高考中再现“数形结合”的三重境界

合集下载

高三数学数形结合思想方法

高三数学数形结合思想方法

八、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识;如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识;如平面几何、立体几何等;一类是关于数形结合的知识;主要体现是解析几何。

数形结合一是一个数学思想方法;应用主要是借助形的直观性来阐明数之间的联系;其次是借助于数的精确性来阐明形的某些属性。

数形结合的思想;其实质是将抽象的数学语言与直观的图像结合起来;关键是代数问题与图形之间的相互转化。

Ⅰ、再现性题组:1. 设命题甲:0<x<5;命题乙:|x -2|<3;那么甲是乙的_____。

(90年全国文)2. 若log a 2<log b 2<0;则_____。

(92年全国理)A. 0<a<b<1B. 0<b<a<1C. a>b>1D. b>a>13. 如果|x|≤π4,那么函数f(x)=cos 2x +sinx 的最小值是_____。

(89年全国文) A. 212- B. -212+ C. -1 D. 122- 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5;那么f(x)的[-7,-3]上是____。

(91年全国)A.增函数且最小值为-5B.增函数且最大值为-5C.减函数且最小值为-5D.减函数且最大值为-55. 设全集I ={(x,y)|x,y ∈R};集合M ={(x,y)| y x --32=1};N ={(x,y)|y ≠x +1};那么M N ∪等于_____。

(90年全国)A. φB. {(2,3)}C. (2,3)D. {(x,y)|y =x +16. 如果θ是第二象限的角;且满足cos θ2-sin θ2=1-sin θ,那么θ2是_____。

