. 两块面积均为S的金属平板A和B彼此平行放置,板间距离为d(d远小于板的线度),设A板带电量q1,B板带电量q2,则AB两板间的电势差UA-UB为()q1+q2d2ε0Sq1-q2d2ε0Sq1+q2d4ε0Sq1-q2d4ε0S(A) (B) (C) (D)二、填空题*1. 导体处于静电平衡时,其内部任一点的电场强度为____________。
作业解答12章电介质

, C
=
Q2 - Q1 2S
,
D
=
Q1 + Q2 2S
6.一金属球壳的内外半径分别为
R1和R2,带有电荷Q.在球壳内距 球心O为r处有一电荷为q的点电荷,
则球心处的电势为:
Q
R1 Oqr R2
q
-q Q + q
UO = 40r + 40R1 + 40R2
1 q -q q Q
=
4 0
r
+
R1
+
图 12-10
因为S1面内没有自由电荷,故电场强度通量为0,电位 移通量为0。S2面内有自由电荷q, 和束缚电荷总量是0 , 故电场强度通量为q/ε0 ,电位移通量为q。
2. 空气的击穿电场强度为2106V/m,直径为0.10m的 导体球在空气中的最大带电量为_____________。
解:导体表面场强:
间距离为d(d远小于板的线度),设A板带有电荷q1,B 板带有电荷q2,则AB两板间的电势差UAB为 :(C)
AB
( A) q1 + q2 d, (B) q1 + q2 d,
q1
q2
2 0 S
4 0 S
(C ) q1 - q2 d, ( D) q1 - q2 d
2 0 S
4 0 S
电荷均按正电处理,取垂直平板向右为正方向,有:
向向着球面移 动. (C) 沿逆时针方向旋转至沿径向指向球面,同时逆电场线方
向远离球面移动. (D) 沿顺时针方向旋转至沿径向朝外,同时沿电场线方向向
着球移动.
p
图 12-9
解:电偶极子受力如图所示。所以电偶极子将逆时 针旋转(直到电矩指向球心)。旋转使+q靠近球面, -q远离球面,这样,在水平方向上,电偶极子受到 的引力将大于斥力,故将沿电力线方向向着球面移 动。所以选 (B)
《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。
静电场中的导体和电介质习题详解

习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C D?解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
静电场中的导体与电介质习题课.ppt

S2
代入上面式子,可求得:
E1
1
r1 0
E2 2 r20
1 S2 E1
- S1 2 E2
D2
D、E 方向均向右。
D1
A d1
d2
B
静电场中的导体和介质习题课
(2)正负两极板A、B的电势差为:
U A U B E1d1 E2d2
d1
1
d2
2
q S
d1
1
d2
2
按电容的定义式:C
q UA UB
d1
S
d2
1 2
上面结果可推广到多层介质的情况。
静电场中的导体和介质习题课
【例题】平行板电容器的极板是边长为 a的正方形,间
距为 d,两板带电±Q。如图所示,把厚度为d、相对介
电常量为εr的电介质板插入一半。试求电介质板所受
电场力的大小及方向。
解:选取坐标系
OX,如图所示。 当介质极插入x 距离时,电容器 的电容为
功等于电容器储能的增量,有
F
W (x) x
( r 20a[a
1)Q2d
(r 1)x]2
静电场中的导体和介质习题课
插入一半时,x=a/2 ,则
F( a ) 2( r 1)Q2d 2 0a3 ( r 1)2
F(a/2)的方向沿图中X轴的正方向。
注释:由结果可知,εr>1,电场力F是指向电容器内 部的,这是由于在电场中电介质被极化,其表面上产 生束缚电荷。在平行极电容器的边缘,由于边缘效应 ,电场是不均匀的,场强E 对电介质中正负电荷的作 用力都有一个沿板面向右的分量,因此电介质将受到 一个向右的合力,所以电介质板是被吸入的。
E E0
r
大学物理习题静电场中的导体和电介质习题课

解:因保持与电源连接,两极间电势保持不变,而
电容值为 C 0S / d C' 0S /(nd ) C / n
电容器储存的电场能量由 We CU 2 / 2
We' C'U 2 / 2 CU 2 / 2n
We
We'We
U
2
/ 2(C
/n
C)
CU 2
21
n n
当电介质被裁成两段后撤去电场,极化的电介质又恢 复原状,仍各保持中性。
选择题:
1.“无限大”均匀带电平面 A 附近平行放 置有一定厚度的“无限大”平面导体板 B, 如图所示,已知 A 上的电荷面密度为 + , 则在导体板 B 的两个表面 1 和 2 上的感
应电荷面密度为
(A) 1=–, 2=0 (B) 1= –, 2=+, (C) 1= – /2 , 2=+ /2 (D) 1= – /2 , 2= – /2
电量还是原来的分布吗?
