100测评网高中数学复习期末试题
100测评网高二数学练习卷高中排列、组合与二项式定理练习题.doc

株洲市十七中高二排列、组合与二项式定理测试卷一、选择题:(本人题共10小题,每小题5分,共50分)1.若从集合P到集合Q={a,b,c}所冇不同的映射共冇81个,则从集合Q到集合P可作的不同的映射共冇()A. 32 个B. 27 个C. 81 个D. 64 个2.某班举行联欢会,原定的五个节目已排出节目单,演出前乂增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为()A. 42B. 36C. 30D. 123.全班48名学生坐成6排,每排8人,排法总数为P,排成前后两排,每排24人,排法总数为Q,则冇()A. P>QB. P=QC. P<QD.不能确定4.从正方体的六个面小选取3个面,其小有2个面不相邻的选法共有()种A. 8B. 12C. 16D. 205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配A. B. D.方案共冇()6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊.大厅的地而及楼的外墙,现有编号为1〜6的六种不同花色的装饰石材可选择,具屮1号石材有微量的放射性, 不可用于办公室内,则不同的装饰效果有()种A. 350B. 300C. 65D. 507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有()种重新站位的方法A. 1680B. 256C. 360D. 2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有()种不同的坐法A. 7200B. 3600C. 2400D. 12009.在(Jg + J舌)"的展开式中,所有奇数项一项式系数Z和等J - 1024,则中间项的二A.462B. 33()C.682D.792项式系数是()10.在(1 + d x)7的展开式屮,x'项的系数是/项系数与xh页系数的等比中项,则d的值为()5二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A、B、C三只小船,A船可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由人人陪同方可乘船,他们分乘这些船只的方法有__________________ 种。
100测评网高中数学复习泰州实验中学2008-2009学年度第一学期期末考试

泰州实验中学2008-2009学年度第一学期期末考试 高三数学试题 命题人:毛加和考生注意:1.答卷前,考生务必将姓名、准考证号等填写清楚.2.本试卷共有20道试题,满分160分,考试时间120分钟.请考生用0.5毫米的 黑色中性(签字)笔将答案直接写在试卷上. 参考公式:(1)样本数据n x x x ,,,21 的标准差(3)锥体体积公式[]22221)()()(1x x x x x x ns n -++-+-=13V Sh =其中x 为样本平均数其中S 为底面面积、h 为高(2)柱体体积公式 (4)球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径一、填空题(本大题满分70分)本大题共有14题,只要求直接填写结果,每个空格填对得5分,否则一律得零分. 1.)23(log 221+-=x x y 的定义域是_______ .2.集合{}{}3,2,,aA B a b ==,若{}2A B ⋂=,则A B ⋃= .3.如果复数2()(1)m i mi ++是实数,则实数m =_____ .4.已知一辆轿车在公路上作加速直线运动,设ts 时的速度为3)(2+=t t v )/(s m ,则s t 3=时轿车的瞬时加速度为______________________.521==|,且、夹角120,则=+2______ __.6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 7.下列关于2χ的说法中,正确的是 . ①2χ在任何相互独立问题中都可以用于检验是否相关;②2χ越大,两个事件的相关性越大;③2χ是用来判断两个相互独立事件相关与否的一个统计量,它可以用来判断两个事件是否相关这一类问题.8.泰州实验中学有学生3000人,其中高三学生600人.为了解学生的身体素质情况, 采用按年级分层抽样的方法,从学生中抽取一个300人的样本. 则样本中高三学生的人数为 .9.函数x x x f ln )(-=的单调减区间为____________________.10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 .11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,. 如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当w xy =取到最大值时, 点P 的坐标是 .12.如图所示,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角6πθ=,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内概率是___ . 13.已知正四棱锥P —ABCD 的高为4,侧棱长与底面所成的角为060, 则该正四棱锥的侧面积是 .14.对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数”。
