北京市育英中学2020届高三3月月考数学试题 Word版含解析
2020年3月普通高考(北京卷)全真模拟卷(1)数学试题(word版)含参考答案

1 / 232020年3月普通高考(北京卷)全真模拟卷(1)数学试题(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.第一部分(选择题,共40分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,31xA x xB x =<=<,则( )A .{}0AB x x =<I B .A B =R UC .{}1A B x x =>U D .A B =∅I2.若复数z =11iai++为纯虚数,则实数a 的值为( ) A .1 B .0 C .-12D .-13.双曲线2241x y -=的离心率为( )AB.2CD.24.下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( )A .y x =-B .21y x =-C .cos y x =D .12y x =5.若1b a >>,则下列不等式一定正确的是( ) A .2ab >B .2a b +<C .11a b< D .2b aa b+> 6.在51x x ⎛⎫- ⎪⎝⎭的展开式中,3x 的系数为( )2 / 23A .5-B .5C .10-D .107.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众 多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一 个圆台 (即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm ),那么该壶的容量约为( )A .1003cmB .3200cmC .3003cmD .4003cm 8.设{}n a 为等差数列,p ,q ,k ,l 为正整数,则“p q k l +>+”是“p q k l a a a a +>+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆.给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是12; ②当43a =-时,直线(2)y a x =-与黑色阴影部分有公共点; ③当[0,1]a ∈时,直线(2)y a x =-与黑色阴影部分有两个公共点.3 / 23其中所有正确结论的序号是( ) A .①B .②C .③D .①②10.已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2. 表1 田径综合赛项目及积分规则表2 某队模拟成绩明细根据模拟成绩,该代表队应选派参赛的队员是( ) A .甲B .乙C .丙D .丁第二部分(非选择题,共110分) 二、填空题:本题共6个小题,每小题5分,共30分.11.已知向量()1,2,(3,)a b t ==v v,且//a b v v ,则t = .12.已知,,a b c 分别为ABC V 内角,,A B C 的对边,22c ab =且1sin sin 2A C =,则cos A =__________.13.抛物线()220y px p =>上一点M 到焦点(1,0)F 的距离等于4,则点M 的坐标为 . 14.已知函数(),()f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图像的交点,且不共线.①当1ω=时,ABC ∆面积的最小值为___________;②若存在ABC ∆是等腰直角三角形,则ω的最小4 / 23值为__________.15.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本; ②图(2)对应的方案是:保持票价不变,并降低成本; ③图(3)对应的方案是:提高票价,并保持成本不变; ④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是____________.(填写所有正确说法的编号)四、解答题:本大题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题14分)已知四边形ABCD 为直角梯形,//AD BC ,AB BC ⊥,24BC AB ==,3AD =,F 为BC 中点,//EF AB ,EF 与AD 交于点E ,沿EF 将四边形EFCD 折起,连接,,AD BC AC .(1)求证://BE 平面ACD ;5 / 23(2)若平面ABFE ⊥平面EFCD ,求二面角B AC D --的平面角的大小.17.(本小题14分)(数列开放题)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}nc ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.18.(本小题14分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统计,在2018年这一年内从A市到B市乘坐高铁或飞机出行的成年人约为50万人次.为了解乘客出行的满意度,现从中随机抽取100人次作为样本,得到下表(单位:人次):(1)在样本中任取1个,求这个出行人恰好不是青年人的概率;(2)在2018年从A市到B市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X.以频率作为概率,求X的分布列和数学期望;(3)如果甲将要从A市出发到B市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.19.(本小题15分)6/ 237 / 23已知函数()21,2xf x e ax x =-+其中1a >- (1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)当1a =时,求函数()f x 的单调区间; (3)若()212f x x x b ≥++对于x ∈R 恒成立,求b a -的最大值.20.(本小题14分)已知点E 在椭圆2222:1(0)x y C a b a b+=>>上,以E 为圆心的圆与x 轴相切于椭圆C 的右焦点2F ,与y 轴相交于A ,B 两点,且ABE ∆是边长为2的正三角形. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆2218:5O x y +=,设圆O 上任意一点P 处的切线交椭圆C 于M 、N 两点,试判断以MN 为直径的圆是否过定点?若过定点,求出该定点坐标,并直接写出||||PM PN ⋅的值;若不过定点,请说明理由.21.(本小题14分)8 / 23已知集合*M N ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a b c d ,,,,使得a b c d +=+,则称集合M 是“关联的”,并称集合{},,,a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.()1分别判断集合{}2,4,6,8,10和集合{}12,3,5,8,是“关联的”还是“独立的”?若是“关联的”,写出其所有..的关联子集;()2已知集合{}12345,,,,a a a a a 是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的关联子集A ,使得{},ija a A ⊆.若12345aa a a a <<<<,求证:12345,,,,a a a a a 是等差数列;()3集合M 是“独立的”,求证:存在x M ∈,使得294n n x -+>.2020年3月(北京卷)全真模拟卷(1)数学答案第一部分(选择题,共40分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】∵集合{|31}xB x =<,∴{}|0B x x =<,∵集合{}1A x x =<,∴{}0A B x x =<I ,9 / 23{}1A B x x =<U ,故选A .2.【答案】D【解析】设i z b b =∈R ,且0b ≠,则1ii 1ib a +=+,得到1i i 1ab b ab +=-+∴=-,,且1b =,解得1a =-,故选D . 3.【答案】A【解析】双曲线2241x y -=的标准方程为:221114x y -=,故实半轴长为12a =,虚半轴长为1b =,故半焦距2c ==,故离心率为e =A . 4.【答案】B【解析】因为函数y x =-的定义域为R 且它是奇函数,故A 错误;因为函数21y x =-的定义域为R ,它是偶函数,在(0,)+∞为偶函数,故B 正确;因为函数cos y x =的定义域为R ,它是偶函数,但在(0,)+∞有增有减,故C 错误;因为函数12y x =的定义域为[)0,+∞,故函数12y x =不是偶函数,故D 错误,故选B .5.【答案】D【解析】因为:1b a >>,对于A :当34,23a b ==,所以34223ab =?,故A 错误;对于B :因为1b a >>,所以2a b +>,故B 错误;对于C :因为1b a >>,所以1101b a<<<,故C 错误;对于D :因为1b a >>,所以2b a a b +≥=,又因为1b a >>,则b a a b ≠,故不取等,即2b a a b +>,故D 正确,故选D .6.【答案】A【解析】51x x ⎛⎫- ⎪⎝⎭的展开式通项为()5525511kk kk k k C x C x x --⎛⎫⋅⋅-=⋅-⋅ ⎪⎝⎭,令523k -=,得1k =.因此,3x 的系数为()1515C ⋅-=-,故选A .7.【答案】B【解析】设大圆锥的高为h ,所以4610h h -=,解得10h =,故221119651036200333V πππ=⨯⨯-⨯⨯=≈3cm ,故选B .10 / 238.【答案】D【解析】设等差数列的公差为d ,1111(1)(1)(1)(1)p q k l a p d a q d a a a a a k d a l d ⇒+-+++->+>++-+-[()()]0d p q k l ⇒+-+>0d p q k l >⎧⇒⎨+>+⎩或0d p q k l<⎧⎨+<+⎩,显然由p q k l +>+不一定能推出p q k l a a a a +>+,由p q k l a a a a +>+也不一定能推出 p q k l +>+,因此p q k l +>+是p q k l a a a a +>+的既不充分也不必要条件,故本题选D . 9.【答案】D【解析】因为阴影部分的面积是圆的面积一半,所以在太极图中随机取一点,此点取自黑色阴影部分的概率的大小为12,故结论①正确;当43a =-时,阴影部分在第一象限内半圆的圆心坐标为(0,1),半径为1,它到直线(2),4380y a x x y =-+-=的距离为1d ==,所以直线与半圆相切,因此直线与黑色阴影部分有公共点,故结论②正确的;当0a =时,直线表示横轴,此时直线与阴影部分有无穷多个交点,故结论③错误的,因此只有结论①②是正确的,故本题选D . 10.【答案】B【解析】由题,甲各项得分为:100米跑601545-=(分);跳高60464+=(分);掷实心球601575+=(分);则总分为456475184++=(分);乙各项得分为:100米跑602080+=(分);跳高601070+=(分);掷实心球60555-=(分),则总分为807055205++=(分);丙各项得分为:100米跑60565+=(分);跳高60666+=(分);掷实心球601070+=(分),则总分为656670201++=(分);丁各项得分为:100米跑60555-=(分);跳高60262+=(分);掷实心球60565+=(分),则总分为556265182++=(分). 综上,乙得分最多,故选B .第二部分(非选择题,共110分) 二、填空题:本题共6个小题,每小题5分,共30分. 11.【答案】6【解析】由向量()()1,2, 3,a b x ==r r ,若 //a b r r,可得236x =⨯=,故答案为6.11 / 2312.【答案】78【解析】由正弦得sin ,sin 22a c A C R R ==,故1222a c R R=⨯(R 为外接圆的半径),故2c a =,又22c ab =,故2b a =,由余弦定理可得2222277cos 288b c a a A bc a +-===,故答案为78.13.【答案】(3,23)±【解析】因为焦点()1,0F ,所以2p =.设点2,4y M y ⎛⎫ ⎪⎝⎭,根据抛物线的定义得:2144y +=,解得23y =±,所以点M 的坐标为()3,23±.14.【答案】2π2π【解析】函数()2sin ,()2cos f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图象的交点, 当1ω=时,()2sin ,()2cos f x x g x x ωω==,所以函数的交点间的距离为一个周期2π,高为22222⋅+⋅=,所以()121122ABC S ∆=⋅π+=⋅π.如图所示:①当1ω=时,ABC ∆面积的最小值为2π;②若存在ABC ∆是等腰直角三角形,利用直角三角形斜边的中线等于斜边的一半,则222222ωπ⋅⎭=,解得ω的最小值为 2π,故答案为2π, 2π. 15.【答案】②③【解析】由图象(1)可设盈利额y 与观影人数x 的函数为y kx b =+,0,0k b ><,即k 为票价,当0k =时,y b =,则b -为固定成本,由图象(2)知,直线向上平移,k 不变,即票价不变,b 变大,则b-12 / 23变小,成本减小,故①错误,②正确;由图象(3)知,直线与y 轴的交点不变,直线斜率变大,k 变大,即提高票价,b 不变,则b -不变,成本不变,故③正确,④错误;故答案为②③. 四、解答题:本大题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题14分)已知四边形ABCD 为直角梯形,//AD BC ,AB BC ⊥,24BC AB ==,3AD =,F 为BC 中点,//EF AB ,EF 与AD 交于点E ,沿EF 将四边形EFCD 折起,连接,,AD BC AC .(1)求证://BE 平面ACD ;(2)若平面ABFE ⊥平面EFCD ,求二面角B AC D --的平面角的大小. 【答案】(1)见解析;(2)56π. 【解析】试题分析:(1)依据题设条件,运用线面平行的判定定理推证;(2)依据题设建立空间直角坐标系,运用向量的坐标形式进行分析探求.试题解析:(1)证明:连结AF 交BE 于O ,则O 为AF 中点,设G 为AC 中点,连结,OG DG ,则//OG CF ,且1=2OG CF . 由已知//DE CF 且12DE CF =,∴//DE OG 且=DE OG ,所以四边形DEOG 为平行四边形. ∴//EO DG ,即//BE DG .∵BE ⊄平面ACD ,DG ⊂平面ACD ,所以//BE 平面ACD . (2)解:由已知ABFE 为边长为2的正方形,∴AD EF ⊥,因为平面ABEF ⊥平面EFCD ,又DE EF ⊥,∴,,EA EF ED 两两垂直. 以E 为原点,,,EA EF ED 分别为x 轴,y 轴,z 轴建立空间直角坐标系,13 / 23则()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,0,1,0,2,2E A B F D C .可求得平面ACF 法向量为()11,0,1n =u r ,平面ACD 法向量为()21,1,2n =-u u r ,∴3cos θ=-,所以二面角B AC D --的平面角的大小为56π.17.(本小题14分)(数列开放题)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}n c ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)三个条件都可以填入求解,总体思想就是代入通过基本公式求出首项,公差,公比即可;(2)数列{}n c 是一个等差乘以等比的式子求和,用错位相减法即可解决. 试题解析:方案一:选条件①(1)3252115,6,,,1a a a b a b d q d =+===>Q ,11125256a d a d a d +=⎧∴⎨+=⎩,,14 / 23解得112a d =⎧⎨=⎩,或1256512a d ⎧=⎪⎪⎨⎪=⎪⎩,(舍去),112b q =⎧∴⎨=⎩,,()1–1n n d αα∴=+21n =-,1112n n n b b q --==.(2)n n n a c b =Q ,11211(21)()22n n n n c n ---∴==-⨯, 2211111135(23)(21)2222n n n T n n --⎛⎫⎛⎫⎛⎫∴=+⨯+⨯++-⨯+-⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L ,23111111135(23)(21)222222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫∴=+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ,211111112(21)22222n n n T n -⎡⎤⎛⎫⎛⎫⎛⎫∴=++++--⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 111122112(21)1212n nn -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+⨯--⨯ ⎪⎝⎭- 13(23)2nn ⎛⎫=-+⨯ ⎪⎝⎭,116(23)2n n T n -⎛⎫∴=-+⨯ ⎪⎝⎭.方案二:选条件②(1)2343112,3,,,1b a a b a b d q d =+===>Q ,12112253a d a d a d =⎧∴⎨+=⎩,,112256a d a d d =⎧∴⎨+=⎩,,解得112a d =⎧⎨=⎩,或112a d =-⎧⎨=-⎩,(舍去), 112b q =⎧∴⎨=⎩,,1(1) =n a a n d ∴+-=2n-1,1112n n n b b q --== . (2)n n n a c b =Q ,11211(21)()22n n n n c n ---∴==-⨯, 2211111135(23)(21)2222n n n T n n --⎛⎫⎛⎫⎛⎫∴=+⨯+⨯++-⨯+-⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L ,15 / 2323111111135(23)(21)222222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫∴=+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ,211111112(21)22222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫∴=++++--⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 111122112(21)1212n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+⨯--⨯ ⎪⎝⎭-13(23)2n n ⎛⎫=-+⨯ ⎪⎝⎭,116(23)2n n T n -⎛⎫∴=-+⨯ ⎪⎝⎭.方案三:选条件③3452119,8,,,1S a a b a b d q d ∴=+===>,1113278a d a d a d +=⎧∴⎨+=⎩,,解得112a d =⎧⎨=⎩,或121838a d ⎧=⎪⎪⎨⎪=⎪⎩,(舍去),112b q =⎧⎨=⎩,,1(1)n a a n d ∴=+-21n =-11n n b b q -=12n -=.