三角函数与向量专题
三角函数与向量

三角函数与向量1 三角函数——连接几何与数学三角函数是连接几何和数学的关键工具之一。
正弦、余弦、正切等三角函数是用来计算角度和距离的工具。
在三角学中,角度是通过弧度来计算的,而弧度是圆的弧长与其半径之比。
三角函数中,最重要的是正弦、余弦、正切三个函数。
它们是由直角三角形的边长比值定义的。
正弦是对于直角三角形,其斜边相对于一个锐角的对边长度与斜边的比值。
余弦是同样的三角形中,斜边相对于该锐角的邻边长度与斜边的比值。
正切函数是三角形的对边与邻边的比值。
三角函数不仅在三角学中有着广泛的应用,还应用于物理学、工程学、计算机科学等领域。
它们是用来描述振动、波动、电磁波等的重要工具。
它们也经常在声音、光学等领域中出现。
2 向量——描述方向和大小的数学工具向量是一个有方向的量,它可以用箭头表示。
箭头的长度表示向量的大小,箭头的方向表示向量的方向。
向量可以被加、减、缩放等操作。
向量广泛应用于物理学、工程学、计算机科学等领域。
它们是用来描述物体的运动、力、速度等的重要工具。
它们还可以用于计算机图形、机器学习等领域中。
向量和三角函数密切相关。
向量可以用三角函数来描述和计算,而三角函数可以被表示成向量的内积和外积。
向量和三角函数一起形成了一个强大的数学工具箱,可以应用于各种领域的问题。
3 向量和三角函数的联系——使用向量描述三角形向量和三角函数之间有一个有趣的联系:可以用向量来描述三角形。
假设有一个三角形ABC,点A、B、C的坐标分别为 (x1,y1)、(x2,y2)、(x3,y3)。
可以用向量AB和AC来描述该三角形。
向量AB的坐标为 (x2-x1,y2-y1),向量AC的坐标为 (x3-x1,y3-y1)。
可以计算出向量AB和AC的长度,然后使用三角函数来计算三角形的角度。
例如,可以使用余弦定理计算三角形的角度。
向量和三角函数是紧密相关的数学工具。
它们可以一起用来描述和计算各种物理和工程问题。
向量和三角函数的应用广泛,是数学和科学中必不可少的工具之一。
三角函数和平面向量专题练习2

北
B
的位置 C 处 (1) 求该船的行驶速度.
西
A
45° θ
C D
东
(2) 若该船不改变航行方向,判断它是否会进入警戒 水域,并说明理由.
P E Q
20 用 a, b, c 分别表示 ∆ABC 的三个内角 A, B, C 所对的边的边长, R 表示 ∆ABC 的外接圆半径 (1)如图在 O 以为圆心,半径为 2 的 O 中, BC , BA 分别是 O 的弦,其中 BC = 2, ∠ABC = 45° ,求 弦 AB 的长 (2)在 ∆ABC 中,若 ∠C 为钝角,求证: a 2 + b 2 ≤ 4 R 2 (3)给定三个正实数 a, b, R ,其中 a ≥ b ,问 a, b, R 满足怎样的关系是时,以 a, b 为边长,以 R 为外 接圆半径的 ∆ABC 不存在,存在一个,或存在两个(全等的 三角 形 算作同 一个 ), 在 ∆ABC 存 在的 情况 下 ,用 a, b, R 表 示c
uuu r uuur
1 2
16. 在三角形 ABC 中, 用 a, b, c 分别表示 ∆ABC 的三个内角 A, B, C 所对的边的边长,已知
∠B = 45° , b = 10, cos C = 2 5 5
(1)求边长 BC 的值 (2 若 AB 的中点为 D ,求中线 CD 的值.