100测评网福建浦城县2008—2009学年第一学期高二数学期末考试卷(文科)

浦城县2008—2009学年第一学期高二数学期末考试卷(文科)参考公式:1、选择的检验指标(统计量)22()()()()()n ad bc K a b c d a c b d -=++++;第Ⅰ卷 (选择题共50分)一、选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡对应的位置上.1、命题“若12<x ,则11<<-x ”的逆否命题是( ▲ )A . 若12≥x ,则1≥x 或1-≤xB . 若11<<-x ,则12<x C . 若1>x 或1-<x ,则12>x D . 若1≥x 或1-≤x ,则12≥x解:D .2、10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ▲ )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解:D .3、设p ∶13x -<<,q ∶5x >,则⌝p 是q 的( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解:B . 4、抛物线24y x =上一点M 到准线的距离为3,则点M 的横坐标x 为( ▲ ) A. 1B. 2C. 3D. 4解: 24P =,2P =,32Px +=,解得2x =.选B . 5、以下程序输入2,3,4运行后,输出的结果是( ▲ )INPUT a ,b ,c a =b b =c c =aPRINT a ,b ,cA .2 3 4B .3 2 4C .3 4 3D .3 4 2 解:C .6、下图是2008年“皇华之春”晚会上,七位评委为某舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()。
100测评网东海高级中学高二文科数学模拟试题三

高二文科数学期末模拟试题(三)命题人:李顺之 审核人:李美玲一、填空题:1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为______________________。
2.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为______________________。
3.若方程2212516x y m m+=-+表示焦点在y 轴上的椭圆,则实数m 的取值范围是____________. 4.抛物线的顶点在原点,对称轴为坐标轴,焦点在直线01243=--y x 上,则抛物线的方程为______________________。
5.双曲线12222=-by a x (a >0,b >0)左右焦点分别是F 1、F 2,过F 2与x 轴垂直的弦PQ ,且∠PF 1Q=60°则双曲线的离心率等于______________________。
6.已知二次函数()x f 的图象如图1所示 , 则其导函数()x f'的图象大致形状是( )7.“双曲线的方程为221916x y -=”是“双曲线的准线方程为“95x =±”的______________条件。
(填充分不必要、必要不充分、充分必要)8.如图2所示,函数)(x f y =的图象在点P 处的切线 方程是8+-=x y ,则()5f = ,()5f '= .9.已知各个命题A 、B 、C 、D ,若A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充分必要条件,则D 是A 的 条件.10.阅读图4的程序框图,若输入4m =,3n =,则输出a =,i = . 11.函数x x x f ln 2)(2-=在定义域的一个子区间()1,1+-k k 上不是单调函数,则实数k 的取值范围是 .12.在曲线106323-++=x x x y 的切线中斜率最小的切线方程是___________________.13.函数x x x f ln 2)(2-=在定义域的一个子区间()1,1+-k k 上不是单调函数,则实数k 的取值范围是___________________.14.若偶函数)(x f ,当+∈Rx 时,满足,0)1(,)()(=>'f x x f x f 且则的解0)(≥xx f 集是___________________.二、解答题15.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1) 求x 的值;(2) 现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?已知y ≥245,z ≥245,求初三年级中女生比男生多的概率.图416.已知曲线32:x x y S -=.(1)利用导数的定义来求函数)(x f y =的导数; (2)求曲线S 在点)1,1(A 处的切线方程;(3)求过点)0,2(B 并与曲线S 相切的直线方程.17.一炮弹在A 处的东偏北60°的某处爆炸,在A 处测到爆炸信号的时间比在B 处早4秒,已知A 在B 的正东方、相距6千米, P 为爆炸地点,(该信号的传播速度为每秒1千米)求A 、P 两地的距离.18.已知命题:“}11|{<<-∈∃x x x ,使等式02=--m x x 成立”是真命题, (1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.19.已知()()()f x x x a x b =--. (Ⅰ)若1a b ==,求函数()f x 的单调递增区间; (Ⅱ)若函数()f x 的导函数()f x '满足:当1x ≤时,有()f x '≤23恒成立,求函数()f x 的解析式.20.