(2)n n n a c b =Q ,11211(21)22n n n n c n ---⎛⎫∴==-⨯ ⎪⎝⎭,2211111135(23)(21)2222n n n T n n --⎛⎫⎛⎫⎛⎫∴=+⨯+⨯++-⨯+-⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L ,23111111135(23)(21)222222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫∴=+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ,211111112(21)22222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫∴=++++--⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 111122112(21)1212m nn -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+⨯--⨯ ⎪⎝⎭-16 / 2313(23)2nn ⎛⎫=-+⨯ ⎪⎝⎭116(23)2n n T n -⎛⎫∴=-+⨯ ⎪⎝⎭.18.(本小题14分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从A 市到B 市乘坐高铁或飞机出行的成年人约为50万人次.为了 解乘客出行的满意度,现从中随机抽取100人次作为样本,得到下表(单位:人次):(1)在样本中任取1个,求这个出行人恰好不是青年人的概率;(2)在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X .以频率作为概率,求X 的分布列和数学期望;(3)如果甲将要从A 市出发到B 市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由. 【答案】(1)2950;(2)分布列见解析,数学期望25;(3)建议甲乘坐高铁从A 市到B 市,见解析.【解析】试题分析:(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为19,39,42,即可按照古典概型的概率计算公式计算得出;(2)依题意可知X 服从二项分布,先计算出随机选取1人次,此人为老年人概率是151755=,所以12,5X B ⎛⎫ ⎪⎝⎭:,即()2211155k kk P x k C -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,即可求出X 的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机. 试题解析:(1)设事件:“在样本中任取1个,这个出行人恰好不是青年人”为M , 由表可得:样本中出行的老年人、中年人、青年人人次分别为19,39,42,17 / 23所以在样本中任取1个,这个出行人恰好不是青年人的概率193929()10050P M +==. (2)由题意,X 的所有可能取值为:012.,,因为在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取1人次,此人为老年人概率是151755=, 所以022116(0)C (1)525P X ==⨯-=,12118(1)C (1)5525P X ==⨯⨯-=,22211(2)C ()525P X ==⨯=, 所以随机变量X 的分布列为: 0121625825125故16812()0122525255E X =⨯+⨯+⨯=. (3)答案不唯一,言之有理即可.如可以从满意度的均值来分析问题,参考答案如下: 由表可知,乘坐高铁的人满意度均值为:521012511011652121115⨯+⨯+⨯=++,乘坐飞机的人满意度均值为:410145702241475⨯+⨯+⨯=++,因为11622155>,所以建议甲乘坐高铁从A 市到B 市.19.(本小题15分) 已知函数()21,2xf x e ax x =-+其中1a >- (1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)当1a =时,求函数()f x 的单调区间; (3)若()212f x x x b ≥++对于x ∈R 恒成立,求b a -的最大值. 【答案】(1)10x y -+=;(2)()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;(3)11e+. 【解析】试题分析:(1)根据导数的几何意义,求出切线斜率,由点斜式方程即可写出切线方程;(2)求出导数,依据()e 1x f x x '=-+在(),-∞+∞上单调递增,且(0)0f '=,分别解不等式()0f x '>以及()0f x '<,即可求出函数()f x 的单调增区间和减区间;(3)由题意得e (1)0x a x b -+-≥在x ∈R 上恒成立,设()e (1)x g x a x b =-+-,用导数讨论函数的单调性,求出最小值(ln(1))0g a +≥,可得18 / 231(1)ln(1)b a a a --++≤.再设()1ln (0)h x x x x =->,求出函数()h x 的最大值,即为b a -的最大值.试题解析:(1)由21()e 2x f x x =+,得()e x f x x '=+,所以(0)1f =,(0)1f '=. 所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. (2)由21()e 2x f x x x =-+,得()e 1x f x x '=-+. 因为(0)0f '=,且 ()e 1xf x x '=-+在(),-∞+∞上单调递增,所以由()e 10x f x x '=-+>得,0x >,所以函数()f x 在(0,)+∞上单调递增,由()e 10xf x x '=-+<得,0x <,所以函数()f x 在(,0)-∞上单调递减.综上,函数()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞.(3)由21()2f x x x b ++≥,得e (1)0xa xb -+-≥在x ∈R 上恒成立.设()e (1)xg x a x b =-+-,则()e (1)x g x a '=-+.由()e (1)0xg x a '=-+=,得ln(1)x a =+,(1a >-).随着x 变化,()g x '与()g x 的变化情况如下表所示:所以()g x 在(,ln(1))a -∞+上单调递减,在(ln(1),)a ++∞上单调递增. 所以函数()g x 的最小值为(ln(1))(1)(1)ln(1)g a a a a b +=+-++-. 由题意,得(ln(1))0g a +≥,即 1(1)ln(1)b a a a --++≤. 设()1ln (0)h x x x x =->,则()ln 1h x x '=--.因为当10e x <<时,ln 10x -->; 当1e x >时,ln 10x --<, 所以()h x 在1(0,)e 上单调递增,在1(,)e+∞上单调递减,所以当1e x =时,max 11()()1e e h x h ==+.所以当11e a +=,1(1)ln(1)b a a a =+-++,即11ea =-,2eb =时,b a -有最大值为11e +.19 / 2320.(本小题14分)已知点E 在椭圆2222:1(0)x y C a b a b+=>>上,以E 为圆心的圆与x 轴相切于椭圆C 的右焦点2F ,与y 轴相交于A ,B 两点,且ABE ∆是边长为2的正三角形. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆2218:5O x y +=,设圆O 上任意一点P 处的切线交椭圆C 于M 、N 两点,试判断以MN 为直径的圆是否过定点?若过定点,求出该定点坐标,并直接写出||||PM PN ⋅的值;若不过定点,请说明理由.【答案】(Ⅰ)22196x y +=(Ⅱ)以MN 为直径的圆过原点,坐标为()0,0,且||||PM PN ⋅为定值185【解析】试题分析:(Ⅰ)根据圆的切线性质可以知道2EF x ⊥,这样可以求出点E 的坐标,利用等边三角形的性质,可以求出c 、2ba的值,再根据222c a b =-,最后求出,a b 的值,也就求出椭圆C 的方程;(Ⅱ)当过点P 且与圆O 相切的切线的斜率不存在时,设出直线方程,求出M 、N 两点的坐标,判断0OM ON ⋅=u u u u r u u u r是否成立,可以判断以MN 为直径的圆是否过定点,也就能求出||||PM PN ⋅的值;当过点P 且与圆O 相切的切线的斜率存在时,设出直线的截距式方程y kx m =+,设出M 、N 两点的坐标,根据直线和圆相切,利用圆心到直线的距离等于半径,可得到一个等式,联立直线方程y kx m =+和椭圆方程222318x y +=,消去y ,得到一个关于x 的一元二次方程,利用根与系数关系,计算OM ON ⋅u u u u r u u u r的值,最后可以求出||||PM PN ⋅的值.试题解析:(Ⅰ)由题意可得2EF x ⊥轴,则2(,)bE c a,因为ABE ∆是边长为2的正三角形,所以2c =⨯=22b a =,且223a b -=,解得3a =,b =,所以椭圆方程为22196x y +=. (Ⅱ)当过点P 且与圆O 相切的切线的斜率不存在时,可设切线方程为x =M,N ,则0OM ON ⋅=u u u u r u u u r ,所以OM ON ⊥,20 / 23此时以MN 为直径的圆过原点,2218||||||5PM PN OP r ⋅===为定值; 当过点P 且与圆O 相切的切线的斜率存在时,可设切线方程为y kx m =+,11(,)M x y ,22(,)N x y ,=22(5181)m k =+, 联立直线方程y kx m =+和椭圆方程222318x y +=,可得222(23)63180k x kmx m +++-=,即有>0∆,122623km x x k +=-+,212231823m x x k-=+, 12121212()()OM ON x x y y x x kx m kx m ⋅=+=+++u u u u r u u u r 221212(1)()k x x km x x m =++++222223186(1)()02323m km k km m k k-=+⋅+-+=++, 可得OM ON ⊥,此时2218||||||5PM PN OP r ⋅===. 综上可得以MN 为直径的圆过原点,且||||PM PN ⋅为定值185. 21.(本小题14分)已知集合*M N ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a b c d ,,,,使得a b c d +=+,则称集合M 是“关联的”,并称集合{},,,a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.()1分别判断集合{}2,4,6,8,10和集合{}12,3,5,8,是“关联的”还是“独立的”?若是“关联的”,写出其所有..的关联子集;()2已知集合{}12345,,,,a a a a a 是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的关联子集A ,使得{},ija a A ⊆.若12345aa a a a <<<<,求证:12345,,,,a a a a a 是等差数列;()3集合M 是“独立的”,求证:存在x M ∈,使得294n n x -+>. 【答案】()1{}2,4,6,8,10是关联的,关联子集有{}{}{}2,4,6,84,6,8,102,4,8,10,,;{}1,2,3,5,8是独立的;()2证明见解析;()3证明见解析.21 / 23【解析】试题分析:(1)根据题中所给的新定义,即可求解; (2)根据题意,{}12345,,,A a a a a =,{}21345 ,,,A a a a a =,{}31245 ,,,A a a a a =,{}41235 ,,,A a a a a =,{}51234 ,,,A a a a a =,进而利用反证法求解; (3)不妨设集合{}12,,(),5n M a a a n =⋅⋅⋅≥,*,1,2,...,i a N i n ∈=,且12...n a a a <<<.记{}*,1,i j T t t a a i j j N==+<<∈,进而利用反证法求解.试题解析:()1{}2,4,6,8,10是“关联的”关联子集有{}{}{}2,4,6,84,6,8,102,4,8,10,,;{}1,2,3,5,8是“独立的”.()2记集合M 的含有四个元素的集合分别为:{}12345,,,A a a a a =,{}21345 ,,,A a a a a =,{}31245 ,,,A a a a a =,{}41235 ,,,A a a a a =,{}51234 ,,,A a a a a =.所以,M 至多有5个“关联子集”.若{}21345,,,A a a a a =为“关联子集”,则{}12345,,,A a a a a =不是 “关联子集”,否则12a a = 同理可得若{}21345,,,A a a a a =为“关联子集”,则34,A A 不是 “关联子集”. 所以集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾.所以{}21345,,,A a a a a =一定不是“关联子集”, 同理{}41235,,,A a a a a =一定不是“关联子集”. 所以集合M 的“关联子集”至多为135,,A A A .若1A 不是“关联子集”,则此时集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾; 若3A 不是“关联子集”,则此时集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾; 若5A 不是“关联子集”,则此时集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾; 所以135,,A A A 都是“关联子集”,所以有2534a a a a +=+,即5432a a a a -=-,1524a a a a +=+,即5421a a a a -=-.1423a a a a +=+,即4321=a a a a --,所以54433221a a a a a a a a -=-=-=-.22 / 23所以12345,,,,a a a a a 是等差数列.()3不妨设集合{}12,,(),5n M a a a n =⋅⋅⋅≥,*,1,2,...,i a N i n ∈=,且12...n a a a <<<.记{}*,1,i j T t t a a i j j N==+<<∈.因为集合M 是“独立的”的,所以容易知道T 中恰好有()212n n n C -=个元素.假设结论错误,即不存在x M ∈,使得294n n x -+>,所以任取x M ∈,294n n x -+≤,因为*x ∈N ,所以284n n x -+≤,所以22228881134422i j n n n n n n n na a -+-+-+-+≤+-=-=+,所以任取t T ∈,232n nt -≤+,任取,123t T t ∈≥+=,所以23,4,,32n n T ⎧⎫-⊆⋅⋅⋅+⎨⎬⎩⎭,且T 中含有()212n n n C -=个元素. (i )若3T ∈,则必有121,2a a ==成立.因为5n ≥,所以一定有121n n a a a a -->-成立.所以12n n a a --≥.所以22218822442n n n n n n n na a --+-+-+≤+-=+*232,2n n T t t t N ⎧⎫-⎪⎪=≤≤+∈⎨⎬⎪⎪⎩⎭,284n n a n -+=,21824n n a n --+-=所以4T ∈,所以33a =,113n a a a a -+=+n 有矛盾,(ii )若3T ∉,23,4,,32n n T ⎧⎫-⊆⋅⋅⋅+⎨⎬⎩⎭, 而T 中含有()212n n n C -=个元素,所以*243,2n n T t t t N ⎧⎫-⎪⎪=≤≤+∈⎨⎬⎪⎪⎩⎭,23 / 23所以284n n a n -+=,21814n n a n --+-=,因为4T ∈,所以121,3a a ==.因为222n n T -+∈,所以2222n n n n a a --+=+,所以22824n n a n --+-=,所以123n a a a a -+=+n ,矛盾. 所以命题成立.。
北京市达标名校2020年高考三月大联考数学试卷含解析

北京市达标名校2020年高考三月大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PAB的面积为S ,则S AB -的最小值为( ) A .94-B .274-C .3227-D .6427-2.已知向量(22cos m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 3.已知向量(1,2),(3,1)a b =-=-,则( ) A .a ∥bB .a ⊥bC .a ∥(a b -)D .a ⊥( a b -)4.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π-C .23π D .23π-5.20201i i=-( )A .2B .C .1D .146.设集合{}1,0,1,2A =-,{}22530B x x x =-++>,则AB =( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1,0,1-7.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .108.已知抛物线24y x =的焦点为F ,准线与x 轴的交点为K ,点P 为抛物线上任意一点KPF ∠的平分线与x 轴交于(,0)m ,则m 的最大值为( ) A .322-B .233C .23D .229.已知函数()sin(2019)cos(2019)44f x x x ππ=++-的最大值为M ,若存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则M m n ⋅-的最小值为( ) A .2019πB .22019π C .42019πD .4038π10.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =,抛物线的准线l 与x 轴交于C ,ACF ∆的面积为2AB =( ) A .6B .9C .2D .6211.在边长为2的菱形ABCD 中,23BD =将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的外接球的表面积为( ) A .23π B .2πC .4πD .6π12.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()UA B =( )A .{}12x x <≤B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-二、填空题:本题共4小题,每小题5分,共20分。
2020年育英中学高三三月份数学月考

为对角线 AC1 上的动点,点 Q 为底面 ABCD 上的动点(点 P ,Q 可以重合),则 MP + PQ 的最小值为( )
(A) 2 2
(C) 3 4
(B) 3 2
(D)1
2
二、填空题:( 本大题共 6 小题,每小题 5 分,共 30 分)
11. (x 1 )12 的展开式中常数项为________ 3x
设数列{an}对任意 n N* 都有 (kn b)(a1 an ) p 2(a1 a2 an ) (其中 k 、b 、 p 是常数) . (I)当 k 0 , b 3 , p 4 时,求 a1 a2 a3 an ;
(II)当 k 1, b 0 , p 0 时,若 a3 3, a9 15 ,求数列{an}的通项公式;
1
7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )
(A) 1 3
(B) 2 3
(C)1 (D) 4
3
2 1
1
正(主)视图
侧(左)视图
2
俯视图
8.