7. 已知集合E ={θ|cos θ<sin θ;0≤θ≤2π};F ={θ|tg θ<sin θ};那么E ∩F 的区间是_____。

高考数学重点难点37数形结合思想大全

高考数学重点难点37数形结合思想大全

重点重点难点36 函数方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●重点重点难点磁场1.(★★★★★)关于x的不等式2•32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为.2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)(1)若a=1,b=–2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值.●案例探究[例1]已知函数f(x)=logm(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)x<–3或x>3.∵f(x)定义域为[α,β],∴α>3设β≥x1>x2≥α,有当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)]∵0<m<1, f(x)为减函数.∴即即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根∴∴0<m<故当0<m<时,满足题意条件的m存在.[例2]已知函数f(x)=x2–(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式.错解分析:第(1)问中易漏掉Δ≥0和tan(A+B)<0,第(2)问中如何保证f(x)在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f(x)+4=0即x2–(m+1)x+m+4=0.依题意:又A、B锐角为三角形内两内角∴<A+B<π∴tan(A+B)<0,即∴∴m≥5(2)证明:∵f(x)=(x–1)(x–m)又–1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0即1≤x≤3时,恒有f(x)≤0即(x–1)(x–m)≤0∴m≥x但xmax=3,∴m≥xmax=3(3)解:∵f(sinα)=sin2α–(m+1)sinα+m=且≥2,∴当sinα=–1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y=f(x)、y=f–1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭重点重点难点训练一、选择题1.(★★★★★)已知函数f(x)=loga[–(2a)2]对任意x∈[,+∞]都有意义,则实数a 的取值范围是( )A.(0,B.(0, )C.[,1D.( , )2.(★★★★★)函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2–x+1,那么当x>1时,f(x)的递减区间是( )A.[,+∞B.(1,C.[,+∞D.(1, ]二、填空题3.(★★★★)关于x的方程lg(ax–1)–lg(x–3)=1有解,则a的取值范围是.4.(★★★★★)如果y=1–sin2x–mcosx的最小值为–4,则m的值为.三、解答题5.(★★★★)设集合A={x|4x–2x+2+a=0,x∈R}.(1)若A中仅有一个元素,求实数a的取值集合B;(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.6.(★★★★)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.7.(★★★★★)已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)], …gn(x)=f[gn–1(x)],…(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.8.(★★★★)已知函数f(x)= (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.参考答案●重点重点难点磁场1.解析:设t=3x,则t∈[1,3],原不等式可化为a2–a–3>–2t2+t,t∈[1,3].等价于a2–a–3大于f(t)=–2t2+t在[1,3]上的最大值.答案:(–∞,–1)∪(2,+∞)2.解:(1)当a=1,b=–2时,f(x)=x2–x–3,由题意可知x=x2–x–3,得x1=–1,x2=3.故当a=1,b=–2时,f(x)的两个不动点为–1,3.(2)∵f(x)=ax2+(b+1)x+(b–1)(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+(b–1),即ax2+bx+(b–1)=0恒有两相异实根∴Δ=b2–4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2–16a<0解得0<a<1故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2)又∵A、B关于y=kx+ 对称.∴k=–1.设AB的中点为M(x′,y′)∵x1,x2是方程ax2+bx+(b–1)=0的两个根.∴x′=y′= ,又点M在直线上有,即∵a>0,∴2a+ ≥2 当且仅当2a= 即a= ∈(0,1)时取等号,故b≥–,得b的最小值–.●歼灭重点重点难点训练一、1.解析:考查函数y1= 和y2=(2a)x的图象,显然有0<2a<1.由题意得a= ,再结合指数函数图象性质可得答案.答案:A2.解析:由题意可得f(–x+1)=–f(x+1).令t=–x+1,则x=1–t,故f(t)=–f(2–t),即f(x)=–f(2–x).当x>1,2–x<1,于是有f(x)=–f(2–x)=–2(x–)2–,其递减区间为[,+∞).答案:C3.解析:显然有x>3,原方程可化为故有(10–a)•x=29,必有10–a>0得a<10又x= >3可得a>.答案:<a<104.解析:原式化为.当<–1,ymin=1+m=–4 m=–5.当–1≤≤1,ymin= =–4 m=±4不符.当>1,ymin=1–m=–4 m=5.答案:±5二、5.解:(1)令2x=t(t>0),设f(t)=t2–4t+a.由f(t)=0在(0,+∞)有且仅有一根或两相等实根,则有①f(t)=0有两等根时,Δ=0 16–4a=0 a=4验证:t2–4t+4=0 t=2∈(0,+∞),这时x=1②f(t)=0有一正根和一负根时,f(0)<0 a<0③若f(0)=0,则a=0,此时4x–4•2x=0 2x=0(舍去),或2x=4,∴x=2,即A中只有一个元素综上所述,a≤0或a=4,即B={a|a≤0或a=4}(2)要使原不等式对任意a∈(–∞,0]∪{4}恒成立.即g(a)=(x–2)a–(x2–6x)>0恒成立.只须<x≤26.解:(1)∵方程ax2+bx=2x有等根,∴Δ=(b–2)2=0,得b=2.由f(x–1)=f(3–x)知此函数图象的对称轴方程为x=–=1得a=–1,故f(x)=–x2+2x. (2)f(x)=–(x–1)2+1≤1,∴4n≤1,即n≤而抛物线y=–x2+2x的对称轴为x=1∴n≤时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则又m<n≤,∴m=–2,n=0,这时定义域为[–2,0],值域为[–8,0].由以上知满足条件的m、n存在,m=–2,n=0.7.(1)证明:当n=1时,g1(x0)=x0显然成立;设n=k时,有gk(x0)=x0(k∈N)成立,则gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0即n=k+1时,命题成立.∴对一切n∈N,若g1(x0)=x0,则gn(x0)=x0.(2)解:由(1)知,稳定不动点x0只需满足f(x0)=x0由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0=∴稳定不动点为0和.(3)解:∵f(x)<0,得6x–6x2<0 x<0或x>1.∴gn(x)<0 f[gn–1(x)]<0 gn–1(x)<0或gn–1(x)>1要使一切n∈N,n≥2,都有gn(x)<0,必须有g1(x)<0或g1(x)>1.由g1(x)<0 6x–6x2<0 x<0或x>1由g1(x)>0 6x–6x2>1故对于区间( )和(1,+∞)内的任意实数x,只要n≥2,n∈N,都有gn(x)<0.8.