已知函数2()ln f x x b x =-在(1,2]是增函数,()g x x =-在(0,1)为减函数. (1)求b 的值; (2)求函数)(x g 的极值; (3)设函数21()2h x ax x =-是区间(0,1]上的增函数,且对于]1,0(内的任意两个变量 s 、t ,()()f s h t ≥恒成立,求实数a 的取值范围.11、[)[)∞+-,10,1 15.(1)380……4分 (2)12……5分 (3)115………5分17. 解:以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系, 则A (3,0)、B (-3,0)614||||<⨯=-PA PB 3,5,2===∴c b a15422=-∴y x P 是双曲线 右支上的一点 …………6分∵P 在A 的东偏北60°方向,∴360tan == AP k . ∴线段AP 所在的直线方程为)3(3-=x y …8分解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-==-0)3(315422y x x y y x⎩⎨⎧==358y x 得 ,即P 点的坐标为(8,35) ………10分∴A 、P 两地的距离为22)350()83(-+-=AP =10(千米).………12分18、解:(1)已知命题:“∃x ∈{x |–1< x <1},使等式x 2–x –m = 0成立”是真命题,得f (x )= x 2–x –m = 0在(-1,1)有解, …………2分 由对称轴x =12,则140(1)110m f m ∆=+≥⎧⎨-=+->⎩, (4)分得m ∈1,24⎡⎫-⎪⎢⎣⎭. ……………7分(或由02=--m x x 得x x m +=2求得结论也给分) (2)不等式()(2)0x a x a -+-<1、当a a ->2,即1>a 时解集N 为(a -2,a ),若x ∈N 是x ∈M 的必要条件,则M ⊆N, ∴a 的取值范围29,1424a a a ≥⎧⎪∴>⎨-<-⎪⎩. ……………10分2、当a a >-2,即1<a 时解集N 为(a ,a -2),若x ∈N 是x ∈M 的必要条件, 则M ⊆N,∴a的取值范围221,144a a a -≥⎧⎪∴<-⎨<-⎪⎩. 13分19a (,)(,)44∈-∞-+∞综上. …15分19、解:(Ⅰ) x x x x f +-=232)(, 143)('2+-=x x x f 2分令'()0f x ≥得01432≥+-x x ,解得113x x ≤≥或 故()f x 的增区间1(,]3-∞和[1,)+∞ 6分(注:区间写成开区间也可以,但写成1(,]3-∞或.[1,)+∞及1(,]3-∞⋃[1,)+∞者扣2分) (Ⅱ)f '(x)=ab x b a x ++-)(232 当x ∈[-1,1]时,恒有|f '(x)|≤23. 故有23-≤f '(1)≤23,23-≤f '(-1)≤23,及23-≤f '(0)≤23, 9分即33 32() ,2233 32() ,2233 .22a b ab a b ab ab ⎧-≤-++≤⎪⎪⎪-≤+++≤⎨⎪⎪-≤≤⎪⎩………………………………… …12分①+②,得29-≤ab ≤23-,又由③,得ab =23-, 14分 将上式代回①和②,得0=+b a ,故x x x f 23)(3-=. 15分20、解:(1)()2b f x x x'=-,由题意0)(≥'x f 在(1,2]x ∈恒成立,即22b x ≤恒成立,∴2b ≤ (2)分;()1g x '=-又,由题意()0g x '≤在(0,1)x ∈恒成立,即b ≥2b ≥.……2分 ∴2b =.…………………………5分 (2)由(1)得x x x g 2)(-=,∴xx xx g 111)('-=-=……………………7分∴ 当1)0(,∈x 时,0)('<x g ;当)1(∞+∈,x 时,0)('>x g ………………9分∴ 函数)(x g 有极小值1)1(-=g ;无极大值。
100测评网江苏省东海高级中学高二数学期末复习考前训练2

ˆ 3.5 0.7 4.5 0.35 ˆ Y bX a
x 100 ,
y 100 0.7 0.35 70.35 吨,
f ( x)
所求的回归方程为
y 0.7 x 0.35 (3)
0
-
0
预测生产 100 吨甲产品的生产能耗比技改前降低 90 70.35 19.65 (吨) 18. 解(1) e
16 5 7 20 5 .、 .、 1 . 36 9 36 36 9
100
16(理) . 45. 16.(文)解: (I)当 x 40 时,汽车从甲地到乙地行驶了 40
1 3 ( 403 40 8) 2.5 17.5 128000 80 (升) 。
2.5
3.下列流程图运行输出的结果为
2 2 4. 已知定点 A(2, 3) , F 是椭圆 x y 1 的右焦点, M 是椭圆上
15、箱子中装有 6 张卡片,分别写有 1 到 6 这 6 个整数. 从箱子中任意取出一张卡片,记下它的读数 x , 然后放回箱子,第二次再从箱子中取出一张卡片,记下它的读数 y ,试求: (Ⅰ) 率; (Ⅱ)
3 2
10.设等边 ABC 的边长为 a , P 是 ABC 内的任意一点,且 P 到三边 AB, BC, CA 的距离分别为
d1 , d 2 , d 3 ,则有 d1 d 2 d 3 为定值
3 ;由以上平面图形的特性类比空间图形:设正四面体 a 2
ABCD 的棱
欢迎登录《100 测评网》 进行学习检测,有效提高学习成绩.
6、若实数 a、b 满足函数 f ( x) 是 .