若双曲线 x2 a2
y2 b2
1 (a 0,b 0) 的渐近线与圆 (x 2)2
y2
1 相切,则双曲线的离
心率为(
)
A. 2
3
B.
2
23
C.1
D.
2.设 a,b 为实数,若复数 1 2i 1 i ,则( ) a bi
A. a 3 ,b 1 22
B。 a 3,b 1 C。 a 1 ,b 3 22
D。 a 1,b 3
3. 过抛物线 y2 4x 的焦点 F 的直线 l 交抛物线于 A, B 两点.若 AB 中点 M 到抛物线准线
(III)若数列an 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数
2020年3月北京市高三质量检测数学试卷(word版)含参考答案

2020年3月北京市高三质量检测数学试卷(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.第一部分(选择题,共40分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,0A x x B x x =-<<=>,则集合A B =U ( ) A .(2,1)- B .(0,1)C .(0,)+∞D .(2,)-+∞2.已知复数3i1iz -=+,则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,则其渐近线方程为( )A .y =B .y =C .y x =D .y x = 4.等差数列{}n a 中,若1476a a a ++=,n S 为{}n a 的前n 项和,则7S =( ) A .28B .21C .14D .75.设点P 是圆22(1)(2)2x y ++-=上任一点,则点P 到直线10x y --=距离的最大值为( )AB .C .D .2+6.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该几何体的体积为( )A .23B .43C .2D .47.若点5π5π(cos,sin )66M 在角α的终边上,则tan2α=( ) A 3B .3C 3D .38.已知正项等比数列{}n a 的公比为q ,前n 项和为n S ,则“1q >”是“1012112+>S S S ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.下列函数中,同时满足:①图像关于y 轴对称;②()()1212,0,x x x x ∀∈+∞≠,()()21210f x f x x x ->-的是( ) A .()1f x x -=B .()2log f x x =C .()cos f x x =D .()12x f x +=10.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,如表下为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米) 1.92 1.96 1.78 1.76 1.74 1.72 1.80 1.82 1.68 1.60 30秒跳绳(单位:次)63a75 60 63 72 701a -b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( ) A .2号学生进入30秒跳绳决赛 B .5号学生进入30秒跳绳决赛 C .8号学生进入30秒跳绳决赛 D .9号学生进入30秒跳绳决赛第二部分(非选择题,共110分)二、填空题:本题共6个小题,每小题5分,共30分.11.已知向量()()1,3,2,1==m n ,则向量m 与n 的夹角为 .12.412x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为 . 13.在ABC △中,2,33A a c π∠==,则bc = .14.若顶点在原点的抛物线经过四个点()()()11,1,2,,2,1,4,22⎛⎫⎪⎝⎭中的2个点,则该抛物线的标准方程可以是 .15.已知曲线4422:1C x y mx y ++=(m 为常数),给出下列结论: ①曲线C 为中心对称图形; ②曲线C 为轴对称图形;③当1m =-时,若点(),P x y 在曲线C 上,则1x ≥或1y ≥. 其中,所有正确结论的序号是 .注:本题给出的结论中,有多个符合题目要求,全部选对得5分,不选或者选错得0分,其他得3分. 四、解答题:本大题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题14分)已知四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,PD AB =,E 是PB 的中点.(1)求证:平面PBC ⊥平面PCD ; (2)求二面角E AD B --的大小;在①44a b =,②252a b +=,③624S =-这三个条件中任选一个,补充在下面问题中,若问题中的正整数k 存在,求k 的值;若k 不存在,请说明理由.设n S 为等差数列{}n a 的前n 项和,{}n b 是等比数列, ,15b a =,39b =-,6243b =.是否存在k ,使得1k k S S ->且1k k S S +<?18.(本小题14分)随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争,吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务,在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;(2)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立,记X 为选中月平均收入薪资高于8500元的城市的人数,求X 的分布列和数学期望E (X );(3)记图中月平均收入薪资对应数据的方差为21S ,月平均期望薪资对应数据的方差为22S ,判断21S 与22S 的大小(只需写出结论).已知函数()ln f x x a x =-(0)a >. (1)求函数()f x 的单调区间; (2)求函数21()()2g x x ax f x =--的零点个数; (3)当1a =时,求证不等式1()x f x x-≤解集为空集.20.(本小题14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线0x y -=相切.(Ⅰ)求椭圆方程;(Ⅱ)设S 为椭圆右顶点,过椭圆C 的右焦点的直线l 与椭圆C 交于P ,Q 两点(异于S ),直线PS ,QS 分别交直线4x =于A ,B 两点.求证:A ,B 两点的纵坐标之积为定值.21.(本小题14分)给定整数()2n n ≥,数列211:n A x +、2x 、L 、21n x +每项均为整数,在21n A +中去掉一项k x ,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为()1,2,,21k m k n =+L .将1m 、2m 、L 、21n m +中的最小值称为数列21n A +的特征值.(Ⅰ)已知数列5:1A 、2、3、3、3,写出1m 、2m 、3m 的值及5A 的特征值;(Ⅱ)若1221n x x x +≤≤≤L ,当()()110i n j n -+-+≥⎡⎤⎡⎤⎣⎦⎣⎦,其中i 、{}1,2,,21j n ∈+L 且i j ≠时,判断i j m m -与i j x x -的大小关系,并说明理由; (Ⅲ)已知数列21n A +的特征值为1n -,求121i j i j n x x ≤<≤+-∑的最小值.2020年3月北京市质量检测数学试卷参考答案第一部分(选择题,共40分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】{}{}{}2102A B x x x x x x =-<<>=>-U U ,故选D . 2.【答案】D【解析】由题意,复数()()()()313241211i i i ii i i 2i 1z ----====-++-,∴复数z 对应的点(1,2)-位于第四象限,故选D . 3.【答案】B【解析】∵双曲线C 方程为:22221(0,0)x y a b a b-=>>,∴双曲线的渐近线方程为b y x a =±,又∵双曲线离心率为2,2c a ∴=,可得b ==,因此,双曲线的渐近线方程为y =,故选B . 4.【答案】C【解析】等差数列{}n a 中,若1476a a a ++=,则4436,2a a =∴=,则74714S a ==,故选C . 5.【答案】C【解析】∵22(1)(2)2x y ++-=的圆心坐标为(1,2)-,半径为r =10x y --=的距离为22112(1)1221(1)d -⨯+⨯--==+-,∴点P 到直线10x y --=距离的最大值为32d r +=,故选C .6.【答案】A【解析】如图所示,借助正方体得直观图为三棱锥P ABC -,∴三棱锥P ABC -的体积为:112212333ABC S ⨯⨯=⨯⨯=△,故选A .7.【答案】D【解析】5π5π(cos ,sin )66M 即为312M ⎛⎫ ⎪ ⎪⎝⎭,则2333tan tan 231313αα=-∴==-D . 8.【答案】C【解析】由已知1012112+>S S S ,12111110S S S S ∴->-,即1211a a >,由于题目给定{}n a 各项为正,所以等价于公比为1q >,故选C . 9.【答案】B【解析】由题知:①图像关于y 轴对称,则()f x 为偶函数; ②()()1212,0,x x x x ∀∈+∞≠,()()21210f x f x x x ->-,()f x 在(0,)+∞为增函数.A 选项:()1f x x -=,()f x 为奇函数,故A 错误;B 选项:()2log f x x =,()f x 为偶函数,且在区间(0,)+∞为增函数,故B 正确;C 选项:()cos f x x =,()f x 为偶函数,且在区间(0,)+∞有增有减,故C 错误;D 选项:()12x f x +=,()f x 为非奇非偶函数,故D 错误.综上选B .10.【答案】B【解析】首先立定跳远的是前8位同学进入决赛,若59a≤,则2号、8号不进入决赛,1、3、4、5、6、7号同学进入跳绳决赛,正好6人,因此2号不一定进入跳绳决赛;5号如果不进入跳绳决赛,则1、4、5号都不进入跳绳决赛,与立定跳远同进入决赛的只有5人,不合题意,5号一定进入跳绳决赛;8号进入决赛,则2号也进入决赛,这时1、4、5号都不进入跳绳决赛,不合题意;9号成绩不知是多少,不清楚是否进入决赛;只有5号可肯定进入跳绳决赛,故选B.第二部分(非选择题,共110分)二、填空题:本题共6个小题,每小题5分,共30分.11.【答案】4π【解析】由两个向量夹角公式得cos2θ⋅===⋅nnmm,因为[]0,,4θθπ∈π=Q.12.【答案】24【解析】由二项式412xx⎛⎫+⎪⎝⎭展开式通项公式为44421441(2)()2r r r r r rrT C x C xx---+==,令420r-=,解得2r=,即展开式中的常数项为422443242421C-⨯=⨯=⨯,故答案为24.13.【答案】1【解析】由正弦定理知2sisinsin12sin,,,, 1.2n3666A aCbC B ccC bcπππππ∴==∴=π--=∴=∴=∴===,14.【答案】28x y=或2y x=【解析】分两种情形:①若抛物线的焦点在x轴上,设抛物线的标准方程为:2x my=,不难验证两点()12,,4,22⎛⎫⎪⎝⎭适合,故28x y=;②若抛物线的焦点在y轴上,设抛物线的标准方程为:2y nx=,不难验证()()1,1,4,2适合,故2y x=.故答案为:28x y=或2y x=.15.【答案】①②③【解析】在曲线C上任取一点(),P x y,则44221x y mx y++=,将点()1,P x y--代入曲线C的方程可得()()()()44221x y m x y -+-+--=,同理可知,点()2,P x y -、()3,P x y -都在曲线C 上,则曲线C 关于原点和坐标轴对称,命题①②正确;当1m =-时,2442222213124x y x y x y y ⎛⎫=+-=-+ ⎪⎝⎭,反设1x <且1y <,则201x ≤<,201y ≤<,∴22111222x y -<-<,则22211024x y ⎛⎫≤-< ⎪⎝⎭,∴2442222213124x y x y x y y ⎛⎫+-=-+< ⎪⎝⎭,这与44221x y x y +-=矛盾.∴假设不成立,∴1x ≥或1y ≥,命题③正确.故答案为:①②③.注:本题给出的结论中,有多个符合题目要求,全部选对得5分,不选或者选错得0分,其他得3分. 四、解答题:本大题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题14分)已知四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,PD AB =,E 是PB 的中点.(1)求证:平面PBC ⊥平面PCD ; (2)求二面角E AD B --的大小; 【答案】(1)证明见解析;(2)45︒.【解析】试题分析:(1)先根据条件证BC ⊥平面PCD ,又∵BC ⊂平面PBC ,∴可以证得平面PBC ⊥平面PCD ;(2)根据条件得,,DA DC DP 两两垂直,以此建立空间直角坐标系,求出平面ADB 的法向量(0,0,1)DP =u u u r ,设平面ADE 的法向量(,,)n x y z =r,求出法向量(0,1,1)n =-r ,根据公式求出两个法向量的余弦值,即可得出二面角E AD B --的大小;(3)依题意可证AD ⊥平面PCD ,则平面PCD 的法向量为(1,0,0)DA =u u u r ,又∵1111,,02222AE AE DA ⎛⎫=-⋅⋅=-≠ ⎪⎝⎭u u u r u u u r u u u r ,则AE u u u r 与DA u u ur 不垂直,证得AE 与平面PCD不平行.试题解析:(1)证明:∵ABCD 是正方形BC CD ∴⊥. ∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD BC ⊥. ∵PD CD D ⋂=,PD CD ⊂平面PCD ,∴BC ⊥平面PCD , 又∵BC ⊂平面PBC ,∴平面PBC ⊥平面PCD .(2)∵PD ⊥平面ABCD ,,AD CD ⊂平面ABCD ,∴,PD AD PD CD ⊥⊥.又∵ABCD 是正方形∴AD CD ⊥,∴,,DA DC DP 两两垂直,∴以D 为原点如图建系,设1PD AB ==,∴0,0,0D (),(1,0,0)A ,(0,1,0)C ,(1,1,0)B ,(0,0,1)P ,111,,222E ⎛⎫⎪⎝⎭,∴111(1,0,0),,,222DA DE ⎛⎫== ⎪⎝⎭u u u r u u u r ,又∵PD ⊥平面ABCD ,∴平面ADB 的法向量(0,0,1)DP =u u u r.设平面ADE 的法向量(,,)n x y z =r ,则DA n ⊥u u u r r ,DE n ⊥u u u r r ,∴0,1110222DA n x DE n x y z ⎧⋅==⎪⎨⋅=++=⎪⎩u u u r ru u u r r , 令1z =,得1,0y x =-=∴(0,1,1)n =-r ,∴2cos ,2||||12DP n DP n DP n ⋅<>===⋅⋅u u u r ru u u r r u u u r r ,∴二面角E AD B --的大小为45︒.17.(本小题14分)在①44a b =,②252a b +=,③624S =-这三个条件中任选一个,补充在下面问题中,若问题中的正整数k 存在,求k 的值;若k 不存在,请说明理由.设n S 为等差数列{}n a 的前n 项和,{}n b 是等比数列, ,15b a =,39b =-,6243b =.是否存在k ,使得1k k S S ->且1k k S S +<? 【答案】答案不唯一,具体见解析【解析】试题分析:先由已知条件结合所选条件求出数列{}n b 与数列{}n a 的通项公式,再结合题设要求求解即可得解.试题解析:方案①,设等比数列{}n b 的公比为q ,设等差数列{}n a 的公差为d ,由39b =-,33639243b b q q =⋅=-⨯=,得3q =-,又()2231139b b q b ==⨯-=-,∴11b =-,故()13n n b -=--.又511a b ==-,4427a b ==,∴5428d a a =-=-,1273(28)111a ∴=-⨯-=,∴28139n a n =-+.由1k k S S +>且1k kS S +<,可得11100k k k k k k S S a S S a -++-=>⎧⎨-=<⎩,可知()12813902811390k k a k a k +=-+>⎧⎨=-++<⎩,得1111392828k <<, 又k 为正整数,则4k =,∴存在4k =,使得1k k S S ->且1k k S S +<. 方案②,设等比数列{}n b 的公比为q ,设等差数列{}n a 的公差为d ,由39b =-,33639243b b q q =⋅=-⨯=,得3q =-,又()2231139b b q b ==⨯-=-,∴11b =-,故()13n n b -=--.又511a b ==-,25252,283a b a b +=∴=-=,∴522852a a d -==--,1273(28)111a ∴=-⨯-=, ∴28139n a n =-+.由1k k S S +>且1k k S S +<,可得11100k k k k k k S S a S S a -++-=>⎧⎨-=<⎩,可知()12813902811390k k a k a k +=-+>⎧⎨=-++<⎩,得1111392828k <<,又k 为正整数,则4k =,∴存在4k =,使得1k k S S ->且1k k S S +<. 方案③,设等比数列{}n b 的公比为q ,设等差数列{}n a 的公差为d ,由39b =-,33639243b b q q =⋅=-⨯=,得3q =-,又()2231139b b q b ==⨯-=-,∴11b =-,故()13n n b -=--.