C
后
+Q -Q
C
+2Q -2Q
设
C
+-qq11
C
+-qq22
C +-qq11
C
由(2)得 由(1)得
C +1.5Q C -1.5Q
+-qq22
求 q1,q2:
q1 q2 3Q
q1 q2 CC
q1 q1
q2 q2
3 2
Q
(1) (2)
+1.5Q -1.5Q
[C]
1 2
AB
2.在一个带电量为 +q 的外表面为球形的 空腔导体 A 内,放有一带电量为 +Q 的带 电导体 B ,则比较空腔导体 A 的电势 UA, 和导体 B 的电势 UB 时,可得以下结论:
大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.该定理表明,静电场是 有势(或保守力) 场.
9.一空气平行板电容器,两极板间距为d,充电后板间电压
为U.然后将电源断开,在两板间平行地插入一厚度为d/3的 金属板,则板间电压变成U' =_2_U__/3__.
10.带有电荷q、半径为rA的金属球A,与一原先
不带电、内外半径分别为rB和rC的金属球壳B同心
静电场中的导体与电介质
一 选择题
1.一带正电荷的物体M,靠近一原不带电的金属导体N,N
的左端感生出负电荷,右端感生出正电荷.若将N的左端
接地,如图所示,则 (A)N上有负电荷入地.
M
N
(B) N上有正电荷入地.
(C) N上的电荷不动.
(D) N上所有电荷都入地. [ B ]
2.如图所示,一带负电荷的金属球,外面同心地罩一
A 点与外筒 : 间的电势差
U 'R 2E dr U R 2d r U lnR 21.5 2 V
R
lnR 2(/R 1)R r lnR 2(/R 1) R
ቤተ መጻሕፍቲ ባይዱ
四 理论推导与证明题 16.一导体A,带电荷Q1,其外包一导体壳B,带电荷Q2,且 不与导体A接触.试证在静电平衡时,B的外表面带电荷为Q1 + Q2.
4Q 1 0R 14 Q 01 R 4Q 0 2R 24 Q 02 R
代入数 : Q 据 1/Q 2得 1/7
两导体表面上的场强最强,其最大场强之比为
E E1 2m ma a x x4Q 01R 12/4Q 02 R22Q Q 1 2R R 2 12 27 4
分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为εr的各 向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如
图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点
与外筒间的电势差.
r
解:设内外圆筒沿长 轴度 向分 单别 位带有 和电 ,荷
根据高斯定理圆 可筒 求间 得任 两一点度 的为 :电场强 R 1
(C) q < 0. (D) 无法确定.
[ C]
5.有两个大小不相同的金属球,大球直径是小球的两倍,
大球带电,小球不带电,两者相距很远.今用细长导线将
两者相连,在忽略导线的影响下,大球与小球的带电之比
为:
(A) 2. (C) 1/2.
(B) 1. (D) 0.
[ A]
6.在空气平行板电容器中,平行地插上一块各向同性均匀电
介质板,如图所示.当电容器充电后,若忽略边缘效应,则
电介质中的场强与空气中的场强相比较,应有
(A) E > E0,两者方向相同.
(B) E = E0,两者方向相同.
E0
(C) E < E0,两者方向相同.
E
(D) E < E0,两者方向相反. [ C ]
7.在静电场中,作闭合曲面S,若有 (式中为电位移矢量),
则S面内必定
(A) 既无自由电荷,也无束缚电荷.
(B) 没有自由电荷.
(C) 自由电荷和束缚电荷的代数和为零.
(D) 自由电荷的代数和为零.
[D]
二 填空题
Edl 0
8.静电场的环路定理的数学表示式为:__L___________.该
式的物理意义是:
单位正电荷在静电场中沿闭合路径绕行一周,电场力作功等于零
B球表面上场强最大,这里首先达到击穿场强而击穿,即
E2max 4Q 02R22 3160V/m
(2)由 E2ma解 x 得Q23.31 04C Q 17 1Q20.47 1 04C
击穿时两球 荷所 :为 Q带 Q 1的 Q23总 .77 1 电 04C
15.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径
极板上的电荷是原来的__r_倍;电场强度是原来的 _1__倍;
电场能量是原来的__r_倍.