1
1
f ( x)dx =
100测评网高二数学练习卷两平面的平行的判定和性质

典型例题一例1:已知正方体1111-D C B A ABCD . 求证:平面//11D AB 平面BD C 1. 证明:∵1111-D C B A ABCD 为正方体,∴B C A D 11//, 又 ⊂B C 1平面BD C 1, 故 //1A D 平面BD C 1. 同理 //11B D 平面BD C 1. 又 1111D B D A D = , ∴ 平面//11D AB 平面BD C 1.说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接C A 1即可,此法还可以求出这两个平行平面的距离.典型例题二例2:如图,已知βα//,a A ∈,α∈A β//a .求证:α⊂a .证明:过直线a 作一平面γ,设1a =αγ ,b =γβ .∵βα// ∴b a //1又β//a∴b a //在同一个平面γ内过同一点A 有两条直线1,a a 与直线b 平行∴a 与1a 重合,即α⊂a .说明:本题也可以用反证法进行证明.典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交. 已知:如图,βα//,A l =α . 求证:l 与β相交.证明:在β上取一点B ,过l 和B 作平面γ,由于γ与α有公共点A ,γ与β有公共点B .∴γ与α、β都相交. 设a =αγ ,b =γβ . ∵βα// ∴b a //又l 、a 、b 都在平面γ内,且l 和a 交于A . ∵l 与b 相交. 所以l 与β相交.典型例题四例4:已知平面βα//,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证: α//EF ,β//EF .证明:连接AF 并延长交β于G . ∵F CD AG =∴ AG ,CD 确定平面γ,且AC =αγ ,DG =βγ .∵βα//,所以 DG AC //, ∴ GDF ACF ∠=∠,又 DFG AFC ∠=∠,DF CF =, ∴ △ACF ≌△DFG . ∴ FG AF =. 又 BE AE =,∴ BG EF //,β⊂BG . 故 β//EF .同理α//EF说明:本题还有其它证法,要点是对异面直线的处理.典型例题六例6 如图,已知矩形ABCD 的四个顶点在平面上的射影分别为1A 、1B 、1C 、1D ,且1A 、1B 、1C 、1D 互不重合,也无三点共线.求证:四边形1111D C B A 是平行四边形. 证明:∵α⊥1AA , α⊥1DD∴11//DD AA不妨设1AA 和1DD 确定平面β. 同理1BB 和1CC 确定平面γ. 又11//BB AA ,且γ⊂1BB ∴γ//1AA 同理γ//AD 又A AD AA = 1∴γβ//又11D A =βα ,11C B =γα∴1111//C B D A . 同理1111//D C B A .∴四边形1111D C B A 是平行四边形.典型例题七例7 设直线l 、m ,平面α、β,下列条件能得出βα//的是( ). A .α⊂l ,α⊂m ,且β//l ,β//m B .α⊂l ,β⊂m ,且m l // C .α⊥l ,β⊥m ,且m l // D .α//l ,β//m ,且m l //分析:选项A 是错误的,因为当m l //时,α与β可能相交.选项B 是错误的,理由同A .选项C 是正确的,因为α⊥l ,l m //,所以α⊥m ,又∵β⊥m ,∴βα//.选项D 也是错误的,满足条件的α可能与β相交.答案:C说明:此题极易选A ,原因是对平面平行的判定定理掌握不准确所致.本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况.典型例题八例8 设平面α⊥平面γ,平面β⊥平面γ,且α、β分别与γ相交于a 、b ,b a //.求证:平面α//平面β.分析:要证明两平面平行,只要设法在平面α上找到两条相交直线,或作出相交直线,它们分别与β平行(如图).证明:在平面α内作直线PQ ⊥直线a ,在平面β内作直线MN ⊥直线b . ∵平面α⊥平面γ,∴PQ ⊥平面γ,MN ⊥平面γ, ∴MN PQ //.又∵p a //,Q a PQ = ,N b MN = , ∴平面α//平面β.说明:如果在α、β内分别作γ⊥PQ ,γ⊥MN ,这样就走了弯路,还需证明PQ 、MN 在α、β内,如果直接在α、β内作a 、b 的垂线,就可推出MN PQ //.由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要.典型例题九例9 如图所示,平面α//平面β,点A 、C α∈,点β∈D B 、,a AB =是α、β的公垂线,CD 是斜线.若b BD AC ==,c CD =,M 、N 分别是AB 和CD 的中点,(1)求证:β//MN ; (2)求MN 的长.分析:(1)要证β//MN ,取AD 的中点P ,只要证明MN 所在的平面β//PMN .为此证明β//PM ,β//PN 即可.(2)要求MN 之长,在CMA ∆中,CM 、CN 的长度易知,关键在于证明CD MN ⊥,从而由勾股定理可以求解.证明:(1)连结AD ,设P 是AD 的中点,分别连结PM 、PN . ∵M 是AB 的中点,∴BD PM //.又β⊂BD ,∴β//PM .同理∵N 是CD 的中点,∴AC PN //. ∵α⊂AC ,∴α//PN .