又511a b ==-,624S =-,即1141,656242a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1111,28a d =⎧⎨=-⎩,∴28139n a n =-+. 由1k k S S +>且1k k S S +<,可得11100k k k k k k S S a S S a -++-=>⎧⎨-=<⎩,可知()12813902811390k k a k a k +=-+>⎧⎨=-++<⎩,得1111392828k <<,又k 为正整数,则4k =,∴存在4k =,使得1k k S S ->且1k k S S +<. 18.(本小题14分)随着经济全球化、信息化的发展,企业之间的竞争从资源的争夺转向人才的竞争,吸引、留住培养和用好人才成为人力资源管理的战略目标和紧迫任务,在此背景下,某信息网站在15个城市中对刚毕业的大学生的月平均收入薪资和月平均期望薪资做了调查,数据如下图所示.(1)若某大学毕业生从这15座城市中随机选择一座城市就业,求该生选中月平均收入薪资高于8500元的城市的概率;(2)现有2名大学毕业生在这15座城市中各随机选择一座城市就业,且2人的选择相互独立,记X 为选中月平均收入薪资高于8500元的城市的人数,求X 的分布列和数学期望E (X );(3)记图中月平均收入薪资对应数据的方差为21S ,月平均期望薪资对应数据的方差为22S ,判断21S 与22S 的大小(只需写出结论).【答案】(1)25;(2)分布列见解析,()45E X =;(3)2212S S > 【解析】试题分析:(1)根据图表得到高于8500元的城市有6座,得到答案;(2)X 的可能取值为0,1,2,计算概率得到分布列,再计算期望得到答案;(3)根据数据的波动性得到答案. 试题解析:(1)根据图表知:月平均收入薪资高于8500元的城市有6座,故62155p == . (2)X 的可能取值为0,1,2,则()33905525P ξ==⨯=;()12321215525P C ξ==⨯=;()22425525P ξ==⨯=. 分布列为:()012252525255E X =⨯+⨯+⨯==. (3)根据图像知月平均收入薪资对应数据波动更大,故2212S S >.19.(本小题15分)已知函数()ln f x x a x =-(0)a >. (1)求函数()f x 的单调区间; (2)求函数21()()2g x x ax f x =--的零点个数; (3)当1a =时,求证不等式1()x f x x-≤解集为空集. 【答案】(1)()f x 的单调增区间为(,)a +∞,单调减区间为(0,)a ;(2)()g x 在(0,)+∞上只有一个零点(3)证明见解析;(3)空集.【解析】试题分析:(1)求导得到()1a x af x x x-'=-=,计算得到答案. (2)求导得到()(1)()x a x g x x--'=,分类讨论1a >,1a =和01a <<三种情况得到答案.(3)原题等价于1()ln 10h x x x x =+-->恒成立,求导得到函数的单调区间,计算最小值1)02h >得到证明.试题解析:(1)()f x 的定义域为(0,)+∞.()1a x af x x x-'=-=.令()0f x '=,得x a =.当x a >时,有()0f x '>,∴()f x 在(,)a +∞上单调递增. 当0x a <<时,有()0f x '<,∴()f x 在(0,)a 上单调递减. 综上所述:()f x 的单调增区间为(,)a +∞,单调减区间为(0,)a(2)函数21()ln 2g x x ax x a x =--+,()(1)()x a x g x x --'=.令()(1)()0x a x g x x --'==,解得12,1x a x ==, 1(1)--02g a =<,,()x g x →+∞→+∞,当1a >时,()g x 在(1,)a 上递减,有(1)()g g a >.∴()0g a <,∴()g x 有一个零点; 当1a =时,()g x 在(0,)+∞上递增,∴()g x 有一个零点;当01a <<时,()g x 在(0,)a 上递增,在(,1)a 上递减,在(1,)+∞上递增.此时21()ln 02g a a a a a =--+<,∴()g x 有一个零点.综上所述:()g x 在(0,)+∞上只有一个零点. (3)当1a =时,不等式1()x f x x -≤解集为空集,等价于1()x f x x->在定义域内恒成立, 即1()0x f x x-->在定义域内恒成立. 令11()()ln 1x h x f x x x x x-=-=+--. 222111()1x x h x x x x --'=--=,令()0h x '=,得x = 列表得11()1ln 22h =-∵12e <,∴1ln 12<.11 >,∴0h>,∴1()()0xh x f xx-=->恒成立.∴不等式1()xf xx-≤解集为空集.20.(本小题14分)已知椭圆2222:1(0)x yC a ba b+=>>的离心率为12,以原点为圆心,椭圆C的短半轴长为半径的圆与直线0x y-=相切.(Ⅰ)求椭圆方程;(Ⅱ)设S为椭圆右顶点,过椭圆C的右焦点的直线l与椭圆C交于P,Q两点(异于S),直线PS,QS 分别交直线4x=于A,B两点.求证:A,B两点的纵坐标之积为定值.【答案】(Ⅰ)22143x y+=;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)求出,,a b c后可得椭圆方程.(Ⅱ)当直线l的斜率不存在,计算可得A B,两点的纵坐标之积为9-.当直线l的斜率存在时,可设直线l的方程为(1)(0)y k x k=-≠,112212()()(0)P x y Q x y x x≠,,,,,则212121212()142()4A Bx x x xy y kx x x x-++=-++,联立直线方程和椭圆方程,消去y后利用韦达定理化简A By y后可得定值.试题解析:(Ⅰ)∵以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y-+=相切,∴半径b等于原点到直线的距离d,b d==b=由离心率12e=,可知12ca=,且222a b c=+,得2a=,故椭圆C的方程为22143x y+=.(Ⅱ)由椭圆C的方程可知(20)S,.若直线l的斜率不存在,则直线l方程为1x=,∴331122P Q⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,.则直线PS的方程为3260x y+-=,直线QS的方程为3260x y--=.令4x=,得(43)A,-,(43)B,,∴,A B两点的纵坐标之积为9-.若直线l的斜率存在,设直线l的方程为(1)(0)y k x k=-≠,由22(1)34120y k xx y=-⎧⎨+-=⎩得2222(34)84120k x k x k+-+-=,依题意0∆≥恒成立.设112212()()(0)P x y Q x y x x ≠,,,,,则2212122284123434k k x x x x k k-+==++,. 设(4)A A y ,(4)B B y ,,由题意,,P S A 三点共线可知11422A y yx =--, ∴点A 的纵坐标为1122A y y x =-.同理得点B 的纵坐标为2222B y y x =-.∴12122222A B y y y y x x =⋅--212121212()142()4x x x x k x x x x -++=-++22222224128434412284(43)k k k k k k k --++=--⨯++22944k k-=⨯9=- 综上,A B ,两点的纵坐标之积为定值. 21.(本小题14分)给定整数()2n n ≥,数列211:n A x +、2x 、L 、21n x +每项均为整数,在21n A +中去掉一项k x ,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为()1,2,,21k m k n =+L .将1m 、2m 、L 、21n m +中的最小值称为数列21n A +的特征值.(Ⅰ)已知数列5:1A 、2、3、3、3,写出1m 、2m 、3m 的值及5A 的特征值;(Ⅱ)若1221n x x x +≤≤≤L ,当()()110i n j n -+-+≥⎡⎤⎡⎤⎣⎦⎣⎦,其中i 、{}1,2,,21j n ∈+L 且i j ≠时,判断i j m m -与i j x x -的大小关系,并说明理由; (Ⅲ)已知数列21n A +的特征值为1n -,求121i j i j n x x ≤<≤+-∑的最小值.【答案】(Ⅰ)11m =;22m =;33m =.5A 的特征值为1;(Ⅱ)=i j i j m m x x --,理由见解析;(Ⅲ)最小值为()1n n +.【解析】试题分析:(Ⅰ)根据题中的定义可求出1m 、2m 、3m 的值及5A 的特征值;(Ⅱ)分i 、{}1,2,,1j n ∈+L 和i 、{}1,2,,21j n n n ∈+++L 两种情况讨论,结合题中定义可证明出=i j i j m m x x --;(Ⅲ)设1221n x x x +≤≤≤L ,利用(Ⅱ)中的结论=i j i j m m x x --,结合数列21n A +的特征值为1n -,可得出()2122111n n n n n x x x x x x n ++-+++-+++≥-L L ,并证明出()()()221n k p kq n p q +-+≥++,即可求出121i j i j n x x ≤<≤+-∑的最小值.试题解析:(Ⅰ)由题知:()()133231m =+-+=,()()233312m =+-+=,33m =,5A 的特征值为1.(Ⅱ)=i j i j m m x x --.理由如下:由于()()110i n j n -+-+≥⎡⎤⎡⎤⎣⎦⎣⎦,可分下列两种情况讨论: 当i 、{}1,2,,1j n ∈+L 时,根据定义可知:()()212211i n n n n n i m x x x x x x x +++=+++-+++-L L ()()212211n n n n n i x x x x x x x +++=+++-++++L L ,同理可得:()()212211j n n n n n j m x x x x x x x +++=+++-++++L L , ∴i j i j m m x x -=-,∴=i j i j m m x x --. 当i 、{}1,2,,21j n n n ∈+++L 时,同理可得:()()212111i n n n i n n m x x x x x x x ++-=+++--+++L L ()()212111n n n n n i x x x x x x x ++-=+++-+++-L L()()212111j n n n n n j m x x x x x x x ++-=+++-+++-L L ,∴i j i j m m x x -=-,∴=i j i j m m x x --.综上有:=i j i j m m x x --. (Ⅲ)不妨设1221n x x x +≤≤≤L ,()2122111212222022i j n n n n n i j n x x nx n x x x x nx +++≤<≤+-=+-+++⋅---∑L L ()()()()2112222222n n n n n x x n x x x x ++=-+--++-L ,显然,211222n n n n x x x x x x ++-≥-≥≥-L ,()()()212211121221n n n n n n n n n x x x x x x x x x x x m ++-+++++-+++≥++-+++=L L L L .当且仅当121n n x x ++=时取等号;()()()2122112212311n n n n n n n n x x x x x x x x x x x m ++-++++++-+++≥++-+++=L L L L .当且仅当11n x x +=时取等号;由(Ⅱ)可知1m 、21n m +的较小值为1n -,∴()2122111n n n n n x x x x x x n ++-+++-+++≥-L L , 当且仅当1121n n x x x ++==时取等号,此时数列21n A +为常数列,其特征值为0,不符合题意,则必有()212211n n n n n x x x x x x n ++-+++-+++≥L L .下证:若0p q ≥≥,2k n ≤≤,总有()()()221n k p kq n p q +-+≥++.证明:()()()()()22111n k p kq n p q n k p n k q +-+-++=+--+-()()10n k p q =+--≥, ∴()()()221n k p kq n p q +-+≥++. 因此()()()()2112221212222i j n n n n i j n x x n x x n x x x x ++≤<≤+-=-+--++-∑L()()()21221111n n n n n n x x x x x x n n ++-≥++++----≥+L L .当0,11,121k k n x n k n ≤≤⎧=⎨+≤≤+⎩时,121i j i j n x x ≤<≤+-∑可取到最小值()1n n +,符合题意,∴121i j i j n x x ≤<≤+-∑的最小值为()1n n +.。
北京市2020届高三3月份高考适应性测试数学试题 Word版含答案

2020 年北京市高考适应性测试数学本试卷共6 页,150 分。
考试时长120 分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40 分)一、选择题共10 题,每题 4 分,共40 分。
在每题列出的四个选项中,选出符合题目要求的一项。
(1)在复平面内,复数i (i + 2) 对应的点的坐标为(A)(1, 2 ) (B)(-1, 2 ) (C)( 2, 1) (D)( 2, - 1)(2)已知集合A = { x x < 2} ,B = { - 1, 0,1, 2, 3 } ,则 A ∩ B =(A){0, 1} (B){ 0, 1, 2 } (C){-1, 0, 1}(3)下列函数中,在区间(0, +∞) 上为减函数的是(D){- 1, 0, 1, 2 }(A)y =x (B)y = x2- 1 (C)y = (1)x2(D)y = log2x(4)函数f ( x) =(A){x | x ≤2 或x ≥3}(C){x | 2 ≤x ≤3}的定义域为(B){x | x ≤- 3 或x ≥-2}(D){x | -3 ≤ x ≤-2}(5)圆心为( 2, 1) 且和x 轴相切的圆的方程是(A)(x - 2)2+ ( y -1)2= 1 (B)(x + 2)2+ ( y +1)2= 1 (C)(x - 2)2+ ( y -1)2= 5 (D)(x + 2)2+ ( y +1)2= 5(6)要得到函数y = sin(2x -π) 的图象,只需要将函数y = sin 2x 的图象3(A)向左平移π个单位(B)向左平移π个单位3 6(C)向右平移π个单位(D)向右平移π个单位3 6x2- 5x + 6数学第 1 页(共6 页)数学 第 2 页(共 6 页)x (7) 某四棱锥的三视图如图所示,则该四棱锥的体积为 (A ) 23 (B ) 43(C ) 2 (D ) 4正(主)视图侧(左)视图俯视图(8) 已知点 A ( 2, 0 ) , B ( 0, - 2 ) .若点 P 在函数 y = 的图象上,则使得△ P AB 的面积为 2的点 P 的个数为 (A )1(B ) 2(C ) 3(D ) 4(9) 设{a n }是等差数列,且公差不为零,其前 n 项和为 S n .则“ ∀n ∈ N * ,S n +1 > S n ”是“{a n }为递增数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10) 学业水平测试成绩按照考生原始成绩从高到低分为 A ,B ,C ,D ,E 五个等级.某班共有36 名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为 A 的学生有5 人,这两科中仅有一科等级为 A 的学生,其另外一科等级为 B .则该班(A ) 物理化学等级都是 B 的学生至多有12 人 (B ) 物理化学等级都是 B 的学生至少有5 人 (C ) 这两科只有一科等级为 B 且最高等级为 B 的学生至多有18 人(D ) 这两科只有一科等级为 B 且最高等级为 B 的学生至少有1 人等级科目ABCDE物理 10 16 9 1 0 化学81972数学 第 3 页(共 6 页)x - 2第二部分(非选择题共 110 分)二、填空题共 5 题,每题 5 分,共 25 分。
某中学2020届高三年级第三次月考数学试卷(文科)及答案解析