(1)证明:任取x1>x2>0,f(x1)–f(x2)=∵x1>x2>0,∴x1x2>0,x1–x2>0,∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.(2)解:∵≤2x在(0,+∞)上恒成立,且a>0,∴a≥在(0,+∞)上恒成立,令(当且仅当2x= 即x= 时取等号),要使a≥在(0,+∞)上恒成立,则a≥.故a的取值范围是[,+∞).(3)解:由(1)f(x)在定义域上是增函数.∴m=f(m),n=f(n),即m2–m+1=0,n2–n+1=0故方程x2–x+1=0有两个不相等的正根m,n,注意到m•n=1,故只需要Δ=( )2–4>0,由于a>0,则0<a<.重点难点37 数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.●重点难点磁场1.曲线y=1+ (–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围.2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围.●案例探究[例1]设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x2,且x∈A },若C B,求实数a的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目.知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C.进而将C B 用不等式这一数学语言加以转化.错解分析:考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a<–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决. 解:∵y=2x+3在[–2, a]上是增函数∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}作出z=x2的图象,该函数定义域右端点x=a有三种不同的位置情况如下:①当–2≤a≤0时,a2≤z≤4即C={z|z2≤z≤4}要使C B,必须且只须2a+3≥4得a≥与–2≤a<0矛盾.②当0≤a≤2时,0≤z≤4即C={z|0≤z≤4},要使C B,由图可知:必须且只需解得≤a≤2③当a>2时,0≤z≤a2,即C={z|0≤z≤a2},要使C B必须且只需解得2<a≤3④当a<–2时,A= 此时B=C= ,则C B成立.综上所述,a的取值范围是(–∞,–2)∪[,3].[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求证:.命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目.知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A、B两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A(cosα,sinα)与点B(cosβ,sinβ)是直线l:ax+by=c与单位圆x2+y2=1的两个交点如图.从而:|AB|2=(cosα–cosβ)2+(sinα–sinβ)2=2–2cos(α–β)又∵单位圆的圆心到直线l的距离由平面几何知识知|OA|2–( |AB|)2=d2即∴.●锦囊妙计应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图(2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象(4)方程(多指二元方程)及方程的曲线以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.●歼灭重点难点训练一、选择题1.(★★★★)方程sin(x–)= x的实数解的个数是( )A.2B.3C.4D.以上均不对2.(★★★★★)已知f(x)=(x–a)(x–b)–2(其中a<b ,且α、β是方程f(x)=0的两根(α<β,则实数a、b、α、β的大小关系为( )A.α<a<b<βB.α<a<β<bC.a<α<b<βD.a<α<β<b二、填空题3.(★★★★★)(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t为参数)的最大值是.4.(★★★★★)已知集合A={x|5–x≥},B={x|x2–ax≤x–a},当A B时,则a的取值范围是.三、解答题5.(★★★★)设关于x的方程sinx+ cosx+a=0在(0,π)内有相异解α、β.(1)求a的取值范围;(2)求tan(α+β)的值.6.(★★★★)设A={(x,y)|y= ,a>0},B={(x,y)|(x–1)2+(y–3)2=a2,a>0},且A∩B≠,求a的最大值与最小值.7.(★★★★)已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.求|PF1|+|PA|的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm、20 cm、5 cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少?参考答案●重点难点磁场1.解析:方程y=1+ 的曲线为半圆,y=r(x–2)+4为过(2,4)的直线.答案:(]2.解法一:由f(x)>a,在[–1,+∞)上恒成立x2–2ax+2–a>0在[–1,+∞)上恒成立.考查函数g(x)=x2–2ax+2–a的图象在[–1,+∞]时位于x轴上方.如图两种情况:不等式的成立条件是:(1)Δ=4a2–4(2–a)<0 a∈(–2,1)(2) a∈(–3,–2 ,综上所述a∈(–3,1).解法二:由f(x)>a x2+2>a(2x+1)令y1=x2+2,y2=a(2x+1),在同一坐标系中作出两个函数的图象.如图满足条件的直线l位于l1与l2之间,而直线l1、l2对应的a值(即直线的斜率)分别为1,–3,故直线l对应的a∈(–3,1).●歼灭重点难点训练一、1.解析:在同一坐标系内作出y1=sin(x–)与y2= x的图象如图.答案:B2.解析:a,b是方程g(x)=(x–a)(x–b)=0的两根,在同一坐标系中作出函数f(x)、g(x)的图象如图所示:答案:A二、3.解析:联想到距离公式,两点坐标为A(4cosθ,3sinθ),B(2t–3,1–2t)点A的几何图形是椭圆,点B表示直线.考虑用点到直线的距离公式求解.答案:4.解析:解得A={x|x≥9或x≤3},B={x|(x–a)(x–1)≤0},画数轴可得.答案:a>3三、5.解:①作出y=sin(x+ )(x∈(0,π))及y=–的图象,知当|–|<1且–≠时,曲线与直线有两个交点,故a∈(–2,–)∪(–,2).②把sinα+ cosα=–a,sinβ+ cosβ=–a相减得tan ,故tan(α+β)=3.6.解:∵集合A中的元素构成的图形是以原点O为圆心,a为半径的半圆;集合B中的元素是以点O′(1, )为圆心,a为半径的圆.如图所示∵A∩B≠,∴半圆O和圆O′有公共点.显然当半圆O和圆O′外切时,a最小a+a=|OO′|=2,∴amin=2 –2当半圆O与圆O′内切时,半圆O的半径最大,即a最大.此时a–a=|OO′|=2,∴amax=2 +2.7.解:由可知a=3,b= ,c=2,左焦点F1(–2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a–|PF2|=6–|PF2|,∴|PF1|+|PA|=6–|PF2|+|PA|=6+|PA|–|PF2|如图:由||PA|–|PF2||≤|AF2|= 知–≤|PA|–|PF2|≤.当P在AF2延长线上的P2处时,取右“=”号;当P在AF2的反向延长线的P1处时,取左“=”号.即|PA|–|PF2|的最大、最小值分别为,– .于是|PF1|+|PA|的最大值是6+ ,最小值是6–.8.解:本题实际上是求正方形窗口边长最小值.由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:设AE=x,BE=y,则有AE=AH=CF=CG=x,BE=BF=DG=DH=y∴∴.高考数学重点难点突破重点难点38 分类讨论思想.txt人永远不知道谁哪次不经意的跟你说了再见之后就真的再也不见了。