2/8
π π 17. 已知函数 f ( x ) = 2 sin x + − 2 cos x, x ∈ , π 6 2
2 n 为偶数时, ○
f n (θ ) = sin n θ + cos n θ ,∴ f n′ (θ ) = n sin n −1 θ ⋅ cos θ − n cos n −1 θ sin θ = n sin θ cos θ ( sin n − 2 θ − cos n − 2 θ )
向量与三角函数专题

向量与三角函数一、解三角形例5.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C = ,得13BC AC = , 由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--== ,所以60C = .例6. 如图,在ABC ∆中,2AC =,1BC =,43cos =C .(1)求AB 的值;(2)求()C A +2sin 的值. 解答过程:(Ⅰ) 由余弦定理,得2222..cos AB AC BC AC BC C =+- 341221 2.4=+-⨯⨯⨯=那么,AB(Ⅱ)由3cos 4C =,且0,C π<<得sin C 由正弦定理,得,sin sin AB BC C A=解得sin sin BC C A AB==所以,cos A .由倍角公式sin 2sin 2cos A A A =⋅=, 且29cos 212sin 16A A =-=,故()sin 2sin 2cos cos 2sin A C A C A C +=+例7.在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若AB,求BC 边的长.解:(Ⅰ)π()C A B =-+ ,1345tan tan()113145C A B +∴=-+=-=-- .又0πC << ,3π4C ∴=.(Ⅱ)由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =sin sin AB BC C A =,sin sin A BC AB C ∴== 二.求三角函数的定义域、值域或最值 典型例题例8.已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( )A.[]1,1-B.⎡⎤⎢⎥⎣⎦C.⎡-⎢⎣⎦D.1,⎡-⎢⎣⎦)),,444, 1.,,,24f x x x x f x x f x A C D x f x πππππ+-∴==--=-=解法1:(当时(故选C.11解法2:当时()=知不可能.又由时(知选C.22例9. 设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且. (Ⅰ)求实数m 的值;(Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =. (Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x的最小值为1例10.已知函数1)4()cos x f x xπ-=, (Ⅰ)求()f x 的定义域;(Ⅱ)设α是第四象限的角,且4tan 3α=-,求()f α的值.解答过程:(Ⅰ) 由cos 0x≠得()2x k k Z ππ≠+∈.故()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, (Ⅱ) 因为43tan ,cos ,55αα=-=且第四象限的角, 所以43sin ,cos ,55αα=-=故()()21)4cos 122)22cos 1sin 2cos 2cos 2cos 2sin cos cos 2cos sin 14.5f πααααααααααααααα-==-+=-==-=例11设)0(cos sin )(>+=ωωωx b x a x f 的周期π=T ,最大值4)12(=πf , (1)求ω、a 、b 的值;(2)的值终边不共线,求、、的两根,为方程、、若)tan(0)(βαβαβα+=x f .解答过程:(1))x sin(b a )x (f 22ϕ+ω+=, π=∴T , 2=ω∴, 又 )x (f 的最大值4)12(f =π , 22b a 4+=∴ ① , 且 122cos b 122sin a 4π+π= ②, 由 ①、②解出 a=2 , b=3.(2) )3x 2sin(4x 2cos 32x 2sin 2)x (f π+=+=, 0)(f )(f =β=α∴,)32sin(4)32sin(4π+β=π+α∴,32k 232π+β+π=π+α∴, 或)32(k 232π+β-π+π=π+α, 即 β+π=αk (βα、 共线,故舍去) , 或 6k π+π=β+α,33)6k tan()tan(=π+π=β+α∴ )Z k (∈.例12.设函数2()sin cos f x x x x a ωωω=++(其中0,a R ω>∈),且()f x 的图象在y 轴右侧的第一个最高点的横坐标为6π.(I )求ω的值;(II )如果()f x 在区间5,36ππ⎡⎤-⎢⎥⎣⎦a 的值.解答过程:(Ⅰ)1()2sin 22f x x x a ωω=+sin(2)3x a πω=+, 依题意得 2632πππω⋅+=, 解得 12ω=.(Ⅱ)由(Ⅰ)知,()sin()3f x x a π=+,又当5,36x ππ⎡⎤∈-⎢⎥⎣⎦时,70,36x ππ⎡⎤+∈⎢⎥⎣⎦,故11sin()123x -≤+≤,从而()f x 在5[,]36ππ-上取得最小值12a -.