∵βα//,P PM PN = ,∴平面β//PMN . ∵MN ⊂平面PMN ,∴β//MN . (2)分别连结MC 、MD . ∵b BD AC ==,a BM AM 21==, 又∵AB 是α、β的公垂线,∴︒=∠=∠90DBM CAM , ∴ACM Rt ∆≌BDM Rt ∆,∴DM CM =, ∴DMC ∆是等腰三角形.又N 是CD 的中点,∴CD MN ⊥. 在CMN Rt ∆中,22222421c a b CN CM MN -+=-=. 说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略.(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解. (3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行.典型例题十例10 如果平面α内的两条相交直线与平面β所成的角相等,那么这两个平面的位置关系是__________.分析:按直线和平面的三种位置关系分类予以研究. 解:设a 、b 是平面α内两条相交直线.(1)若a 、b 都在平面β内,a 、b 与平面β所成的角都为︒0,这时α与β重合,根据教材中规定,此种情况不予考虑.(2)若a 、b 都与平面β相交成等角,且所成角在)90,0(︒︒内; ∵a 、b 与β有公共点,这时α与β相交.若a 、b 都与平面β成︒90角,则b a //,与已知矛盾.此种情况不可能.(3)若a 、b 都与平面β平行,则a 、b 与平面β所成的角都为︒0,α内有两条直线与平面β平行,这时βα//.综上,平面α、β的位置关系是相交或平行.典型例题十一例11 试证经过平面外一点有且只有一个平面和已知平面平行. 已知:α平面∉A ,求证:过A 有且只有一个平面αβ//.分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可.证明:在平面α内任作两条相交直线a 和b ,则由α∉A 知,a A ∉,b A ∉. 点A 和直线a 可确定一个平面M ,点A 和直线b 可确定一个平面N .在平面M 、N 内过A 分别作直线a a //'、b b //', 故'a 、'b 是两条相交直线,可确定一个平面β. ∵α⊄'a ,α⊂a ,a a //',∴α//'a . 同理α//'b .又β⊂'a ,β⊂'b ,A b a ='',∴αβ//. 所以过点A 有一个平面αβ//.假设过A 点还有一个平面αγ//,则在平面α内取一直线c ,c A ∉,点A 、直线c 确定一个平面ρ,由公理2知:m =ρβ ,n =ργ ,∴c m //,c n //, 又m A ∈,n A ∈,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立, 所以平面β只有一个.所以过平面外一点有且只有一个平面与已知平面平行.典型例题十二例12 已知点S 是正三角形ABC 所在平面外的一点,且SC SB SA ==,SG 为SAB ∆上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 内的位置关系,并给予证明分析1:如图,观察图形,即可判定//SG 平面DEF ,要证明结论成立,只需证明SG 与平面DEF 内的一条直线平行.观察图形可以看出:连结CG 与DE 相交于H ,连结FH ,FH 就是适合题意的直线. 怎样证明FH SG //?只需证明H 是CG 的中点.证法1:连结CG 交DE 于点H , ∵DE 是ABC ∆的中位线, ∴AB DE //.在ACG ∆中,D 是AC 的中点,且AG DH //, ∴H 为CG 的中点.∵FH 是SCG ∆的中位线,∴SG FH //. 又SG ⊄平面DEF ,FH ⊂平面DEF , ∴//SG 平面DEF .分析2:要证明//SG 平面DEF ,只需证明平面SAB //平面DEF ,要证明平面DEF //平面SAB ,只需证明DF SA //,EF SB //而DF SA //,EF SB //可由题设直接推出.证法2:∵EF 为SBC ∆的中位线, ∴SB EF //.∵⊄EF 平面SAB ,⊂SB 平面SAB , ∴//EF 平面SAB .同理://DF 平面SAB ,F DF EF = ,∴平面SAB //平面DEF ,又∵⊂SG 平面SAB , ∴//SG 平面DEF .典型例题十三例13 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9=PA ,12=AB ,12=BQ ,ACF ∆的面积为72,求BDE ∆的面积.分析:求BDE ∆的面积,看起来似乎与本节内容无关,事实上,已知ACF ∆的面积,若BDE ∆与ACF ∆的对应边有联系的话,可以利用ACF ∆的面积求出BDE ∆的面积.解:∵平面AF QAF =α ,平面BE QAF =β , 又∵βα//,∴BE AF //.同理可证:BD AC //,∴FAC ∠与EBD ∠相等或互补,即EBD FAC ∠=∠sin sin .由BE FA //,得212412∶∶∶∶===QA QB AF BE, ∴AF BE 21=由AC BD //,得:73219∶∶∶∶===PB PA BD AC ,∴AC BD 37=. 