某中学2020届高三年级第三次月考数学试卷(文科)第Ⅰ卷(选择题,共50分)一、 选择题(本大题共10小题,每小题5分,共50分) 1.复数11i-的值为( )(A )i 2121+ (B )i 2121- (C )i -1 (D )i +12.已知(2,5)a =-,||2||b a =,若与反向,则等于( )(A)(1-,25) (B)(1,52-) (C)(4,10-) (D)(4,10-) 3.集合[0,1]A =,(,)B a =+∞ 若φ=B A ,则实数a 的取值范围为( ) (A )),1(+∞ (B )),1[+∞ (C )),0(+∞ (D )]1,(-∞4.若直线20x ay +-=与直线2(1)30ax a y +-+=互相垂直,则a 的值为( ) (A) 0 (B) 0或2 (C) 0或1 (D) 0或1-5. 长方体的长、宽、高分别为2,2,3cm cm cm ,若该长方体的各顶点都在球O 的表面上,则球O 的表面积为( )(A) 27cm π (B) 214cm π (C) 217cm π (D) 256cm π6.若tan β=31-,tan()αβ+=97,则tan α的值是 ( )(A) 617 (B) 35 (C) 1517 (D) 327.过点)1,1(),1,1(--B A 且圆心在直线02=-+y x 上的圆的方程是( )(A) 4)1()3(22=++-y x (B) 4)1()3(22=-++y x (C) 4)1()1(22=-+-y x (D) 4)1()1(22=+++y x 8.如图,函数)0,0)(sin(πϕϕω<<>+=A x A y 的图象经过点)0,6(π-、)0,67(π,且该函数的最大值为2,最小值为-2,则该函数的解析式为( ) (A ))423sin(2π+=x y (B ) )42sin(2π+=x y(C ))623sin(2π+=x y (D ))62sin(2π+=x y 9.已知直线m 与n ,平面α与β,那么下列结论正确的( )(A )若βαβα//,,,则n m n m ⊥⊂⊂ (B) 若βαβα//,//,,则n m n m ⊂⊂(C) 若βαβα⊥⊥⊥⊥则,,,n m n m (D)若βααββα////,//,,则n m n m ⊂⊂10.已知函数),(1)(22R b R a b b ax x x f ∈∈+-++-=,对任意实数x 都有)1()1(x f x f +=-成立,若当[]1,1-∈x 时,0)(>x f 恒成立,则b 的取值范围是( )(A )01<<-b (B ) 2>b (C ) 1-<b 或 2>b (D )不能确定二、填空题(本大题共4小题每小题5分,共20分;把答案填在答题卷中相应的横线上) 11.已知向量→a =(1,2),→b =(-2,x ),若//a b ,则x =__________.12.光线自点(2,1)P 射到x 轴上点()1,0A ,经x 轴反射,则反射光线的直线方程是________ .13.函数2sin 2cos y x x =+ (36x ππ-≤≤) 的最大值是.14.已知()sin 5f x x x =+,(1,1)x ∈-,如果2(1)(1)0f a f a -+-<,则a 的取值范围是 .三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.): 15.(本小题满分14分)已知3||=a ,2||=b ,a 与b 的夹角为60°,2c a b =-,m -=, (1)求⋅及||c ; (2)若c ⊥d ,求m 的值. 16.(本小题满分12分)已知函数2()sin sin cos f x x x x =+(1)求()f x 的最大值及取得最大值时对应的x 的值, (2)写出该函数在[]0,π上的单调递增区间。
2020届北京市育英中学高三3月月考数学试题(解析版)

2020届北京市育英中学高三3月月考数学试题一、单选题1.已知集合,集合,则()A.B.C.D.【答案】C【解析】试题分析:因,故,选C.【考点】交集运算.2.设a,b为实数,若复数1+21iia bi=++,则A.31,22a b==B.3,1a b==C.13,22a b==D.1,3a b==【答案】A【解析】先化简,然后用复数相等的条件,列方程组求解.【详解】由121iia bi+=++可得1+2i=(a﹣b)+(a+b)i,所以12a ba b-=⎧⎨+=⎩,解得32a=,12b=,故选A.【点睛】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.过抛物线的焦点的直线交抛物线于两点.若中点到抛物线准线的距离为6,则线段的长为()A.B.C.D.无法确定【答案】C【解析】试题分析:中点到抛物线准线的距离为6,则A,B到准线的距离之和为12,即【考点】直线与抛物线相交问题4.已知,a b是两条不同的直线,,αβ是两个不同的平面,则//a b的一个充分条件是( )A .//a α,//b αB .//a α,b β//,//αβC .a α⊥,b β⊥,//αβD .αβ⊥,a α⊥,b β//【答案】C【解析】在A 中,a 与b 相交、平行或异面;在C 中,由线面垂直的性质可得a ∥b ;在B 、D 中,均可得a 与b 相交、平行或异面; 【详解】由a ,b 是两条不同的直线,α,β是两个不同的平面,在A 中,//a α,//b α,则a 与b 相交、平行或异面,故A 错误;在B 中,//a α,//b β,//αβ,则a 与b 相交、平行或异面,故B 错误; 在C 中,由a α⊥,//αβ,则a β⊥,又b β⊥,由线面垂直的性质可知//a b ,故C 正确;在D 中,αβ⊥,a α⊥,//b β,则a 与b 相交、平行或异面,故D 错误. 故选:C . 【点睛】本题考查线线平行的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题. 5.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12-D .14【答案】A【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d ,则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==.本题选择A 选项.6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠劵1:若标价超过50元,则付款时减免标价的10%;优惠劵2:若标价超过100元,则付款时减免20元;优惠劵3:若标价超过100元,则超过100元的部分减免18%.若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为( ) A .179元 B .199元C .219元D .239元【答案】C【解析】设购买的商品的标价为x 元,根据题意列出不等式即可得到答案. 【详解】设购买的商品的标价为x 元,由题意,0.120x ⨯>,且0.1(100)0.18x x ⨯>-⨯,解得200225x <<. 故选:C. 【点睛】本题考查利用函数模型的选择问题,考查学生分析解决问题的能力,是一道基础题. 7.某三棱锥的三视图如图所示,则该三棱锥的体积为A .13B .23C .1D .43【答案】D【解析】由已知中的三视图可得,该几何体是一个俯视图中右下角的三角形为底面的三棱锥,代入棱锥的的体积公式,即可求解. 【详解】由已知中的三视图可得:该几何体是一个如图所示的三棱锥1D ABE -,其底面ABE 的面积为12222S =⨯⨯=,高为2h =, 所以该三棱锥的体积为11422333V Sh ==⨯⨯=,故选D.【点睛】本题考查了几何体的三视图及组合体的表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.8.若双曲线()222210,0x y a b a b-=>>的渐近线与圆()2221x y -+=相切,则双曲线的离心率为( ) A .2 B .3C .233D .3【答案】C【解析】利用圆心(2,0)到渐近线的距离等于半径即可建立,,a b c 间的关系. 【详解】由已知,双曲线的渐近线方程为0bx ay ±=,故圆心(2,0)到渐近线的距离等于1,即221a b=+,所以223a b =,211()13c b e a a ==+=+=23. 故选:C. 【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立,,a b c 三者间的方程或不等关系,本题是一道基础题. 9.已知椭圆C :的左、右焦点分别为,,椭圆C 上点A 满足若点P 是椭圆C 上的动点,则的最大值为A .B .C .D .【答案】B【解析】由已知可得点A ,,的坐标,再利用数量积运算法则和点P 的纵坐标的取值范围即可得出最大值. 【详解】 由椭圆C :可得:,,,.,. 设,则又, .的最大值为.故选:B . 【点睛】本题考查了椭圆的标准方程及其性质、数量积运算等基础知识与基本技能方法,属于基础题.10.在长方体1111ABCD A B C D -中,12,1AB BC AA ===,点M 为1AB 的中点,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP PQ +的最小值为( )A .22B .32C .34D .1【答案】C【解析】画出图形,将平面11AB C 沿1AC 翻折,使其与平面1ACC 在共面,将折线段转化为直线段距离最小,从而求出MP +PQ 的最小值. 【详解】如图1,显然当Q 是P 在底面ABCD 的射影时MP PQ +才可能最小,将平面11AB C 沿1AC 翻折,使其与平面1ACC 在共面,如图2所示,此时易得130CAC ∠=o,3AM =,,M P Q三点共线时,MP PQ +取得最小值,此时min 133sin 604MQ AM CAB =∠==o . 故选:C. 【点睛】本题考查立体几何翻折问题中的最值问题,考查空间想象能力以及学生的计算能力,难度比较大.二、填空题11.123x x ⎛⎝展开式中的常数项为__________. 【答案】220-【解析】写出123x x ⎛⎝展开式的通项,令x 的指数为零,即得常数项. 【详解】123x x ⎛⎝展开式中第1k +项为 412123112123()(1),0,1,2,12k k k k k kk T C xC x k x--+==-=L ,令4120,93k k -==,所以常数项为931212220C C -=-=-. 故答案为:-220【点睛】本题考查二项展开式中特定的项,掌握二项展开式的通项是解题的关键,属于基础题. 12.在ABC ∆中,3A π∠=,3BC =,AB 6=,则C ∠= .【答案】4π 【解析】分析:直接利用正弦定理求∠C.详解:由正弦定理得63323,3sin 2,sin ,.sin 2244sin3C C C C πππ=∴=∴=∴=或因为AB <BC ,所以∠C <∠A=3π,所以4C π∠=.故答案为:4π.点睛:(1)本题主要考查正弦定理解三角形,意在考查学生对该基础知识的掌握水平.(2) 解三角形如果出现多解,要利用三角形内角和定理或三角形边角不等关系来检验. 13.设()f x 是偶函数,对于任意的()0x x >都有()()222f x f x +=--,已知()14f -=,那么()3f -等于______.【答案】-8【解析】由已知得()()f x f x -=,()2(4)f x f x =--,进而得到()2(4)f x f x =-+,再令3x =-即可. 【详解】因为()f x 是偶函数,所有()()f x f x -=①,又()()222f x f x +=--,所以()2(4)f x f x =--②,由①②可得()2(4)f x f x =-+,故()2(1)2(13)8f f f =-=---=-. 故答案为:8-. 【点睛】本题考查求抽象函数在某点的函数值,涉及到函数的奇偶性,是一道基础题.14.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω=__________, a 的最小值是__________.【答案】 212π 【解析】根据图形知,函数的周期3113,241264T T ππππω=-=∴==(), 又函数(y f x a =+的图象经过16π(,),所以22206212a k k Z a k k Z a πππππ⨯+=+∈∴=+∈>Q ,;,;a ∴的的最小值是12π点睛:本题考查了三角函数y Asin x ωϕ=+()的图象与性质的应用问题,是基础题目. 15.设()32,,x x a f x x x a ⎧<=⎨≥⎩,若不存在实数b ,使得函数()()g x f x b =-有两个零点,则a 的取值范围是______. 【答案】[0,1]【解析】函数()()g x f x b =-有两个零点等价于()f x 与y b =有两个不同的交点,然后分0a <,0a =或1a =,01a <<,1a >四种情况讨论即可. 【详解】函数()()g x f x b =-有两个零点等价于()f x 与y b =有两个不同的交点,当0a <时,如图1所示,存在实数b ,使得()f x 与y b =有两个不同的交点,满足题意;当0a =或1a =时,此时()f x 是单调递增函数,故不满足题意;当01a <<时,如图2,不存在实数b ,使得()f x 与y b =有两个不同的交点,不满足题意;当1a >时,如图3,存在实数b ,使得()f x 与y b =有两个不同的交点,满足题意; 综上a 的取值范围为(,0)(1,)-∞⋃+∞. 故答案为:[0,1]. 【点睛】本题考查已知函数零点个数求参数的问题,在做此类题,一定要注意等价转化与数形结合的思想,本题是一道中档题.16.在平面直角坐标系xOy 中,动点(),P x y 到两坐标轴的距离之和等于它到定点()1,1的距离,记点P 的轨迹为C .给出下面四个结论:①曲线C 关于原点对称;②曲线C 关于直线y x =对称;③点()()2,1a a R -∈在曲线C 上;④在第一象限内,曲线C 与x 轴的非负半轴、y 轴的非负半轴围成的封闭图形的面积小于12.其中所有正确结论的序号是______. 【答案】②③④【解析】根据动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,可得曲线方程,作出曲线的图象,即可得到结论. 【详解】动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,所以||||x y +=即||10xy x y ++-=.若0xy >,则10xy x y ++-=,即(1)(1)2x y ++=,故211y x =-+, y 以(1,1)--为中心的双曲线的一支;若0xy <,则10xy x y --+=,即1)0(1)(x y -=-,故1(0)x y =<或1(0)y x =<,所以函数的图象如图所示所以曲线C 关于直线y x =对称,②正确;又22|1|110a a -⨯-+-=,所以点()()2,1a a R -∈在曲线C 上,③正确;在第一象限内,曲线C 与x 轴的非负半轴、y 轴的非负半轴围成的封闭图形的面积小于12AOB S ∆=,故④正确. 故答案为:②③④. 【点睛】本题考查求曲线的轨迹方程,考查数形结合的数学思想方法,本题解题关键是正确作出函数图象,是一道中档题.三、解答题 17.已知函数,x ∈R .(Ⅰ)求f (x )的最小正周期和单调递增区间;(Ⅱ)设α>0,若函数g (x )=f (x+α)为奇函数,求α的最小值. 【答案】(Ⅰ)周期是,单调递增区间为,k ∈Z . 【解析】试题分析:(1)利用三角函数的诱导公式将化简为,即可解得到的最小正周期,及单调递增区间;(2)根据(1)得到函数的解析式,因为是奇函数,得到,从而求解的最小值.试题解析:(1)解:,所以函数的最小正周期.由, 得,所以函数的单调递增区间为. (注:或者写成单调递增区间为.) (2)解:由题意,得,因为函数为奇函数,且,所以,即, 所以, 解得,验证知其符合题意. 又因为,所以的最小值为.【考点】三角函数的图象和性质.18.自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下: 20以下 [)20,30[)30,40[)40,50[)50,60[]60,7070以上 使用人数 3 12 17 6 4 2 0 未使用人数 0314363(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率; (Ⅱ)从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步了解情况,用X 表示这3人中年龄在[)50,60的人数,求随机变量X 的分布列及数学期望; (Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋. 【答案】17100;(Ⅱ)详见解析;(Ⅲ)2200 【解析】(Ⅰ)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有3+14=17人,由概率公式即可得到所求值;(Ⅱ)X 所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望; (Ⅲ)随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值. 【详解】(Ⅰ)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人,所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为17100P =. (Ⅱ)X 所有的可能取值为1,2,3,()124236C C 115C P X ===, ()214236C C 325C P X ===, ()304236C C 135C P X ===. 所以X 的分布列为所以X 的数学期望为1311232555EX =⨯+⨯+⨯=. (Ⅲ)在随机抽取的100名顾客中,使用自由购的共有3121764244+++++=人, 所以该超市当天至少应准备环保购物袋的个数估计为4450002200100⨯=. 【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,是一道综合题. 19.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =, E 为PC 中点,点F 在PB 上,且PB ⊥平面DEF ,连接BD , BE .(Ⅰ)证明: DE ⊥平面PBC ;(Ⅱ)试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知2AD =, 2CD =,求二面角F AD B --的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)1010. 【解析】试题分析:(1)利用线面垂直的判断定理证明DE 垂直于平面PBC 内的两条相交直线即可; (2)利用空间几何体的结构特征判断命题是否成立即可;(3)利用题意建立空间直角坐标系,求得法向量,最后利用cos n p n DP n DP⋅〈〉=⨯r r u u ur r u u u r r , 求解角度值即可求得余弦值. 试题解析:(Ⅰ)因为PD ⊥面ABCD , BC ⊂面ABCD ,所以BC PD ⊥. 