因此,由题设知12a -故a =例13.已知函数R x x x x f ∈++=),2sin(sin )(π(Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 的最大值和最小值; (Ⅲ)若43)(=αf ,求α2sin 的值.命题目的:本题考查利用三角函数的性质, 诱导公式、同角三角函数的关系式、两角和的公式,倍角公式等基本知识,考查运算和推理能力. 解答过程:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f(Ⅰ))(x f 的最小正周期为ππ212==T ;(Ⅱ))(x f 的最大值为2和最小值2-;(Ⅲ)因为43)(=αf ,即37sin cos 2sin cos .416αααα+=⇒=-即 1672sin -=α. 三.三角函数的图象和性质 典型例题 例14.已知函数22()sin 2sin cos 3cos ,f x x x x x x R =++∈.求:(Ⅰ)求函数()f x 的最大值及取得最大值的自变量x 的集合; (Ⅱ)函数()f x 的单调增区间. 解答过程:(I )解法一: ()1cos 23(1cos 2)sin 222x f x x θ-+=++2sin 2cos 2x x =++2)4x π=+. ∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 解法二:222()(sin cos )sin 22cos f x x x x x =+++ 1sin 21cos 2x x =+++2)4x π=+.∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.(Ⅱ)解: ()2)4f x x π=+由题意得222()242k x k k Z πππππ-≤+≤+∈,即3()88k x k k Z ππππ-≤≤+∈.因此, ()f x 的单调增区间是()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.例15.(本小题满分12分) 已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值. (II )求函数()()()h x f x g x =+的单调递增区间. 解:(I )由题设知1π()[1cos(2)]26f x x =++. 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z ). 所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin 12644g x =+=+=. (II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2sin 2262222x x x x ⎫⎡⎤⎛⎫=+++=++⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎝⎭1π3sin 2232x ⎛⎫=++ ⎪⎝⎭. 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数, 故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ) 例16.已知函数22()sin cos 2cos ,.f x x x x x x R =+∈ (I )求函数()f x 的最小正周期和单调增区间;(II )函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?解答过程:(I)1cos 2()2(1cos 2)22x f x x x -=+++132cos 2223sin(2).62x x x π=++=++ ()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(II )方法一:先把s i n 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3s i n (2)62y x π=++的图象.方法二: 把sin 2y x =图象上所有的点按向量3(,)122a π=- 平移,就得到3sin(2)62y x π=++的图象.例17.已知函数2())2sin ()().612f x x x x R ππ=-+-∈(I )求函数()f x 的最小正周期;(II )求使函数()f x 取得最大值的x 集合.解答过程:(Ⅰ) f(x)=3sin(2x -π6)+1-cos2(x -π12) = 2[32sin2(x -π12)-12 cos2(x -π12)]+1 =2sin[2(x -π12)-π6]+1 = 2sin(2x -π3) +1 .∴ T=2π2 =π.(Ⅱ)当f(x)取最大值时, sin(2x -π3)=1,有 2x -π3 =2k π+π2 , 即x=k π+ 5π12 (k ∈Z) ∴所求x 的集合为{x ∈R|x= k π+ 5π12 , k ∈Z}. 四.平面向量、三角函数的图象和性质 典型例题例18.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=-C .sin(2)3y x π=+ D .sin(2)3y x π=-解答过程:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=,因此选C.