又∵ACF ∆的面积为72,即72sin 21=∠⋅⋅FAC AC AF . ∴EBD BD BE S DBE ∠⋅⋅=∆sin 21FAC AC AF ∠⋅⋅⋅=sin 372121 FAC AC AF ∠⋅⋅⋅=sin 2167 847267=⨯=. ∴BDE ∆的面积为84平方单位.说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行.典型例题十四例14 在棱长为a 的正方体中,求异面直线BD 和C B 1之间的距离.分析:通过前面的学习,我们解决了如下的问题:若a 和b 是两条异面直线,则过a 且平行于b 的平面必平行于过b 且平行于a 的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决.具体解法可按如下几步来求:①分别经过BD 和C B 1找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度.解:如图,根据正方体的性质,易证:1111111//////D CB BD A C D B A D B BD 平面平面⇒⎭⎬⎫连结1AC ,分别交平面BD A 1和平面11D CB 于M 和N因为1CC 和1AC 分别是平面ABCD 的垂线和斜线,AC 在平面ABCD 内,BD AC ⊥ 由三垂线定理:BD AC ⊥1,同理:D A AC 11⊥ ∴⊥1AC 平面BD A 1,同理可证:⊥1AC 平面11D CB ∴平面BD A 1和平面11D CB 间的距离为线段MN 长度. 如图所示:在对角面1AC 中,1O 为11C A 的中点,O 为AC 的中点 ∴a AC NC MN AM 333111====. ∴BD 和C B 1的距离等于两平行平面BD A 1和11D CB 的距离为a 33. 说明:关于异面直线之间的距离的计算,有两种基本的转移方法:①转化为线面距.设a 、b 是两条异面直线,作出经过b 而和a 平行的平面α,通过计算a 和α的距离,得出a 和b 距离,这样又回到点面距离的计算;②转化为面面距,设a 、b 是两条异面直线,作出经过b 而和a 平行的平面α,再作出经过a 和b 平行的平面β,通过计算α、β之间的距离得出a 和b 之间的距离.典型例题十五例15 正方体1111D C B A ABCD -棱长为a ,求异面直线AC 与1BC 的距离. 解法1:(直接法)如图:取BC 的中点P ,连结PD 、1PB 分别交AC 、1BC 于M 、N 两点, 易证:MN DB //1,AC DB ⊥1,11BC DB ⊥. ∴MN 为异面直线AC 与1BC 的公垂线段,易证:a DB MN 33311==. 小结:此法也称定义法,这种解法是作出异面直线的公垂线段来解.但通常寻找公垂线段时,难度较大.解法2:(转化法)如图:∵//AC 平面B C A 11,∴AC 与1BC 的距离等于AC 与平面B C A 11的距离, 在1OBO Rt ∆中,作斜边上的高OE ,则OE 长为所求距离, ∵a OB 22=,a OO =1, ∴a B O 231=,∴a B O OB OO OE 3311=⋅=. 小结:这种解法是将线线距离转化为线面距离.解法3:(转化法)如图:∵平面1ACD //平面B C A 11,∴AC 与1BC 的距离等于平面1ACD 与平面B C A 11的距离. ∵⊥1DB 平面1ACD ,且被平面1ACD 和平面B C A 11三等分;∴所求距离为a D B 33311=. 小结:这种解法是线线距离转化为面面距离.解法4:(构造函数法)如图:任取点1BC Q ∈,作BC QR ⊥于R 点,作AC PK ⊥于K 点,设x RC =,则x a QR BR -==,KR CK =,且222CR CK KR =+∴2222121x CR KR ==. 则222)(21x a x QK -+=2223131)32(23a a a x ≥+-=, 故QK 的最小值,即AC 与1BC 的距离等于a 33. 小结:这种解法是恰当的选择未知量,构造一个目标函数,通过求这个函数的最小值来得到二异面直线之间的距离.解法5:(体积桥法)如图:当求AC 与1BC 的距离转化为求AC 与平面B C A 11的距离后,设C 点到平面B C A 11的距离为h ,则1111BCC A B C A C V V --=. ∵222131)2(4331a a a h ⋅⋅=⋅, ∴a h33.即AC 与1BC 的距离等于a 33. 小结:本解法是将线线距离转化为线面距离,再将线面距离转化为锥体化为锥体的高,然后用体积公式求之.这种方法在后面将要学到.说明:求异面直线距离的方法有:(1)(直接法)当公垂线段能直接作出时,直接求.此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键.(2)(转化法)把线线距离转化为线面距离,如求异面直线a 、b 距离,先作出过a 且平行于b 的平面α,则b 与α距离就是a 、b 距离.(线面转化法).也可以转化为过a 平行b 的平面和过b 平行于a 的平面,两平行平面的距离就是两条异面直线距离.(面面转化法).(3)(体积桥法)利用线面距再转化为锥体的高用何种公式来求.(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解. 两条异面直线间距离问题,教科书要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其他解法,要适度接触,以开阔思路,供学有余力的同学探求.