例谈“数形结合”思想在高考数学中的应用

例谈“数形结合”思想在高考数学中的应用

2024年3月上半月㊀学习指导㊀㊀㊀㊀例谈 数形结合 思想在高考数学中的应用∗◉湖北江汉大学数学与大数据系㊀周㊀岭㊀许㊀璐㊀㊀著名数学家华罗庚曾说过: 数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休 .所谓 数形结合 就是把抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系结合起来,通过 以形助数或 以数解形 ,即通过抽象思维与形象思维的结合,将复杂问题简单化,抽象问题具体化,达到实现优化解题路径的目的,起到事半功倍的效果.下面将结合高考数学试题实例,分析说明 数形结合 思想在解决问题中的作用和简捷.1数形结合思想在解析几何中的应用例1㊀(2023年全国新高考Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则s i n α=(㊀㊀).A.1㊀㊀㊀B .154㊀㊀C .104㊀㊀D.64分析:此题可以先将圆的方程化为标准形式,设出切线方程,利用点到直线的距离公式求出两条切线的斜率,最后利用夹角公式求得s i n α的值,但是计算相对复杂.解析:依题意,圆的方程可化为(x -2)2+y 2=5.图1如图1,得到圆心C (2,0),r =5,P (0,-2).所以|P C |=22.设过点P 的两条切线为P A 和P B ,则øA P B =α,可得s i nα2=r |P C |=522=104,c o sα2=1-(s i n α2)2=64.所以s i n α=2s i nα2c o s α2=154.故选:B .例2㊀(2023年新高考I 卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则C 的离心率为.分析:此题常见解法是设出点A ,B 的坐标,利用已知条件列出三个方程,再解出方程求得点A ,B 的坐标,进而得出双曲线C 的离心率.这样计算量会很大,如果利用数形结合的思想结合双曲线的定义求其离心率将会大大简化计算.解析:由F 2A ң=-23F 2B ң,得|F 2A ||F 2B |=23.设|F 2A |=2x ,则|F 2B |=3x ,|A B |=5x ,|F 1B |=|F 2B |=3x .由双曲线的定义,得|A F 1|=|A F 2|+2a =2x +2a .设øF 1A F 2=θ,则s i n θ=3x 5x =35,所以c o s θ=45=2x +2a5x,解得=a ,则|A F 1|=4a ,|A F 2|=2a .图2如图2,在әF 1A F 2中,由余弦定理,可得c o s θ=16a 2+4a 2-4c 216a2=45.整理,得5c 2=9a 2.故e =c a =355.点评:这类题目考查了学生 数学抽象 的核心素养.解决此类题的关键在于将数学符号语言和图形语言相互转化,利用图形的直观性,结合相关定义㊁公式即可快速解题.2数形结合思想在立体几何中的应用例3㊀(2022年新高考I 卷)已知正方体A B C D GA 1B 1C 1D 1,则(㊀㊀).A.直线B C 1与D A 1所成的角为90ʎB .直线B C 1与C A 1所成的角为90ʎC .直线B C 1与平面B B 1D 1D 所成的角为45ʎD.直线B C 1与平面A B C D 所成的角为45ʎ分析:此题可以通过建立空间直角坐标系来判断各选项是否正确,但计算较繁琐.解析:选项A ,B 的判断略.93∗基金项目:江汉大学研究生科研创新基金项目 基于新课标新课改背景下提升中学生数学学科核心素养的探究 ,项目编号为K Y C X J J 202350;教育部产学合作协调育人2022年第一批立项项目 基于P y t h o n 的大数据分析与应用课程混合教学模式探索 ,项目编号为220506627242057.学习指导2024年3月上半月㊀㊀㊀图3如图3所示,连接A1C1,设A1C1ɘB1D1=O,连接B O.由B B1ʅ平面A1B1C1D1,C1O⊂平面A1B1C1D1,得C1OʅB1B.因为C1OʅB1D1,B1D1ɘB1B=B1,所以C1Oʅ平面B B1D1D,所以øC1B O为直线B C1与平面B B1D1D的夹角.设正方体棱长为1,则C1O=22,B C1=2,于是s i nøC1B O=C1O B C1=12.所以直线B C1与平面B B1D1D所成的角为30ʎ,故选项C错误.因为C1Cʅ平面A B C D,所以øC1B C为直线B C1与平面A BC D的夹角,易得øC1B C=45ʎ,故选项D正确.综上所述,此题选:A B D.点评:本题主要考查立体几何中直线与直线的夹角㊁直线与平面的夹角,是对学生 逻辑推理 直观想象核心素养的考查.此题如果通过建系来计算,将比较复杂,耗时较长;若采取 传统 方法,结合图形并运用立体几何㊁三角函数相关知识,即可快速㊁直观作出判断.3数形结合思想在函数中的应用例4㊀(2021年全国乙卷)设aʂ0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则有(㊀㊀).A.a<b B.a>b C.a b<a2D.a b>a2分析:此题如果利用导数知识来求该函数的极大值点,再通过a与b的大小来判断选项将非常复杂.如果通过数形结合先考虑函数的零点情况,注意零点附近左右两侧函数值是否变号,结合极大值点的性质,对a进行分类画出该函数的图象再来判断选项将大大简化了问题,既直观又方便快捷[1].解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故aʂb.所以f(x)有x=a和x=b两个不同零点,且在x=a附近左右两侧不变号,在x=b附近左右两侧变号.因为x=a为函数f(x)=a(x-a)2(x-b)的极大值点,所以f(x)在x=a附近左右都小于0.①当a<0时,由x>b,f(x)ɤ0,画出f(x)的图象如图4所示.由b<a<0,得a b>a2.图4㊀㊀㊀图5②当a>0时,由x>b,f(x)>0,画出f(x)的图象如图5所示.由b>a>0,得a b>a2.综上a b>a2成立.故选:D.例5㊀(2021年新高考I卷)已知O为坐标原点,点A(1,0),P1(c o sα,s i nα),P2(c o sβ,-s i nβ),P3(c o s(α+β),s i n(α+β)),则(㊀㊀).A.|O P1ң|=|O P2ң|B.|A P1ң|=|A P2ң|C.O Aң O P3ң=O P1ң O P2ңD.O Aң O P1ң=O P2ң O P3ң分析:此题如果画出图形,利用数形结合思想解题,既直观又简捷.图6解析:如图6,可得|O P1ң|=|O P2ң|=1,故选项A正确.仅当α=-β时,|A P1ң|=|A P2ң|成立.故选项B错误.由O Aң O P3ң=|O Aң| |O P3ң|c o s(α+β),O P1ң O P2ң=|O P1ң| |O P2ң| c o s(α+β),|O Aң|=|O P3ң|=|O P1ң|=|O P2ң|=1,可知O Aң O P3ң=O P1ң O P2ң.故选项C正确.观察图象,易得‹O Aң,O P1ң›=α,‹O P2ң,O P3ң›=α+2β.故选项D错误.此题应选:A C.例6㊀(2021年新高考I卷)若过点(a,b)可以作曲线y=e x的两条切线,则(㊀㊀).A.e b<a B.e a<bC.0<a<e b D.0<b<e a分析:此题要求作出曲线y=e x的两条切线,通过几何图形进行直观想象,很容易判断各选项是否正确.解析:作出y=e x的图象.易得,若想作出切线,点(a,b)需在曲线y=e x的下方和x轴上方,如图7,即b<e a.图7㊀㊀图8但点(a,b)在x轴及其下方时,仅能作出一条切线,如图8.所以点(a,b)需在y轴上方,即b>0.综上,可得0<b<e a.故选:D.综上所述,在高考数学中利用数形结合思想解题往往可以起到简化计算㊁提高解题效率的作用.因此,平时教学中教师应通过数形结合思想丰富的展现形式不断对其进行渗透,促进学生数与形相互转换的能力,刺激学生学习数学的欲望,引导学生投入到数形结合分析的专题探究中[2],从而达到数学抽象思维具象化㊁发散化的教学目的,最终达到提升学生核心素养和全面发展的教育目的.参考文献:[1]常国良.数学教学中渗透直观想象素养的三重境界[J].教学与管理,2020(31):62G64.[2]李兆芹.探究数形结合思想如何有效运用于高中数学教学[J].数学学习与研究,2018(5):43.Z04。