因为四边形ABCD 为矩形,所以BC DC ⊥.PD DC D ⋂=,所以BC ⊥面PDC . DE ⊂面PDC , DE BC ⊥,在PDC ∆中, PD DC =, E 为PC 中点,所以DE PC ⊥.PC BC C ⋂=,所以DE ⊥面PBC .(Ⅱ)四面体DBEF 是鳖臑,其中2BED FED π∠=∠=, 2BEF BFD π∠=∠=.(Ⅲ)以DA , DC , DP 所在直线为x 轴, y 轴, z 轴建立空间直角坐标系. ()0,0,0D , ()2,0,0A , ()2,0C , (2P , ()2,0B .设PF PB λ=u u u r u u u r,则()2,2,22F λλλ-.DF PB ⊥得·0DF PB =u u u r u u u r 解得14λ=.所以1232,,244F ⎛⎫ ⎪ ⎪⎝⎭. 设平面FDA 的法向量(),,n x y z =r,{n DF n DA⊥⇒⊥u u u r r u u u r r 12320{24420x y z x ++==令1z =得0x =, 3y =-. 平面FDA 的法向量()0,3,1n =-r,平面BDA 的法向量()0,0,2DP =u u u r,cos n <r , ·21010102n DP DP n DP ->===-u u u r r u u u r u u u r r . 二面角F AD B --的余弦值为1010. 20.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,椭圆C 与y 轴交于,A B 两点,且2AB =. (1)求椭圆C 的方程;(2)设点P 是椭圆C 上的一个动点,且直线,PA PB 与直线4x =分别交于,M N 两点.是否存在点P 使得以MN 为直径的圆经过点()2,0D ?若存在,求出点P 的横坐标;若不存在,说明理由.【答案】(1)2214x y +=;(2)点不存在. 【解析】分析:(1)根据椭圆的几何性质知22b =,即1b =,再由离心率得3c e a ==,从而可得2a =,得椭圆方程;(2)假设点P 存在,并设00(,)P x y ,写出PA 的方程,求出M 点坐标,同理得N 点坐标,求出MN 的中点坐标,即圆心坐标,利用圆过点D 得一关于00,x y 的等式,把P 点坐标代入椭圆方程后也刚才的等式联立解得0x ,注意0x 的范围,即可知存在不存在. 详解:(1)由已知,得知,又因为离心率为,所以.因为,所以,所以椭圆的标准方程为.(2)假设存在. 设由已知可得,所以的直线方程为,的直线方程为,令,分别可得,,所以,线段 的中点,若以为直径的圆经过点D (2,0),则,因为点在椭圆上,所以,代入化简得,所以, 而,矛盾,所以这样的点不存在.点睛:解析几何中存在性命题常采用“肯定顺推法”,将不确定性问题明朗化,其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则不存在.21.已知函数()1xxf x e -=.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)求函数()f x 的零点和极值;(3)若对任意[)12,,x x a ∈+∞,都有()()1221f x f x e -≥-成立,求实数a 的最小值. 【答案】(1)210x y +-=;(2)零点1x =,极小值21e-;(3)1.【解析】分析:(1)求出导函数'()f x ,切线切线方程为(0)'(0)y f f x -=,化简即可;(2)由'()0f x =得极值点,讨论极值点两边'()f x 的正负,得极值;(3)求出()f x 在[,)a +∞上的最小值和最大值,由最大值-最小值21e≥-求得a ,可结合要求a 的最小值,讨论()f x 的单调性及最值. 详解:(1)因为, 所以'(0)2f =-. 因为,所以曲线在处的切线方程为.(2)令,解得,所以的零点为.由解得,则及的情况如下:2- 0 +所以函数在时,取得极小值.(3)法一: 当时,. 当时,. 若,由(2)可知的最小值为,的最大值为,所以“对任意,有恒成立”等价于即, 解得. 所以的最小值为1.法二:当时,. 当时,.且由(2)可知,的最小值为, 若,令,则而,不符合要求,所以. 当时,,,所以,即满足要求,综上,的最小值为1.点睛:本题考查用导数求函数在某处的切线方程、函数的极值与最值.对命题“若对任12,x x D ∈,都有()()12f x f x M -≥成立”等价于“在x D ∈时,max min ()()f x f x M -≥”.这样问题又转化为求函数最值问题.22.设数列{}n a 对任意*N n ∈都有()()()1122n n kn b a a p a a a +++=+++L (其中k 、b 、p 是常数) .(Ⅰ)当0k =,3b =,4p =-时,求12n a a a ++⋅⋅⋅+;(Ⅱ)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式; (Ⅲ)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”,使得对任意*N n ∈,都有0n S ≠,且12311111112nS S S S <+++⋅⋅⋅+<.若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.【答案】(Ⅰ)312n -;(Ⅱ)23n a n =-;(Ⅱ)存在,1{2,4,6,8,10}a ∈【解析】(Ⅰ)当0k =,3b =,4p =-时,由已知条件推导出113()2n n n a a a ++-=,13n n a a +=,由此得到数列{}n a 是以首项为1,公比为3的等比数列,从而能求出12n a a a ++⋅⋅⋅+;(Ⅱ)当1k =,0b =,0p =,由已知条件推导出2120n n n na na na ++-+=,从而得到数列{}n a 是等差数列,由此求出23n a n =-;(Ⅲ)由(Ⅱ)知数列{}n a 是等差数列,12(1)n a a n =+-,由此进行验证,求出数列{}n a 的首项1a 的所有取值.【详解】(Ⅰ)当0k =,3b =,4p =-时,13()4n a a +-=()122n a a a +++L ①,用1n +去换n 得113()4n a a ++-=()1212n a a a ++++L ②,②-①得,113()2n n n a a a ++-=,即13n n a a +=,在①中令1n =得11a =,故{}n a 是以1为首项,3为公比的等比数列,所以1113n n n a a q --==,从而1121(13)31133132n n n n a a a -++⋅⋅⋅+⨯--=+++==-L . (Ⅱ)当1k =,0b =,0p =时,1()n n a a +=()122n a a a +++L ③,用1n +去换n 得11(1)()n n a a +++=()1212n a a a ++++L ④,④-③得,11(1)0n n n a na a +--+=⑤,用1n +去换n 得211(1)0n n na n a a ++-++=⑥,⑥-⑤得,2120n n n na na na ++-+=,即212n n n a a a +++=,故{}n a 是等差数列,因为33a =,915a =,所以公差93293a a d -==-, 故3(3)23n a a n d n =+-=-.(Ⅲ)由(Ⅱ)知{}n a 是等差数列,因212a a -=,所以12(1)n a a n =+-,假设存在这样的“封闭数列”,则对任意*,m n ∈N ,必存在*t N ∈,使得12(1)a m +-+12(1)a n +-=12(1)a t +-,所以12(1)a t m n =--+,故1a 为偶数,1{2,4,6,8,10}a ∈,又由已知,111112S <<,所以1112a <<,此时1(1)n S n n a =+-;当1112a <<时,0n S ≠,111111()11n S a n n a =--+-,所以11123111111n a S S S S S =≤+++⋅⋅⋅+ 111111(1)1111a n a a =-<≤-+--, 故1{2,4,6,8,10}a ∈ 【点睛】本题考查数列的前n 项和的求法,考查数列的通项公式的求法,考查数列的首项的求法,解题时要认真审题,是一道中档题.。
北京高三下学期3月月考数学试卷(解析版)

2023北京汇文中学高三3月月考数学一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,那么( )()(){|210}A x x x =∈+-<Z {}2,1B =--A B ⋃=A. B. {}2,1,0,1--{}2,1,0--C. D.{}2,1--{}1-【答案】B 【解析】【分析】求解一元二次不等式从而求解集合,再根据并集的定义求解. A A B ⋃【详解】由,得, ()(){|210}A x x x =∈+-<Z {}1,0A =-结合,可知. {}2,1B =--{}2,1,0A B =-- 故选:B . 2. 如果,那么下列不等式一定成立的是( )0a b >>A. B.C. D.a b <11a b>1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ln ln a b >【答案】D 【解析】【分析】根据不等式的性质判断A 、B ,再根据指数函数的性质判断C ,根据对数函数的性质判断D ; 【详解】解:因为,所以,故A 错误;0a b >>0a b >>因为,所以,故B 错误;0a b >>11ab<因为,且在定义域上单调递减,所以,故C 错误;0a b >>12xy ⎛⎫= ⎪⎝⎭1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭因为,且在定义域上单调递增,所以,故D 正确;0a b >>ln y x =()0,∞+ln ln a b >故选:D3. 如果平面向量,,那么下列结论中正确的是( ).(2,0)a =(1,1)b =A. B. C. D.||a b |=|a b ⋅= ()a b b -⊥v v v a b【答案】C 【解析】【详解】由平面向量,知:(2,0)a = (1,1)b =在中,,A ||2a = ||b =r∴,故错误;||||a b ≠A 在中,,故错误;B 2a b ⋅=B 在中,,C (1,1)a b -=-∴,()110a b b -⋅=-=∴,故正确;()a b b -⊥C 在中,∵, D 2011≠∴与不平行,故错误.a bD 综上所述. 故选.C 4. 已知直线m ,n 和平面,如果,那么“m ⊥n”是“m ⊥”的( ) αn ⊂ααA. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【详解】若,则,即必要性成立,m α⊥m n ⊥当时,不一定成立,必须垂直平面内的两条相交直线,即充分性不成立, m n ⊥m α⊥m α故“”是“”的必要不充分条件, m n ⊥m α⊥故选:.B 5. 在等比数列中,,,则等于( ) {}n a 13a =1239a a a ++=456a a a ++A. 9 B. 72C. 9或70D. 9或72-【答案】D 【解析】【分析】利用等比数列的性质求出公比,即可求出的值. 456a a a ++【详解】由题意,,N n *∈在等比数列中,,, {}n a 13a =1239a a a ++=设公比为,q ,即,解得或,21119a a q a q ∴++=23339q q ++=2q =-1q =∴,()334561239a a a a a q a q ++=++=当时,, 1q =4569a a a ++=当时,.2q =45672a a a ++=-故选:D.6. 下列函数中,定义域为的奇函数是 R A. B. C. D.21y x =+tan y x =2x y =sin y x x =+【答案】D 【解析】【详解】定义域为R,所以舍去B,又为偶函数,为非奇非偶函数, 21y x =+y =2x 故选:D.7. 已知双曲线的一个焦点是,则其渐近线的方程为( )2221(0)y x b b-=>(2,0)A. B.0x ±=0y ±=C. D.30x y ±=30x y ±=【答案】B 【解析】【分析】求出的值即得解. b【详解】解:由题得,21+4,b b =∴=所以双曲线的渐近线方程为. y x ==0y ±=故选:B8. 在空间直角坐标系中,正四面体的顶点、分别在轴,轴上移动.若该正四O xyz --P ABC A B x y 面体的棱长是,则的取值范围是( ). 2||OPA. B.C.D.1]-+[1,3]1,2]-1]【答案】A 【解析】【分析】固定正四面体的位置,原点在以为直径的球面上运动,由此根据球的性质可以-P ABC O AB 得到答案.【详解】如图所示,若固定正四面体的位置, -P ABC 则原点在以为直径的球面上运动, O AB 设的中点为, AB M则PM ==所以原点到点的最近距离等于减去球的半径, O P PM M 最大距离是加上球的半径, PM M,11OP -≤≤即的取值范围是. ||OP 1]-+故选:.A9. 如果函数的两个相邻零点间的距离为2,那么()sin (0)f x x x ωωω=+>的值为( ).()()()()1239f f f f ++++LA. 1B.C.D.1-【答案】A 【解析】【分析】利用辅助角公式化简函数,由已知求出,再结合函数式计算作答. ()f x ω【详解】依题意,,函数的周期,而,则,π()2sin(3f x x ω=+()f x 4T =0ω>2ππ2T ω==,ππ()2sin(23f x x =+,, 5π11π(1)(3)2sin2sin 066f f +=+=4π7π(2)(4)2sin 2sin 033f f +=+=所以. ()()()()5π1239(1)2[(1)(2)(3)(4)](1)2sin 16f f f f f f f f f f ++++=++++===L 故选:A10. 如图,已知正方体的棱长为,、分别是棱、上的动点,设1111ABCD A B C D -1E F AD 11B C AE x =,.若棱与平面有公共点,则的取值范围是( )1B F y =1DD BEF x y +A. B.C.D.[]1,213,22⎡⎤⎢⎥⎣⎦3,22⎡⎤⎢⎥⎣⎦[]0,1【答案】A 【解析】【分析】取特殊值和,进行验证,结合排除法可得出结论.1x y ==0x =1y =【详解】由题意,若,则棱与平面交于点,符合题意,此时; 1x y ==1DD BEF D 2x y +=若,,则棱与平面交于线段,符合题意,此时. 1x =0y =1DD BEF 1DD 1x y +=排除B 、C 、D 选项. 故选:A .【点睛】本题考查线面位置关系,考查特殊值法的运用,属于中档题.二、填空题:共5小题,每小题5分,共25分.11. 复数____. 1i1i+=-【答案】 i 【解析】【分析】利用复数的代数形式的四则运算法则求解.【详解】. ()()()21i 1i2i i 1i 1i 1i 11++===--++故答案为:.i 12. 在的展开式中,常数项是__________(用数字作答). 261()x x-【答案】15 【解析】【分析】求出通项,令由此求得展开式中常数项. ()36161 rr r r T C x -+=-,3662r r -==,【详解】在的展开式中,通项 621x x ⎛⎫- ⎪⎝⎭()()2612316611 r r r rr r r r T C x x C x (),---+=-=-令 .故展开式中常数项是 , 3662r r -==,()2261 15 C -=,故答案为 15.【点睛】本题考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题. 13. 若,则______ ;lg 2lg 21a -==a 【答案】40 【解析】 【分析】利用对数的运算公式,,直接求值即可.log log na a n M M =log log log ()a a a M N MN +=【详解】lg 2lg 21a -=Qlg 2lg 21lg 4lg10lg 40a ∴=+=+=40a ∴=故答案为:4014. 在中,角的对边分别为,若,,,则ABC ,,A B C ,,a b c 3c =π3C =sin 2sin B A ==a __________.【解析】【分析】由正弦定理得到,再由余弦定理求出的值. 2b a =a 【详解】由正弦定理得:,2b a =再有余弦定理得:,22222225591cos 22242a b c a c a C ab a a a +---====⨯⋅解得:. a =故答案为:15. 设函数其中.()3,log ,,x a f x x x a ≤≤=>⎪⎩0a >①若,则______;3a =()9f f =⎡⎤⎣⎦②若函数有两个零点,则的取值范围是______. ()2y f x =-a 【答案】 ①.②.[)4,9【解析】【分析】①代值计算即可;②分别画出与y =2的图象,函数有两个零点,结合图象可得答案.()y f x =()2y f x =-【详解】解:①当时, 3a =()33,log ,3,x f x x x ≤≤=>⎪⎩则, ()39log 92f ==∴()()92f f f ⎡⎤⎣⎦==②分别画出与y =2的图象,如图所示,()y f x =函数有两个零点,结合图象可得4≤a <9, ()2y f x =-故a 的取值范围是. [)4,9;.[)4,9【点睛】本题主要考查函数零点个数的判断,根据函数与方程之间的关系转化为两个函数的交点个数问题是解决本题的关键.注意要利用数形结合.三、解答题:共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 如图,在四边形中,,,,.ABCD //ABCD AB =CD =cos A =1cos 3ADB ∠=(1)求; cos BDC ∠(2)求的长. BC 【答案】(12. 