典型例题十六例16 如果βα//,AB 和AC 是夹在平面α与β之间的两条线段,AC AB ⊥,且2=AB ,直线AB 与平面α所成的角为︒30,求线段AC 长的取值范围.解法1:如图所示:作β⊥AD 于D ,连结BD 、CD 、BC∵BD AB >,DC AC >,222BC AC AB =+,∴在BDC ∆中,由余弦定理,得:022cos 222222=⋅-+<⋅-+=∠CDBD BC AC AB CD BD BC CD BD BDC .∵β⊥AD ,∴ABD ∠是AB 与β所在的角. 又∵βα//,∴ABD ∠也就等于AB 与α所成的角,即︒=∠30ABD .∵2=AB ,∴1=AD ,3=BD ,12-=AC DC ,24AC BC +=,∴01324131222<-⋅---+≤-AC AC AC ,即:31102≤-<AC .∴332≥AC ,即AC 长的取值范围为⎪⎪⎭⎫⎢⎣⎡∞+,332. 解法2:如图:∵AC AB ⊥∴AC 必在过点A 且与直线AB 垂直的平面γ内设l =βγ ,则在γ内,当l AC ⊥时,AC 的长最短,且此时ABC AB AC ∠⋅=tan33230tan =︒⋅AB 而在γ内,C 点在l 上移动,远离垂足时,AC 的长将变大,从而332≥AC , 即AC 长的取值范围是⎪⎪⎭⎫⎢⎣⎡∞+,332.说明:(1)本题考查直线和直线、直线和平面、平面和平面的位置关系,对于运算能力和空间想象能力有较高的要求,供学有余力的同学学习.(2)解法1利用余弦定理,采用放缩的方法构造出关于AC 长的不等式,再通过解不等式得到AC 长的范围,此方法以运算为主.(3)解法2从几何性质角度加以解释说明,避免了繁杂的运算推导,但对空间想象能力要求很高,根据此解法可知线段AC 是连结异面直线AB 和l 上两点间的线段,所以AC 是AB 与l 的公垂线段时,其长最短.典型例题十七例17 如果两个平面分别平行于第三个平面,那么这两个平面互相平行. 已知:γα//,γβ//,求证:βα//.分析:本题考查面面平行的判定和性质定理以及逻辑推理能力.由于两个平面没有公共点称两平面平行,带有否定性结论的命题常用反证法来证明,因此本题可用反证法证明.另外也可以利用平行平面的性质定理分别在三个平面内构造平行且相交的两条直线,利用线线平行来推理证明面面平行,或者也可以证明这两个平面同时垂直于某一直线.证明一:如图,假设α、β不平行,则α和β相交.∴α和β至少有一个公共点A ,即α∈A ,β∈A . ∵γα//,γβ//, ∴γ∉A .于是,过平面γ外一点A 有两个平面α、β都和平面γ平行,这和“经过平面外一点有且只有一个平面与已知平面平行”相矛盾,假设不成立。
100测评网高二(文科)数学试题参考答案

官桥中学2006~2007学年度第一学期期末考试高二(文科)数学试题参考答案一、选择题(5’×10=50’)CABDD DBCBC 二、填空题(5’×4=20’)11、-3 12、12 13、k 10≤ 14、(甲)1 (乙)109三、解答题:15. 解:(1)()2cos 22sin(2)6f x x x x π=+=+…………4分22T ππ== …………6分 (2)由3222()262k x k k Z πππππ+≤+≤+∈得263k x k ππππ+≤≤+,…………10分 所以,减区间为2[,]()63k k k Z ππππ++∈ …………12分 16、解:⑴∵{a n }为公比为q 的等比数列,a n+2=12n na a ++(n ∈N *)∴a n ·q 2=2n na q a + …………2分即2q 2―q ―1=0 解得q =-12或 q =1 …………4分 ∴a n =112n -⎛⎫- ⎪⎝⎭或a n =1 …………6分⑵当a n =1时,b n =n , S n =1+2+3+…+n =()12n n + …………8分 当a n =112n -⎛⎫- ⎪⎝⎭时b n =n ·112n -⎛⎫- ⎪⎝⎭S n =1+2·(-12)+3·212⎛⎫- ⎪⎝⎭+…+(n -1)·212n -⎛⎫- ⎪⎝⎭+n ·112n -⎛⎫- ⎪⎝⎭①-12 S n =(-12)+2·212⎛⎫- ⎪⎝⎭+…+(n -1)·112n -⎛⎫- ⎪⎝⎭+n 12n⎛⎫- ⎪⎝⎭②…………10分①—②得32 S n =1+12⎛⎫- ⎪⎝⎭+212⎛⎫- ⎪⎝⎭+…+112n -⎛⎫- ⎪⎝⎭-n 12n⎛⎫- ⎪⎝⎭=112112n⎛⎫-- ⎪⎝⎭+-n ·12n⎛⎫- ⎪⎝⎭ = ⎪⎭⎫⎝⎛-⋅-⎪⎭⎫ ⎝⎛--21213232n n…………13分⎪⎭⎫⎝⎛-⋅-⎪⎭⎫ ⎝⎛--=2132219494n S nn …………14分17.(Ⅰ)证明: ∵O 是AC 的中点,D 是AB 的中点∴OD//BC,又BC ⊆平面SCD,OD ⊄平面SCD∴ OD//平面SBC; …………………………………7分(Ⅱ) 证明:SAC ∆是正三角形, O 是AC 的中点,∴SO AC ⊥.又∵平面SAC ⊥平面ABC ,∴SO ACB ⊥平面,∴SO AB ⊥. …………………………………14分18、解:设分别采用甲、乙两种原料各y x ,千克,可生产产品z 千克,…………………1分依题意,约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0024.05.065.1y x y x y x …………………6分目标函数为=z y x 10090+把目标函数化为100109z x y +-=, 当直线100109z x y +-=的纵截距取最大值时,z 也取最大值。