例19.已知向量(sin ,1),(1,cos ),.22a b ππθθθ==-<<(Ⅰ)若a b ⊥,求θ;(Ⅱ)求a b +的最大值.解:(Ⅰ),sin cos 0a b θθ⊥若则+=,由此得 tan 1ππθθ=- (-<<),22所以 ;4πθ=-(Ⅱ) 由(sin ,1),(1,cos )(sin 1,1cos ),a b b b θθθθ== α+=++ α+= = =得当sin()1,,, 1.44a b a b ππθθ+=+=+时取得最大值即当时例20.已知,,A B C 是三角形ABC ∆三内角,向量((),cos ,sin m n A A =-=,且1m n ⋅=(Ⅰ)求角A ;(Ⅱ)若221sin 23cos sin BB B+=--,求tan B .解答过程:(Ⅰ)∵1m n ⋅=,∴(()cos ,sin 1A A -⋅= ,cos 1A A -=.12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭. ∵50,666A A ππππ<<-<-<, ∴66A ππ-= . ∴3A π=.(Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --=∴cos 0B ≠ ∴2tan tan 20B B --=. ∴tan 2B =或tan 1B =-.而tan 1B =-使22cos sin 0B B -=,舍去. ∴tan 2B =.∴()tan tan C A B π=-+⎡⎤⎣⎦()tan A B =-+tan tan 1tan tan A B A B+=--=。
向量与三角函数的综合应用

2
解法4 解法4: 3 6 1 2 (sin θ + cos θ ) = sin θ + cos θ =± sin θ ⋅ cos θ = 2 2 ∴ ∴ 4 (sin θ − cos θ )2 = 1 sin θ − cos θ =± 2 sin 2 θ + cos 2 θ = 1 2 2 6+ 2 6− 2 sin θ = sin θ = 4 4 或 ∴ cos θ = 6 − 2 cos θ = 6 + 2 4 4 6+ 2 6− 2 sin θ = − sin θ = − 4 4 或 6− 2 cos θ = − cos θ = − 6 + 2 4 4
例2:已知 a = (cos 2α , sin α ), b = (1,2 sin α − 1), α ∈ ( , π ) : 2 2 π a ⋅ b = , 求 cos( α + ) 解: a ⋅ b = cos 2α + sin α ( 2 sin α − 1) 2 = 1 − sin α = 5 4 π 3 ∴ sin α = ,因为 α ∈ ( , π ) ∴ cos α = − 5 2 5 π π π ∴ cos(α + ) = cos α cos − sin α sin
∴ tan θ = 2 ± 3
小结:1.向量的坐标运算。 小结:1.向量的坐标运算。 向量的坐标运算 2.三角函数的化简 计算。 三角函数的化简、 2.三角函数的化简、计算。 三角恒等变换、齐次式问题) (三角恒等变换、齐次式问题) 转化思想方法的应用。 3. 转化思想方法的应用。
本节目标: 本节目标
• 1.向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合 • 2.向量运算与三角函数化简的综合。 2.向量运算与三角函数化简的综合 向量运算与三角函数化简的综合。 • 3.转化思想方法的应用。 转化思想方法的应用。 转化思想方法的应用
向量三角函数知识点归纳

向量三角函数知识点归纳向量和三角函数是高中数学中的重要内容,下面是关于这两个知识点的归纳总结。
一、向量1.向量的定义向量是有大小和方向的量,用箭头在平面或空间中表示。
向量的大小叫做模,用,a,或,a,表示;向量的方向用一个角度或另一向量表示。
2.向量的基本运算-向量的加减:向量的加减使用平行四边形法则,即将两个向量的起点相接,然后将两个向量的终点用直线连接。
- 向量的数量积:向量 a 和 b 的数量积(内积或点积)定义为abcosθ,其中θ 表示 a 和 b 之间的夹角。
-向量的数量积的性质:交换律、结合律、分配律等。
-向量的夹角:可以使用向量的点积公式计算向量之间的夹角。
-向量的投影:一个向量在另一个向量上的投影是一个标量,表示一个向量在另一个向量上的投影长度。
3.向量的应用-分解力的合力:当一个力可以分解为多个力的合力时,可以使用向量的方法表示这个过程。
-平行四边形法表示速度:当一个物体以两个向量之和的速度在平面内运动时,可以使用平行四边形法则来表示其速度。
二、三角函数1.三角函数的定义三角函数是一组用于描述角和边之间关系的函数。
常见的三角函数有正弦函数、余弦函数和正切函数。
- 正弦函数:sinθ = 对边 / 斜边- 余弦函数:cosθ = 邻边 / 斜边- 正切函数:tanθ = 对边 / 邻边2.三角函数的性质和关系-三角函数的周期性:正弦函数和余弦函数的周期都为2π,正切函数的周期为π。
-三角函数的奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。