【解析】【分析】(1)计算出、,利用两角和的余弦公式可求得的值; sin A sin ADB ∠cos cosBDC ABD ∠=∠(2)在中,利用正弦定理可求出的长,然后在中利用余弦定理可求得的长. ABD △BD BCD △BC 【详解】(1)因为,,则、均为锐角,cos A =1cos 3ADB ∠=A ADB ∠所以,,,sin A ==sin ADB ∠==()()cos cos cos sin sin cos cos ABD A ADB A ADB A ADB A ADB π∠=--∠=-+∠=∠-∠,13==,则,因此,; //AB CD Q BDC ABD ∠=∠cos cos BDC ABD ∠=∠=(2)在中,由正弦定理可得,ABD △sin sin AB BDADB A=∠可得,sin 3sin AB ABD ADB===∠在中,由余弦定理可得,BCD△2222cos 962311BC BD CD BD CD BDC =+-⋅∠=+-⋅=因此,.BC =【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有、、的齐次式,优先考虑正弦定理“边化角”; a b c (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.17. 如图,在四棱锥中,O 是边的中点,底面.在底面P ABCD -AD PO ⊥,1ABCD PO =ABCD 中,.//,,1,2BC AD CD AD BC CDAD ⊥===(1)求证:平面;//AB POC(2)求二面角的余弦值. B AP D --【答案】(1)证明见解析;(2. 【解析】【分析】(1)证明后可证线面平行;//AB OC (2)以为轴建立空间直角坐标系,用空间向量法求二面角.,,OB OD OP ,,x y z 【详解】(1)由题意,又,所以是平行四边形,所以, BC OA =//BC OA BCOA //AB OC 又平面,平面,所以平面;AB ⊄POC OC ⊂POC //AB POC (2),所以是平行四边形,所以,,而,,//BC OD BC OD =BCDO //OB DC OB CD =CD AD ⊥所以,OB AD ⊥以为轴建立空间直角坐标系,如图,,,OB OD OP ,,x y z 则,,,,,(1,0,0)B (0,1,0)A -(0,0,1)P (1,1,0)AB = (0,1,1)=AP 设平面的一个法向量为,则ABP (,,)n x y z =,取,则,即, 00n AB x y n AP y z ⎧⋅=+=⎨⋅=+=⎩1x =1,1y z =-=(1,1,1)n =- 易知平面的一个法向量是,APD (1,0,0)m =所以cos ,m n m n m n⋅<>===所以二面角. B AP D --【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论;(2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).18. 自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下: 20以下 [)20,30 [)30,40 [)40,50 [)50,60[]60,7070以上 使用人数312 17 6 4 2 0 未使用人数 0314363(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;[)30,50(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人[]50,70X 中年龄在的人数,求随机变量的分布列及数学期望;[)50,60X (Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋. 【答案】;(Ⅱ)详见解析;(Ⅲ)2200 17100【解析】 【分析】(Ⅰ)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有3+14=17人,由概率公式即可得到所求值;(Ⅱ)所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望; X (Ⅲ)随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值.【详解】(Ⅰ)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人, 所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为. 17100P =(Ⅱ)所有的可能取值为1,2,3,X , ()124236C C 115C P X ===, ()214236C C 325C P X ===. ()304236C C 135C P X ===所以的分布列为XX 1 2 3P 15 35 15所以的数学期望为. X 1311232555EX =⨯+⨯+⨯=(Ⅲ)在随机抽取的100名顾客中,使用自由购的共有人,3121764244+++++=所以该超市当天至少应准备环保购物袋的个数估计为. 4450002200100⨯=【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,是一道综合题. 19.已知函数.2()()x k f x x k e =-(Ⅰ)求的单调区间;()f x (Ⅱ)若对于任意的,都有≤,求的取值范围. (0,)x ∈+∞()f x 1ek 【答案】(Ⅰ)当时,的单调递增区间是和:单调递减区间是,当0k >()f x (,)k -∞-(,)k +∞(,)k k -时,的单调递减区间是和:单调递减区间是.0k <()f x (,)k -∞(,)k -+∞(,)k k -(Ⅱ) . 102⎡⎫-⎪⎢⎣⎭,【解析】【分析】【详解】,令,当时,的情况如下: 221()()x k f x x k e k -'=()0,f x x k ='=±0k >(),()f x f x ' x (,)k -∞-k - (,)k k - k (,)k +∞ ()f x '+0 -0 + ()f x 214k e -所以,的单调递增区间是和:单调递减区间是,当时,与()f x (,)k -∞-(,)k +∞(,)k k -0k <()f x 的情况如下:()f x ' x (,)k -∞k (,)k k - k - (,)k -+∞ ()f x '-0 + 0 - ()f x 0 214k e -所以,的单调递减区间是和:单调递减区间是.()f x (,)k -∞(,)k -+∞(,)k k -(Ⅱ)当时,因为,所以不会有当时,由(Ⅰ)知0k >11(1)k k f k e e++=>1(0,),().x f x e ∀∈+∞≤0k <在上的最大值是所以等价于, 解得()f x (0,)+∞24()k f k e -=1(0,),()x f x e ∀∈+∞≤24()k f k e-=1e ≤故当时,的取值范围是. 10.2k -≤<1(0,),()x f x e ∀∈+∞≤k 102⎡⎫-⎪⎢⎣⎭ 20. 已知椭圆的一个顶点为,焦距为. 2222:1(0)x y E a b a b+=>>(0,1)A (1)求椭圆E 的方程;(2)过点作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点(2,1)P -M ,N ,当时,求k 的值.||2MN =【答案】(1) 2214x y +=(2)4k =-【解析】【分析】(1)依题意可得,即可求出,从而求出椭圆方程;22212b c c a b =⎧⎪=⎨⎪=-⎩a (2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直()11,B x y ()22,C x y 线、的方程,表示出、,根据得到方程,解得即可;AB AC M x N x N M MN x x =-【小问1详解】解:依题意可得,,1b =2c =222c a b =-所以,所以椭圆方程为; 2a =2214x y +=【小问2详解】解:依题意过点的直线为,设、,不妨令()2,1P -()12y k x -=+()11,B x y ()22,C x y 1222x x -≤<≤,由,消去整理得, ()221214y k x x y ⎧-=+⎪⎨+=⎪⎩y ()()22221416816160k x k k x k k +++++=所以,解得,()()()222216841416160k k k k k ∆=+-++>0k <所以,, 212216814k k x x k ++=-+2122161614k k x x k+⋅=+直线的方程为,令,解得, AB 1111y y x x --=0y =111M x x y =-直线的方程为,令,解得, AC 2211y y x x --=0y =221N x x y =-所以 212111N M x x MN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦ ()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++, ()()12212222x x k x x -==++所以,()()122122x x k x x -=++()212124k x x x x =+++⎡⎤⎣⎦ 22221616168241414k k k k k kk ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414k k k k k k k ⎡⎤=+-+++⎣⎦+整理得,解得4k =4k =-21. 设数列.如果,且当时,()12:,,,2n A a a a n ≥ {}()1,2,,1,2,,i a n i n ∈= i j ≠,则称数列A 具有性质.对于具有性质的数列A ,定义数列,()1,i j a a i j n ≠≤≤P P ()121:,,,n T A t t t - 其中. ()111,,1,2,,10,k k k k k a a t k n a a ++⎧==-⎨⎩ <>(1)对,写出所有具有性质的数列A ;():0,1,1T A P (2)对数列,其中,证明:存在具有性质的数列()121:,,,2n E e e e n -≥ {}()0,11,2,,1i e i n ∈=- P A ,使得与为同一个数列;()T A E(3)对具有性质的数列A ,若且数列满足P ()115n a a n -=≥()T A ()0,,1,2,,11,i i t i n i ⎧==-⎨⎩ 为奇数为偶数,证明:这样的数列A 有偶数个.【答案】(1)、、4,1,2,33,1,2,42,1,3,4(2)证明见解析(3)证明见解析 【解析】 【分析】(1)根据数列的定义,得到且,,,确定,按照()T A 4n =12a a >23a a <34a a <21a =14a =或分别讨论可得答案;44a =(2)设数列:中恰有项为1,在按照、、三种情况分别讨E 121,,,n e e e - s 0s =1s n =-01s n <<-论可证结论;(3)按照的奇偶分类讨论,结合数列的定义可证结论.n ()T A 【小问1详解】因为,所以,则():0,1,1T A 13-=n 4n =因为,,,所以,,, 10t =21t =31t =12a a >23a a <34a a <又,{1,2,3,4}(1,2,3,4)i a i ∈=所以,或,21a =14a =44a =当时,,14a =342,3a a ==当时,或,44a =133,2a a ==132,3a a ==综上所述:所有具有性质的数列A 为:、、.P 4,1,2,33,1,2,42,1,3,4【小问2详解】由于数列:,其中, E 121,,,n e e e - {0,1}i e ∈(1,2,3,1,2)i n n =-≥ 不妨设数列:中恰有项为1,E 121,,,n e e e - s 若,则符合题意,0s =:,1,,1A n n - 若,则符合题意,1s n =-:1,2,,A n 若,则设这项分别为, 01s n <<-s 12,,,s k k k e e e 12()s k k k << 构造数列,令分别为, 12:,,,n A a a a L 1211,,1,s k k k a a a +++ 1,2,,n s n s n -+-+ 数列的其余各项分别为, A 12,,,n s m m m a a a - 12()n s m m m -<<< ,1,,1n s n s --- 经检验数列符合题意.A 【小问3详解】对于符合题意的数列,1,2:,,(5)n A a a a n ≥ ①当为奇数时,存在数列符合题意,n 11:,,,n n A a a a -'且数列与不同,与相同, A A '()T A ()T A '按这样的方式可由数列构造出数列, A 'A 所以为奇数时,这样的数列有偶数个, n A 当时,这样的数列也有偶数个, 3n =A ②当为偶数时,n 如果是数列中不相邻的两项,交换与得到数列符合题意, ,1n n -A n n 1-A '且数列与不同,与相同, A A '()T A ()T A '按这样的方式可由数列构造出数列, A 'A 所以这样的数列有偶数个,A 如果是数列中相邻的两项,由题设知,必有,,, ,1n n -A 1n a n -=1n a n =-12a n =-除这三项外,是一个项的符合题意的数列, 232,,,n a a a - 3n -A 由①可知,这样的数列有偶数个, A 综上,这样的数列有偶数个.A 【点睛】关键点点睛:正确理解数列的定义,并利用定义求解是解题关键. ()T A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市育英中学2020届高三3月月考数学试卷一、选择题:(本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合11,2,2A ⎧⎫=⎨⎬⎩⎭,集合2{|,}B y y x x A ==∈,则A B ⋂=( ) A. 12⎧⎫⎨⎬⎩⎭B. {}2C. {}1D. φ 【答案】C【解析】试题分析:因,故,选C. 考点:交集运算.2.设a,b 为实数,若复数1+21i i a bi =++,则 A. 31,22a b == B. 3,1a b == C. 13,22a b == D. 1,3a b ==【答案】A【解析】【分析】先化简,然后用复数相等的条件,列方程组求解.【详解】由121i i a bi +=++可得1+2i =(a ﹣b )+(a +b )i ,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =, 故选A .【点睛】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题. 3.过抛物线24y x =的焦点F 的直线l 交抛物线于,A B 两点.若AB 中点M 到抛物线准线的距离为6,则线段AB 的长为( )A. 6B. 9C. 12D. 无法确定【答案】C【解析】试题分析:AB 中点M 到抛物线准线的距离为6,则A,B 到准线的距离之和为12,即12121212x x p AB x x p ++=∴=++=考点:直线与抛物线相交问题4.已知,a b 是两条不同的直线,,αβ是两个不同的平面,则//a b 的一个充分条件是( )A. //a α,//b αB. //a α,b β//,//αβC. a α⊥,b β⊥,//αβD. αβ⊥,a α⊥,b β// 【答案】C【解析】【分析】在A 中,a 与b 相交、平行或异面;在C 中,由线面垂直的性质可得a ∥b ;在B 、D 中,均可得a 与b 相交、平行或异面;【详解】由a ,b 是两条不同的直线,α,β是两个不同的平面,在A 中,//a α,//b α,则a 与b 相交、平行或异面,故A 错误;在B 中,//a α,//b β,//αβ,则a 与b 相交、平行或异面,故B 错误;在C 中,由a α⊥,//αβ,则a β⊥,又b β⊥,由线面垂直的性质可知//a b ,故C 正确; 在D 中,αβ⊥,a α⊥,//b β,则a 与b 相交、平行或异面,故D 错误.故选C .【点睛】本题考查线线平行的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.5.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a a b -的值是 ( ) A. 12 B. 12- C. 12或12- D. 14【答案】A【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d ,则4=1+3d ,解得d =1,∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q ,则4=q 4,解得q 2=2,∴b 2=q 2=2. 则21221122a ab --==. 本题选择A 选项.6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠劵1:若标价超过50元,则付款时减免标价的10%;优惠劵2:若标价超过100元,则付款时减免20元;优惠劵3:若标价超过100元,则超过100元的部分减免18%.若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为( )A. 179元B. 199元C. 219元D. 239元【答案】C【解析】【分析】设购买的商品的标价为x 元,根据题意列出不等式即可得到答案.【详解】设购买的商品的标价为x 元,由题意,0.120x ⨯>,且0.1(100)0.18x x ⨯>-⨯,解得200225x <<.故选:C. 【点睛】本题考查利用函数模型的选择问题,考查学生分析解决问题的能力,是一道基础题. 7.某三棱锥的三视图如图所示,则该三棱锥的体积为A. 13B. 23C. 1D. 43【答案】D 【解析】【分析】由已知中的三视图可得,该几何体是一个俯视图中右下角的三角形为底面的三棱锥,代入棱锥的的体积公式,即可求解.【详解】由已知中的三视图可得:该几何体是一个如图所示的三棱锥1D ABE -,其底面ABE 的面积为12222S =⨯⨯=,高为2h =, 所以该三棱锥的体积为11422333V Sh ==⨯⨯=,故选D.