100测评网高三数学复习2008~2009学年度高一期末考试

2008~2009学年度高一期末考试数学试题 2009.1.16一、选择题(共10小题,共50分)1. 已知A={0,1,2},B={0,1},则下列关系不正确的是( )A . A ∩B=B B 。
∁A B ⊆BC .A ∪B ⊆AD 。
B ⊂≠ A2. 函数()()2lg 31f x x =+的定义域为( )A .1,3⎛⎫-∞- ⎪⎝⎭B 。
11,33⎛⎫- ⎪⎝⎭C 。
1,13⎛⎫- ⎪⎝⎭D 。
1,3⎛⎫-+∞ ⎪⎝⎭3.下列各组函数中,表示同一函数的是( ) A .y x =与y =B 。
ln x y e =与ln x y e =C 。
()()131x x y x -⋅+=-与3y x =+ D 。
0y x =与01y x =4.下列函数中,在区间()0,2上为增函数的是( ) A .()ln 1y x =- B。
y C 。
245y x x =-+ D 。
2y x=5.10y --=的倾斜角为( )A .30 B 。
60 C 。
120 D 。
150 6. 函数()3x f x x =+在下列哪个区间内有零点 ( )A .2,1⎡⎤⎣⎦--B .1,0⎡⎤⎣⎦-C .0,1⎡⎤⎣⎦D .1,2⎡⎤⎣⎦7. 如图所示,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是 ( )(甲)(乙)(丙)主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图8. 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若,,αγβγ⊥⊥则α∥β; ②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β; ④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n . 其中真命题的个数是( )A .1B 。
2C 。
3D 。
49. 函数()21log f x x =+与()12x g x -+=在同一直角坐标系下的图像是如图中的( ) 10. 如果直线20ax y -+=与直线30x y b --=关于直线0x y -=对称,则有( )A .1,63a b == B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BOOK 1 期末试题
一、听音,选出与你所听到的单词相符的图片。
()1、A B C
()2、A B C
()3、A B C
()4、A B C
()5、A B C
二、听一听,标序号。
))
()()
()()
()()
()()
三、听音涂色。
1、23、
4、5、
二、看一看,连一连。
1、teacher
2、desk
3、dog
4、cat
5、seat
三、单词连连看。
six
five
seven
nine
eight
四、听音圈词。
1、This is my . (desk seat )
2、That is a . (dog cat)
3、This is our . ( classroom book )
4、This is a . (dog cat )
5、That is our . ( teacher seat )
6、Pen pencil.(and、or)
7、It’s pen.(an、a)
8、It’s school bag.(my、I)
9、What’s ? (this、that)
10、It’s eraser.(a、an)
11、How old are . (you、your)
12、birthday. (Happy、How)
13、A red kite you. (for、to)
14、Stand , please? (up、down)
六、选词填空
( )1、How are you?
A、old
B、big
C、am ( )2、I seven.
A、’m
B、am
C、are ( )3、You nine.
A、are
B、’re
C、am ( )4、A book you.
A、to
B、is
C、for ( )5、Happy birthday you.
A、to
B、for
C、is
===========================================================
适用版本:
人教版,苏教版, 鲁教版,北京版,语文A版,语文S版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版
适用学科:
语文,数学,英语,科学,物理,化学,生物,政治,历史,地理
适用年级:
一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初
适用领域及关键字:
100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷
===========================================================
本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。