-三角函数的和差化积公式:- 正弦函数的和差化积:sin(A ± B) = sinAcosB ± cosAsinB- 余弦函数的和差化积:cos(A ± B) = cosAcosB ∓ sinAsinB- 正切函数的和差化积:tan(A ± B) = (tanA ± tanB) / (1 ∓tanAtanB)-三角函数的平方和差公式:- 正弦函数的平方和差:sin²A ± sin²B = 2sinAcosA,cos²A ± cos²B = 2cosAcosB- 余弦函数的平方和差:cos²A + cos²B = 2cosAcosB,cos²A - cos²B = -2sinAsinB- 正切函数的平方和差:tan²A ± tan²B = 1 ∓ 2tanAtanB3.三角函数的应用-三角函数的性质可以用于求解各种三角形的边长和角度。
专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
利用三角函数解决平面向量问题

利用三角函数解决平面向量问题在数学学科中,平面向量问题是一个常见的考察点。
平面向量的运算和性质在解决实际问题中具有广泛的应用。
而解决平面向量问题中,三角函数是一种常用的工具,它可以帮助我们简化问题的推导和计算过程。
本文将通过几个实际应用的例子,说明如何利用三角函数解决平面向量问题。
首先,我们先来了解一下三角函数的基础知识。
在平面直角坐标系中,我们通常用坐标轴上的角度来表示方向。
而三角函数则是用来描述角度与比例关系的函数。
常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)等。
一、解决平面向量的夹角问题在平面向量的问题中,经常需要求解向量之间的夹角。
这时,我们可以利用三角函数中求角度的函数来解决。
以两个向量A和B为例,设它们的夹角为θ,我们可以通过以下公式来求解夹角:cosθ = (A·B) / (|A|·|B|)其中,A·B表示向量A和向量B的数量积,|A|和|B|分别表示向量A和向量B的模。
通过求解夹角,我们可以判断两个向量之间的相对方向关系,并进一步解决问题。
二、解决平面向量的投影问题平面向量的投影问题是另一个常见的问题类型。
在平面直角坐标系中,我们可以将一个向量投影到另一个向量上,从而得到它在另一个向量方向上的分量。
利用三角函数,我们可以很方便地求解向量的投影。
以向量A在向量B方向上的投影为例,投影向量记作P,其长度为P的模,我们有以下公式:P = |A|·cosθ其中,θ表示向量A和向量B之间的夹角。
利用这个公式,我们可以通过已知向量的模和夹角,计算出向量的投影。
三、解决平面向量的平衡问题在物理学领域中,平面向量的平衡问题也经常被提到。
平衡问题通常是在已知一些力大小和方向的情况下,求解使体系保持平衡所需的额外力。
这时,我们可以利用三角函数和向量相加减的方法来解决。
以一个由两个力F1和F2组成的平衡系统为例,设额外力为F,我们有以下公式:F = - F1 - F2其中,-F1表示力F1的反方向,同理-F2表示力F2的反方向。
三角函数和向量综合题

三角函数和向量综合题1、设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值;(2)求|b +c|的最大值;(3)若tan αtan β=16,求证:a∥b.2、已知向量()cos ,sin m θθ=和()2sin ,cos n θθ=-,[],2θππ∈ (1)求m n +的最大值; (2)当825m n +=时,求cos 28θπ⎛⎫+ ⎪⎝⎭的值。
3、已知向量()1,1m =,向量n 与向量m 的夹角为34π,且1m n =-, (1)求向量n ;(2)若向量n 与向量(1,0)q =的夹角为2π,向量2cos ,2cos 2C p A ⎛⎫= ⎪⎝⎭,其中,,A B C 为ABC ∆的内角,且2B=A+C ,求n p +的取值范围。
4、已知向量)21,sin (--=→θa m ,)cos ,21(θ=→n . (1)当22=a ,且→→⊥n m 时,求θ2sin 的值; (2)当0=a ,且→m ∥→n 时,求θtan 的值.5、已知→a =(cos x +sin x ,sin x ),→b =(cos x -sin x ,2cos x ).(1)求证:向量→a 与向量→b 不可能平行;(2)若f (x )=→a ·→b ,且x ∈[-π4,π4]时,求函数f (x )的最大值及最小值. 6、()f x a b =⋅,其中向量(,cos 2)a m x =,(1sin 2,1)b x =+,x R ∈,且函数()y f x =的图象经过点(,2)4π.(Ⅰ)求实数m 的值;(Ⅱ)求函数()y f x =的最小值及此时x 值的集合。
7、设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+.(Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3()2f x ≥成立的x 的取值集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高三理科数学三角函数、平面向量专题(希望班)
一、选择题
1. 已知函数f (x )=23sin(π-x )·cos x -1+2cos 2x ,其中x ∈R ,则下列结论中正确的是( )
A .f (x )的一条对称轴是x =π2
B .f (x )在⎣⎢⎡⎦
⎥⎤
-π3,π6上单调递增
C .f (x )是最小正周期为π的奇函数
D .将函数y =2sin 2x 的图象左移π
6个单位得到函数f (x )的图象
2.在△ABC 中,A =120°,AB =5,BC =7,则sin B