高三数学数形结合的解题方法与技巧分析

高三数学数形结合的解题方法与技巧分析

高三数学数形结合的解题方法与技巧分析在高三数学中,数形结合的解题方法和技巧十分重要。

它不仅可以帮助我们更好地理解和掌握数学知识,还可以提高解题效率和准确性。

下面,笔者就介绍一些数形结合的解题方法和技巧,希望能对大家学习数学有所帮助。

1.画图是重要的第一步在解题过程中,随时运用画图的方法可以帮助我们更好地理解和解决问题。

但是,我们画图的目的不仅仅是为了画出一个美观的图形,更重要的是理清思路和抓住重要的信息。

所以,在画图的时候,一定要注意以下几点:1) 画出尽可能规整、简单的图形,不要过于花哨。

2) 根据题目解决要点着重绘制关键性点,如角、中点、垂线等。

3) 画图不仅限于二维平面,也可以画出立体图形,例如圆柱、球等。

2.利用相似性质求解在数形结合中,相似性质是十分重要的一个概念。

相似的两个图形,它们的对应边长比例相等,对应角度相等。

因此,我们可以利用相似性质来解决一些难题,尤其是涉及到比例和角度的计算。

3.从实际问题入手在解决数学问题时,我们可以将其与实际生活中的问题结合起来,这样有助于提高我们的兴趣和理解力。

例如,可以利用直观的方法来解决几何问题,以及利用动画来模拟一些数学现象等。

4.注意形式化证明的效果在数学学科中,形式化证明是一种有效且标准的解题方法。

所谓形式化证明,就是用严谨的语言表达出问题的所有要素,从而达到证明问题的目的。

5.切忌打乱了思路在解决数学问题时,我们必须按照一定的方法和思路,逐步推进解题的进程。

如果将不同的思路混合在一起,很容易就会迷失方向,不知道该从何处入手。

因此,我们要按照一个逐步深入的思路去解决问题,不要跳跃式地处理问题,这样才能找到规律并完整地解决问题。

6.避免错误解题方法在解决数学问题时,我们要避免一些错误的解题方法,如假设过程不完整、推理错误、求解方向错误等。

因此,在解决问题时,我们必须根据问题的性质和要求,选取最合适、最简单、最易于理解的解决方案。

7.学会多角度思考在数学解题中,我们可以尝试从多个角度思考问题,这样可以更全面、更深刻地理解和解决问题。

“数形结合”的三重境界

“数形结合”的三重境界

数 学 学 习与 研 究 2018.