12.如图所示,平行板电容器中充有各向同 性均匀电介质.图中画出两组带有箭头的线 分别表示电场线、电位移线.则其中
(1)为_电__位__移__线,(2)为__电__场__线.
(1)
(2)
三 计算题
13.如图所示,一内半径为a、外半径为b的金属球壳,
(2) 击穿时两球所带的总电荷Q为多少? (设导线本身不带电,且对电场无影响.)
R R1
B R2
R
(真空介电常量ε 0 = 8.85×10-12 C2·N-1·m-2 )
解:(1)两导体球壳接地,壳外无电场,导体球A、B外的电场呈球对 称分布,今先比较两球外的场强大小,击穿首先发生在场强最 大处,设击穿时,两导体球A、B所带电荷分别为Q1、Q2,由 于A、B用导线连接,帮两者电势相等,即满足:
五 错误改正题
17.同一种材料的导体A1、A2紧靠一起, 放在外电场中(图 a).将A1、A2分开后撤去电场(图b).下列说法是否正确? 如 有错误请改正.
(1) 在图(a)中,A1左端的电势比A2右端的电势低.
(2) 在图(b)中,A1的电势比A2的电势低.
A1
A2
(a)
A1
A2
(b)
答:(1)在图 (a)中,A1左端A和 2右端电势相等 (2)正确
带有电荷Q,在球壳空腔内距离球心r处有一点电荷
q.设无限远处为电势零点,试求:
(1) 球壳内外表面上的电荷.
ra
(2) 球心O点处,由球壳内表面上电荷产生的电势.Q q O b (3) 球心O点处的总电势.
解: (1)由于静电感应,金属球壳的内表面上有感生电荷-q,
外表面上带有电荷q+Q. (2)不论球壳内表面上的感生电荷是如何分布的,因为任一电荷 元离O点的距离都是a,所以由这些电荷在O点产生的电势为
E/20rr
R2
R
A
则两圆筒 U 的 R 2E d 电 r R 2势 d差 r 为 ln R 2
R 1
R 120rr 20r R 1
解:得20rU/lnR R1 2
U
于是 A 点 求 的 得 :电 E A U /场 R ln R 2/强 ( R 1 ) 9度 V 9 /m 8为 方向沿
14.两导体球A、B.半径分别为R1 = 0.5 m,R2 =1.0 m,中 间以导线连接,两球外分别包以内半径为R =1.2 m的同心导体
球壳(与导线绝缘)并接地,导体间的介质均为空气,如图所
示.已知:空气的击穿场强为3×106 V/m,今使A、B两球所带
电荷逐渐增加,计算:
(1) 此系统何处首先被击穿?这里场强为何值? A
不带电的金属球壳,则在球壳中一点P处的场强大小与
电势(设无穷远处为电势零点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0.
(C) E = 0,U = 0. (D) E > 0,U < 0.
[B ]
P
3.在一不带电荷的导体球壳的球心处放一点电荷,并测量球
壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位
(3)球心O点处总电U势q为分4布d0qa在球4壳q0内a 外表面上的电荷和点
电荷q在O点产生的电势的代数和.
U 0 U q U q U Q q 4 q r 4 q a 4 q Q b 4 q ( 1 r a 1 b 1 ) 4 Q b
置,重新测量球壳内外的场强分布,则将发现:
(A) 球壳内、外场强分布均无变化.
(B) 球壳内场强分布改变,球壳外不变.
(C) 球壳外场强分布改变,球壳内不变.
(D) 球壳内、外场强分布均改变.
[ B]
4.同心导体球与导体球壳周围电场的电场线分布
如图所示,由电场线分布情况可知球壳上所带总
电荷
(A) q > 0. (B) q = 0.
放置如图.则图中P点的电场强度 qr/(40r3.) 如
果用导线将A、B连接起来,则A球的电势U
A P
rA
r rB rC
=_q__/(_4___0r_C_)_.(设无穷远处电势为零)
B
11.一平行板电容器,充电后与电源保持联接,然后使两极
板间充满相对介电常量为 r 的各向同性均匀电介质,这时两
证 :在导体壳内 B的部 内作 表一 面 ,如 包 的 .设 图 围 B内 闭表 合面 面
带电 Q 2',按 荷高斯 ,因定 导理 体E 内 处部 处,故 场 为强 零
EdS(Q1Q2')/0 0
S
Q2'Q1
Q1 A
Q2‘ BB Q2’’
根据电,荷 设 B 外 守表 恒面 定 Q 2'带 ,则 律 Q 2'电 Q 2'' 荷 Q 2 为 由民一Q 此 2''Q 可 2Q 2'得 Q 1Q 2