sin C 的值为( ) A.35B.53C.58D.85
3.已知sin α+cos α=2,则tan α+cos α
sin α的值为( )
A .-1
B .-2C.1
2D .2
4.设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭
⎪⎫
|θ|<π2,且其图象关于y 轴对称,则函数
y =f (x )的一个单调递减区间是( )
A.⎝ ⎛⎭⎪⎫0,π2
B.⎝ ⎛⎭⎪⎫π2,π
C.⎝ ⎛⎭⎪⎫-π2,-π4
D.⎝ ⎛⎭
⎪⎫3π2,2π 5.已知f (x )=2sin(ωx +φ)的部分图象如图1所示,则f (x )的表达式为( )
A .f (x )=2sin ⎝ ⎛⎭⎪⎫32x +π4
B .f (x )=2sin ⎝ ⎛⎭⎪⎫
32x +5π4
C .f (x )=2sin ⎝ ⎛⎭⎪⎫43x +2π9
D .f (x )=2sin ⎝ ⎛⎭⎪⎫
43x +258π
6.已知sin ⎝ ⎛⎭⎪⎫π6-α=35,则sin ⎝ ⎛⎭
⎪⎫
π6+2α=( )
A.45
B.725
C.925
D.1625 7.(2015·朝阳区模拟)设a ,b 是两个非零的平面向量,下列说法正确的是( ) ①若a ·b =0,则有|a +b |=|a -b |; ②|a ·b |=|a ||b |;
③若存在实数λ,使得a =λb ,则|a +b |=|a |+|b |; ④若|a +b |=|a |-|b |,则存在实数λ,使得a =λb . A .①③ B .①④ C .②③D .②④ 8.已知向量a ,b 满足a +b =(5,-10),a -b =(3,6),则a ,b 夹角的余弦值为( )
A .-1313 B.1313C .-21313 D.213
13
9.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ
的值等于( )
A .-1
B .-1
2C .1 D.1
2
10.(2015·安庆模拟)已知a ,b 为平面向量,若a +b 与a 的夹角为π
3,a +b 与b 的
夹角为π4,则|a |
|b |=( )
A.33
B.64
C.53
D.63 11.(2016·台州模拟)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在
非零实数x ,y ,使得A O →=xAB →+yAC →
,且x +2y =1,则cos ∠BAC 的值为( )
A.23
B.33
C.23
D.13
12.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )
A.2-1 B .1 C.2 D .2 二、填空题
13.若将函数f (x )=sin ⎝ ⎛
⎭
⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,
则φ的最小正值是________.
14.(2015·启东模拟)已知平面上四个互异的点A ,B ,C ,D 满足:(AB →-AC →)·(2AD →
-BD →-CD →
)=0,则△ABC 的形状是________.
15.(2015·天水模拟)在直角三角形ABC 中,∠C =π2,AB =2,AC =1,若AD →=32AB →,则CD →·CB →
=________.
16.(2015·杭州模拟)在△ABC 中,∠C=90°,M 是BC 的中点.若sin ∠BAM=1
3
,则sin ∠BAC= .
三、解答题
17.某同学用“五点法”画函数f (x )=A sin(ωx +φ)在某一个周期的图象时,列表并填入的部分数据如下表:
2
(1)求x 1,x 2,x 3的值及函数f (x )的表达式; (2)将函数f (x )的图象向左平移π个单位,可得到函数g (x )的图象,求函数y =f (x )·g (x )
在区间⎝ ⎛⎭⎪⎫0,5π3上的最小值.
18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a +b c =cos (A +C )
cos C
.
(1) 求角C 的大小;
(2) 若c =2,求使△ABC 面积最大时a, b 的值. 19.ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.
(Ⅰ) 求
sin sin B
C
∠∠;
(Ⅱ)若1AD =
,DC =
BD 和AC 的长.
20.已知向量m =(sin x ,-1),n =(cos x,3).
(1)当m ∥n 时,求x
x x
x cos 2sin 3cos sin -+的值;
(2)已知在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,3c =2a sin(A +B ),
函数f (x )=(m +n )·m ,求f ⎝ ⎛⎭
⎪⎫B +π8的取值范围.
21.已知函数
∈R.
(1)求f(x)的最小正周期及值域. (2)求f(x)的单调递增区间.
22.(12分)(2015·泰安模拟)在△ABC 中,a,b,c 分别是角A,B,C 的对边.已知
3
π. (1)若
求角C 的大小.(2)若c=2,求边b 的长.
23.C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c
.向量()
m a =
与()cos ,sin n =A B
平行. (I )求A ; (II
)若a =
,2b =求C ∆AB 的面积.。