例 1 已知椭 圆 c: + =1,点 M 与 C的焦 点不 重

合 ,若 肘 关于 c的两个焦 点对称 点分别为 A,B,线段 MN 的
中点在 C上 ,则IANI+IBNI=一
分析 用数 形结 合 的 思想 将 对 称 问题 转 化 为 中点 问
题 ,进 而转 化 中 位 线 问 题.再 利 用 椭 圆 的定 义 便 可 迎 刃
(设 k为常 数,e=2.718…为 自然 对 数
\ / y=k
的底数 )
(1)当 k≤0时,求 函数,( )的单
l 2
调 区 间 ;
(2)若 函数 ,( )在 (0,2)内存在 两个极值 点 ,求 k的取
值 范 围.
解 (1)定 义域 >o,厂( ): 二
,因 为
≤O,所 以 一 ≥0,所 以 ex—kx ̄>O.令厂( )=0,得 =2,列 表知 ,( )在区间 (0,2)上单调递减 ,(2,∞)单 调递增.

— 2 一 。
三 、构 图 解 题 构图解题是“形 ”辅数 的第 三层 次 ,这 就要 求学 生对 问 题进行 充分思考 ,根据题 中所提取 的有关信息 ,通 过理解 加 工,根据问题 的需求建 立数 学模 型 ,达 到解决 问题的 目的.
例3

)= ex

(吾+l眦)


(2)由(1)知 ,当 k≤O时 )在 区间 (0,2)上单 调递 减 ,所以 )在 (O,2)上无 极值.当 k>0时 ,要 使 函数 ) 在 (0,2)内存在两个极值点 ,则厂( )=0在 (0,2)内有两个

高考冲刺 数形结合的思想(教学课资)

高考冲刺 数形结合的思想(教学课资)

高考冲刺数形结合的思想【高考展望】在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。

从近三年新课标高考卷来看,涉及数形结合的题目略少,预测今后可能有所加强。

因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。

1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。

它可以使抽象的问题具体化,复杂的问题简单化。

“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。

2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。

3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。

4.函数的图象、方程的曲线、集合的文氏图或数轴表示等,是“以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是“以数助形”,还有导数更是数形结合的产物,这些都为我们提供了“数形结合”的知识平台。

5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。

用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。

【知识升华】纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

高中高考数学数形结合思想分析与讲解

高考数学数形联合思想剖析与解说所谓数形联合,就是依据数与形之间的对应关系,经过数与形的相互转变来解决数学识题的思想,实现数形联合,常与以下内容相关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;((4)以几何元素和几何条件为背景成立起来的观点,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。

以“形”变“数” 固然形有形象、直观的长处,但在定量方面还一定借助代数的计算,特别是对于较复杂的“形”,不只要正确的把图形数字化,并且还要留意察看图形的特色,挖掘题目中的隐含条件,充足利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行剖析计算。

解题的基本思路:明确题中所给条件和所求的目标,剖析已给出的条件和所求目标的特色和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题顶用到的图形的用代数式表达出来,再依据条件和结论的联系,利用相应的公式或定理等。

“形”“数”互变“形”“数”互变是指在有些数学识题中不只是是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”相互变换,不只要想到由“形”的直观变成“数”的严实还要由“数”的严实联系到“形”的直观。

解决这种问题常常需要从已知和结论同时出发,仔细剖析找出内在的“形”“数”互变。

一般方法是看“形”思“数”、见“数”想“形”。

本质就是以“数”化“形”、以“形”变“数”的联合。

数形联合思想是一种可使复杂问题简单化、抽象问题详细化的常用的数学思想方法。

要想提高学生运用数形联合思想的能力,需要教师耐心仔细的指引学生学会联系数形联合思想、理解数形联合思想、运用数形联合思想、掌握数形联合思想。

基础自测:1.已知0 a 1,则方程 a x log a x 的实数根的个数为()A.1 个B.2 个C.3 个D.1 个或 2 个或 3 个2.设数集Mx m x m 3x n1,且 M , N 都是集合,数集 N x n4 3x 0 x 1 的子集,假如把 b a叫做会合x a x b 的“长度”,那么会合 M N 的长度的最小值为1B. 2 1 5A.3 C. D.3 12 123.若奇函数 f (x) 在 0, 上的增函数,有f ( 3) 0 ,则x x f ( x) 0 ()A. x x 3或3 x 0B. x 0 x 3或 x 3C. x x 3或x 3D. x 0 x 3或 3 x 04.当x, y知足条件x y 1时,变量u x 的取值范围是()y 3A. 3,3B. 1 , 1C. 1 , 1D. 1 , 13 3 2 3 3 2参照分析:1.分析在同一坐标系下,画出函数y=a|x|,y=|logax| 的图象,则图象有两个交点 .2.分析 由题意知 .会合 M 的“长度”为3,会合 N4的“长度”为1,而会合 {x|0 ≤ x ≤1} 的“长度”331,b为 1;设线段 AB=1 , a, a , b 可在线段44AB 上自由滑动, a , b 重叠部分的长度即为 M ∩ N.如图,明显当 a ,b 各自凑近 AB 两头时,重叠部分最短 ,其值为3 1 1 1 .4 312所以1 1 , 00 , 1.答案 Ck33综上所述,u1 ,1333.分析 由 f(x) 为奇函数且 f(-3)=0 ,得 f(3)=0.又 f(x) 在( 0,+∞ )上是增函数,据上条件做出知足题意的 y=f(x) 草图,如图,如右图中找出f(x) 与 x 异号的部分,能够看出 x · f(x) < 0 的解集为 {x|0 < x < 3 或 -3<x < 0}. 答案 D4.分析由题意在座标系下画出|x|+|y|≤ 1 的图象如右图暗影部分,①若 x=0 时, |y|≤ 1,此时 u=0; ②若 x ≠ 0 时,变量可当作点 A(0, 3)与可行域内的点 B 连线斜率 k 的 倒数 ,而 k ∈ (-∞ ,-3] ∪ [3,+ ∞),典型例题解说题型一代数问题“几何化”——以形助数【例 1】求函数 A 2m 46m 的值域。

高考中再现“数形结合”的三重境界

数 f ( x ) 的单调 区间。 ( 2 ) 若 函数 f ( x ) 在( 0 , 2) 内存在两个 极 值点 , 求 K的取值范围。
解: ( 1 ) 定义 域 x > 0 , = 因 为 K。 所 以

重 要的是我 们更 深刻 形象地 体会 到数 学
画图解 题是 学生对 题 中给 出 的信息
( 0 2) 上单调递减 ( 2 , ) 单调递增 。 ( 2) 由( 1 ) 知, 当K O时 , f ( x ) 在 区 间 ( 0 , 2) 上单调 递减 , 所以f ( x ) 在( 0, 2) 上 无
存在两个极值点 , 则在( 0 , 2) 内有两个解 , 即 k =在 ( 0 , 2) 内有 两个 解 , 设 y = k , g ( x )
三 角 形 的 中 位 线 ,故 I A NI = 2 1 DF 1 l , I B N I = 2 1 DF 2 1 , 由椭 圆方程 知 a = 3 , 椭 圆 的 定义 I D F 1 I + I D F 2 1 = 2 a则 l AN I + I B NI - 2 l D F
1 1 + 2 1 DF 2 1 =4 a =1 2
转化 为中点 问题 ,进 而转化 中位线 问题 。
与L 2垂直 。所 以根据 均值 不等式 以及勾 股定理得 I P A I I P B I = 5 。 三、 构 图解题 就要 求学生对 问题 进行充分思考 , 根据题 中所提取 的有 关信 息 ,通过理解 加工 。 根 据 问题 的需求建立数学模型 , 达到解决 问
点, 则。

识 图解题
识图解题就是 在阅读理解 的基 础上 ,
特 点。再利用均值不等式 以及勾股定理便
可解。 解 :因为动直线 L I : x + my = 0过定点 A( 0 , 0 ) , 动直线 L 2 : mx — Y — m+ 3 = 0 。 过 定 点B ( 1 , 3 ) , 又 因为 1 . m+ m. ( 一 1 ) : 0 , 所以 L 1

高考数学思想方法专题_第二讲数形结合思想

高考数学思想方法专题:第二讲数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值围;2.构建函数模型并结合其图象研究方程根的围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

例谈数形结合思想在高考中的应用

b2 (1,2)上,求 a 的取值范围 . 1
[分析]用二次函数的图象研究根的分布问题,再研究所得不等式 和式子的几何意义. [解析]由x2+ax+2b=0的二根分别在区间 (0,1)与(1,2)上的几何意义为y=f(x)=x2+ax+2b与 x轴的两交点的横坐标分别在区间(0,1),(1,2)内.
h
h
h
h
h
h
h
h
O
O
t
t
(A)
tt
O
(B)
tt
(C)
O
tt (D)
例3:
想对称,想平移,想翻折,想升降,想周期
例4: 已知函数y=f(x)(0≤x≤1)的图象如右图,若0<x1<x2<1,则 ( A ) A. f ( x1 ) f ( x2 ) x1 x2 B. f ( x1 ) f ( x 2 )
y
分析: 方程变形 : x ax 1
y x 令: 结论: a 1 y ax 1
1 o
y x
x
y ax 1
评注: 1、函数向图象转化;(数转形)
2、交点位置向直线斜率转化;(形转数)
3、数形结合在有关范围问题中的运用。
例4.一元二次方程 x2+ax+2b=0的一根在(0,1)上,另一根在
f (0) 0, 2-b 0, f (1) 0, 即a 2b 2 b 0, f (2) 0. 4a 4b 2 b 0.
化简得
2 b 0, a 3b 2 0, 4a 5b 2 0.
d 2 d 函数,开口向下,对称轴 Sn n (a1 x=6.5, )n “想”图,得答 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考中再现“数形结合”的三重境界
作者:赵建慧
来源:《杂文月刊·教育世界》2015年第06期
数形结合是一种很重要的数学思想方法,正如著名数学家华罗庚先生说:“数形结合百般好,隔裂分家万事休”。

他亲切风趣地教导我们千万不要“得意忘形”,它不仅给我们的解题带来方便,更重要的是我们更深刻形象地体会到数学各分支之间的内在联系和数学美,常使复杂的问题简单化,抽象问题具体化,获得简捷易行的有效解法。

数形结合解题主要包括两方面的内容:一是以“形”辅数,由于许多数字表达的较抽象,但若挖掘其几何意义,并与以“形”结合起来,会使问题的解决更明朗。

二是以“数”解形,把二者有机结合后,借助形象思维产生思路,甚至观察出结果,而这一结果往往需要代数的方法求出,下面我将对2014年高考中出现的几道题再现“数形结合”的三重境界进行分析。

一、识图解题
识图解题就是在阅读理解的基础上,观察已经有的图像形状找出分散(或隐含)在图像中的各个知识点,正确提取有效信息,是解决这类问题的前提。

例1:(辽宁卷理科15题):已知椭圆C:点M与C的焦点不重合,若M关于C的两个焦点对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=_____。

分析:用数形结合的思想将对称问题转化为中点问题,进而转化中位线问题。

再利用椭圆的定义便可迎刃而解。

解:如图,设MN的中点为D,两个焦点分别为F1,F2,因为M关于C的两个焦点对称点分别为A,B,所以F1,F2分别是MA和MB的中点,所以DF1,DF2是三角形的中位线,故|AN|=2|DF1|,|BN|=2|DF2|,由椭圆方程知a=3,椭圆的定义|DF1|+|DF2|=2a则
|AN|+|BN|=2|DF
1|+2|DF2|=4a=12
二、画图解题
画图解题是学生对题中给出的信息“束手无策”就其原因,是对问题不理解,特别是对由数提供的条件不会用时,应该化“图像信息”为“数字信息”是解决这类问题的基础。

例2:(四川卷理科14题):设mR,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0,相交于P(x,y)则|PA||PB|的最大值为_________。

分析:用数形结合的思想将解析几何问题转化为图像问题,进而观察两图像的特点。

再利用均值不等式以及勾股定理便可解。

解:因为动直线L1: x+my=0过定点A(0,0),动直线L2: mx-y-m+3=0,过定点B (1,3),又因为1.m+m.(-1)=0,所以L1与L2垂直,所以根据均值不等式以及勾股定理得|PA||PB|=5。

三、构图解题
构图解题是“形”辅数的第三层次,这就要求学生对问题进行充分思考,根据题中所提取的有关信息,通过理解加工,根据问题的需求建立数学模型,达到解决问题的目的。

例3:(山东卷理科20题):设(设K为常数,e=2.718…为自然对数的底数)
(1)当k0 时,求函数f(x)的单调区间。

(2)若函数f(x)在(0,2)内存在两个极值点,求K的取值范围。

解:(1)定义域x>0,= ;因为K,所以-KX,所以,令,得x=2 ;列表知f(x)在区间(0,2)上单调递减(2,)单调递增。

(2)由(1)知,当K0时,f(x)在区间(0,2)上单调递减,所以f(x)在(0,2)上无极值。

当K0时,要使函数f(x)在(0,2)内存在两个极值点,则在(0,2)内有两个解,即k= 在(0,2)内有两个解,设y=k,g(x)=,即它们的图像有两个交点,因为=,=0.得x=1,列表知g(x)在区间(0,1)上单调递减(1,2)单调递增。

所以X=1时=e。


X=2时g(x)= ;要使它们的图像有两个交点,则。

总之,在上面三例解题的过程中,完美地体现了数形结合的思想,等价变形和转换思想,让人体会到一道难得的好题总是以平凡形态呈现出来,但却内蕴厚重,纵横联系。

而特别是优美、自然的构造法常常是建立在学生已有的知识基础之上的,它生成于认知结构的最顶端,确实给学生的创新思维提供有益的培养和训练空间,也能引导学生在平凡、简洁的数学问题思考中,构筑完整的知识网络,发展学生的创新能力,真给人以美的享受。

相关文档
最新文档