【点睛】本题考查了几何体的三视图及组合体的表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.8.若双曲线()222210,0x y a b a b-=>>的渐近线与圆()2221x y -+=相切,则双曲线的离心率为( )A. 2B.C.D. 【答案】C【解析】【分析】利用圆心(2,0)到渐近线的距离等于半径即可建立,,a b c 间的关系.【详解】由已知,双曲线的渐近线方程为0bx ay ±=,故圆心(2,0)到渐近线的距离等于1,1=,所以223a b =,c e a ====3. 故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立,,a b c 三者间的方程或不等关系,本题是一道基础题.9.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,椭圆C 上点A 满足212.AF F F ⊥若点P 是椭圆C 上的动点,则12F P F A⋅u u u r u u u u r 的最大值为( )A. B. C. 94 D. 154【答案】B【解析】【分析】由已知可得点A ,1F ,2F 的坐标,再利用数量积运算法则和点P 的纵坐标的取值范围即可得出最大值.【详解】由椭圆C :22143x y +=可得:24a =,23b =,()11.1,0c F ==∴-,()21,0F .212AF F F ⊥Q ,31,2A ⎛⎫∴ ⎪⎝⎭. 设(),P x y ,则221.43x y +=又33y -≤≤, ()1233331,0,222F P F A x y y ⎛⎫∴⋅=+⋅=≤ ⎪⎝⎭u u u r u u u u r . 12F P F A ∴⋅u u u r u u u u r 的最大值为33. 故选B .【点睛】本题考查了椭圆的标准方程及其性质、数量积运算等基础知识与基本技能方法,属于基础题.10.在长方体1111ABCD A B C D -中,12,1AB BC AA ===,点M 为1AB 的中点,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则MP PQ +的最小值为( )A. 22B. 3C. 34D. 1【答案】C【解析】【分析】画出图形,将平面11AB C 沿1AC 翻折,使其与平面1ACC 在共面,将折线段转化为直线段距离最小,从而求出MP +PQ 的最小值.【详解】 如图1,显然当Q 是P 在底面ABCD 的射影时MP PQ +才可能最小,将平面11AB C 沿1AC 翻折,使其与平面1ACC 在共面,如图2所示,此时易得130CAC ∠=o ,AM =显然当,,M P Q三点共线时,MP PQ +取得最小值,此时min 13sin sin 6024MQ AM CAB =∠==o . 故选:C. 【点睛】本题考查立体几何翻折问题中的最值问题,考查空间想象能力以及学生的计算能力,难度比较大.二、填空题:(本大题共6小题,每小题5分,共30分) 11.12x ⎛ ⎝展开式中的常数项为__________. 【答案】220-【解析】【分析】 写出12x ⎛- ⎝展开式的通项,令x 的指数为零,即得常数项. 【详解】12x ⎛ ⎝展开式中第1k +项为 41212311212((1),0,1,2,12k k k k k k k T C xC x k --+==-=L , 令4120,93k k -==,所以常数项为931212220C C -=-=-. 故答案为:-220【点睛】本题考查二项展开式中特定的项,掌握二项展开式的通项是解题的关键,属于基础题.12.在ABC ∆中,3A π∠=,3BC =,AB =C ∠= . 【答案】4π 【解析】 分析:直接利用正弦定理求∠C.63323,3sin 2,sin ,.2244sin 3C C C πππ=∴=∴=∴=或 因为AB <BC ,所以∠C <∠A=3π,所以4C π∠=.故答案为4π. 点睛:(1)本题主要考查正弦定理解三角形,意在考查学生对该基础知识的掌握水平.(2) 解三角形如果出现多解,要利用三角形内角和定理或三角形边角不等关系来检验.13.设()f x 是偶函数,对于任意的()0x x >都有()()222f x f x +=--,已知()14f -=,那么()3f -等于______.【答案】-8【解析】【分析】由已知得()()f x f x -=,()2(4)f x f x =--,进而得到()2(4)f x f x =-+,再令3x =-即可.【详解】因为()f x 是偶函数,所有()()f x f x -=①,又()()222f x f x +=--,所以()2(4)f x f x =--②,由①②可得()2(4)f x f x =-+,故()2(1)2(13)8f f f =-=---=-.故答案为:8-.【点睛】本题考查求抽象函数在某点的函数值,涉及到函数的奇偶性,是一道基础题. 14.已知函数()sin f x x ω=(0>ω),若函数()y f x a =+(0a >)的部分图象如图所示,则ω=__________,a 的最小值是__________.【答案】 (1). 2 (2).12π【解析】 根据图形知,函数的周期3113,241264T T ππππω=-=∴==(),又函数(y f x a =+的图象经过16(,),π 所以22206212a k k Z a k k Z a Q ,;,;πππππ⨯+=+∈∴=+∈> a ∴的的最小值是12π点睛:本题考查了三角函数y Asin x ωϕ=+() 的图象与性质的应用问题,是基础题目.15.设()32,,x x a f x x x a⎧<=⎨≥⎩,若不存在实数b ,使得函数()()g x f x b =-有两个零点,则a 的取值范围是______.【答案】[0,1]【解析】【分析】函数()()g x f x b =-零点个数等于()f x 与y b =交点个数,然后分0a <,0a =或1a =,01a <<,1a >四种情况讨论即可.【详解】函数()()g x f x b =-零点个数等于()f x 与y b =交点个数,当0a <时,如图1所示,存在实数b ,使得()f x 与y b =有两个不同的交点,不满足题意; 当0a =或1a =时,此时()f x 是单调递增函数,故满足题意;当01a <<时,如图2,不存在实数b ,使得()f x 与y b =有两个不同的交点,满足题意; 当1a >时,如图3,存在实数b ,使得()f x 与y b =有两个不同的交点,不满足题意; 综上,不存在实数b 使函数()()g x f x b =-有两个零点a 的取值范围为[0,1].故答案为:[0,1].【点睛】本题考查已知函数零点个数求参数的问题,在做此类题,一定要注意等价转化与数形结合的思想,本题是一道中档题.16.在平面直角坐标系xOy 中,动点(),P x y 到两坐标轴的距离之和等于它到定点()1,1的距离,记点P 的轨迹为C .给出下面四个结论:①曲线C 关于原点对称;②曲线C 关于直线y x =对称;③点()()2,1a a R -∈在曲线C 上;④在第一象限内,曲线C 与x 轴的非负半轴、y 轴的非负半轴围成的封闭图形的面积小于12.其中所有正确结论的序号是______. 【答案】②③④【解析】【分析】 根据动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,可得曲线方程,作出曲线的图象,即可得到结论.【详解】动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,所以||||x y +=即||10xy x y ++-=.若0xy >,则10xy x y ++-=,即(1)(1)2x y ++=,故211y x =-+, y 以(1,1)--为中心的双曲线的一支;若0xy <,则10xy x y --+=,即1)0(1)(x y -=-,故1(0)x y =<或1(0)y x =<,所以函数的图象如图所示所以曲线C 关于直线y x =对称,②正确;又22|1|110a a -⨯-+-=,所以点()()2,1a a R -∈在曲线C 上,③正确;在第一象限内,曲线C 与x 轴的非负半轴、y 轴的非负半轴围成的封闭图形的面积小于12AOB S ∆=,故④正确. 故答案为:②③④.【点睛】本题考查求曲线的轨迹方程,考查数形结合的数学思想方法,本题解题关键是正确作出函数图象,是一道中档题.三、解答题:(本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程)17.已知函数3()cos (sin 3cos )f x x x x =+-,x ∈R . (Ⅰ)求f (x )的最小正周期和单调递增区间;(Ⅱ)设α>0,若函数g (x )=f (x+α)为奇函数,求α的最小值. 【答案】(Ⅰ)周期π,单调递增区间为5[,]1212k k ππππ-+,k ∈Z .(Ⅱ)【解析】 【详解】(1),所以函数的最小正周期.由, 得,所以函数的单调递增区间为. (注:或者写成单调递增区间为.) (2)解:由题意,得, 因为函数为奇函数,且, 所以,即, 所以, 解得,验证知其符合题意. 又因为,所以的最小值为.考点:三角函数的图象和性质.18.自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:20以下 [)20,30[)30,40[)40,50[)50,60[]60,7070以上 使用人数 3 12 17 6 4 2 0 未使用人数 0314363(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率; (Ⅱ)从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步了解情况,用X 表示这3人中年龄在[)50,60的人数,求随机变量X 的分布列及数学期望;(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋. 【答案】17100;(Ⅱ)详见解析;(Ⅲ)2200 【解析】 【分析】(Ⅰ)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有3+14=17人,由概率公式即可得到所求值;(Ⅱ)X 所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望;(Ⅲ)随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值.【详解】(Ⅰ)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人, 所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为17100P =. (Ⅱ)X 所有的可能取值为1,2,3,()124236C C 115C P X ===, ()214236C C 325C P X ===, ()304236C C 135C P X ===. 所以X 的分布列为所以X 的数学期望为1311232555EX =⨯+⨯+⨯=. (Ⅲ)在随机抽取的100名顾客中,使用自由购的共有3121764244+++++=人, 所以该超市当天至少应准备环保购物袋的个数估计为4450002200100⨯=. 【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,是一道综合题. 19.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,E 为PC 中点,点F 在PB 上,且PB ⊥平面DEF ,连接BD ,BE .(Ⅰ)证明:DE ⊥平面PBC ;(Ⅱ)试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知2AD =,2CD =,求二面角F AD B --的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)1010. 【解析】【详解】(Ⅰ)因为PD ⊥面ABCD ,BC ⊂面ABCD ,所以BC PD ⊥. 因为四边形ABCD 为矩形,所以BC DC ⊥.PD DC D ⋂=,所以BC ⊥面PDC .DE ⊂面PDC ,DE BC ⊥,在PDC ∆中,PD DC =,E 为PC 中点,所以DE PC ⊥.PC BC C ⋂=,所以DE ⊥面PBC .(Ⅱ)四面体DBEF 是鳖臑,其中2BED FED π∠=∠=, 2BEF BFD π∠=∠=.(Ⅲ)以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.()0,0,0D ,()2,0,0A , ()2,0C ,(2P ,()2,0B .设PF PB λ=u u u r u u u r,则()2222F λλλ.DF PB ⊥得0DF PB =u u u r u u u r g 解得14λ=.所以12322F ⎛ ⎝⎭.设平面FDA 的法向量(),,n x y z =r,{n DF n DA⊥⇒⊥u u u r r u u u r r 12320{24420x y z x ++==令1z =得0x =,3y =-. 平面FDA 的法向量()0,3,1n =-r,平面BDA 的法向量()0,0,2DP =u u u r,cos n r <,·21010102n DP DP n DP->===-u u u r r u u u r u u u r r . 二面角F AD B --的余弦值为1010. 20.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,椭圆C 与y 轴交于,A B 两点,且2AB =.(1)求椭圆C 的方程;(2)设点P 是椭圆C 上的一个动点,且直线,PA PB 与直线4x =分别交于,M N 两点.是否存在点P 使得以MN 为直径的圆经过点()2,0D ?若存在,求出点P 的横坐标;若不存在,说明理由.【答案】(1)2214x y +=;(2)点不存在. 【解析】分析:(1)根据椭圆的几何性质知22b =,即1b =,再由离心率得32c e a ==,从而可得2a =,得椭圆方程;(2)假设点P 存在,并设00(,)P x y ,写出PA 的方程,求出M 点坐标,同理得N 点坐标,求出MN 的中点坐标,即圆心坐标,利用圆过点D 得一关于00,x y 的等式,把P 点坐标代入椭圆方程后也刚才的等式联立解得0x ,注意0x 的范围,即可知存在不存在. 详解:(1)由已知,得知,又因为离心率为,所以.因为,所以,所以椭圆的标准方程为.(2)假设存在.设由已知可得,所以的直线方程为,的直线方程为,令,分别可得,,所以,线段的中点,若以为直径的圆经过点D(2,0),则,因为点在椭圆上,所以,代入化简得,所以,而,矛盾,所以这样的点不存在.点睛:解析几何中存在性命题常采用“肯定顺推法”,将不确定性问题明朗化,其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则不存在.21.已知函数()1xxf x e -=. (1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)求函数()f x 的零点和极值;(3)若对任意[)12,,x x a ∈+∞,都有()()1221e f x f x -≥-成立,求实数a 的最小值. 【答案】(1)210x y +-=;(2)零点1x =,极小值21e-;(3)1.【解析】 【详解】(1)因为, 所以'(0)2f =-. 因为,所以曲线在处的切线方程为.(2)令,解得,所以的零点为.由解得,则及的情况如下:2- 0 +所以函数在时,取得极小值.(3)法一: 当时,. 当时,. 若,由(2)可知的最小值为,的最大值为,所以“对任意,有恒成立”等价于即, 解得. 所以的最小值为1.法二:当时,. 当时,.且由(2)可知,的最小值为, 若,令,则而,不符合要求,所以. 当时,,,所以,即满足要求,综上,的最小值为1.22.设数列{}n a 对任意*N n ∈都有()()()1122n n kn b a a p a a a +++=+++L (其中k 、b 、p 是常数) .(Ⅰ)当0k =,3b =,4p =-时,求12n a a a ++⋅⋅⋅+;(Ⅱ)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式; (Ⅲ)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”,使得对任意*N n ∈,都有0n S ≠,且12311111112nS S S S <+++⋅⋅⋅+<.若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.【答案】(Ⅰ)312n -;(Ⅱ)23n a n =-;(Ⅱ)存在,1{2,4,6,8,10}a ∈【解析】 【分析】(Ⅰ)当0k =,3b =,4p =-时,由已知条件推导出113()2n n n a a a ++-=,13n n a a +=,由此得到数列{}n a 是以首项为1,公比为3的等比数列,从而能求出12n a a a ++⋅⋅⋅+; (Ⅱ)当1k =,0b =,0p =,由已知条件推导出2120n n n na na na ++-+=,从而得到数列{}n a 是等差数列,由此求出23n a n =-;(Ⅲ)由(Ⅱ)知数列{}n a 是等差数列,12(1)n a a n =+-,由此进行验证,求出数列{}n a 的首项1a 的所有取值.【详解】(Ⅰ)当0k =,3b =,4p =-时,13()4n a a +-=()122n a a a +++L ①,用1n +去换n 得113()4n a a ++-=()1212n a a a ++++L ②,②-①得,113()2n n n a a a ++-=,即13n n a a +=,在①中令1n =得11a =,故{}n a 是以1为首项,3为公比的等比数列,所以1113n n n a a q --==,从而1121(13)31133132n n n n a a a -++⋅⋅⋅+⨯--=+++==-L . (Ⅱ)当1k =,0b =,0p =时,1()n n a a +=()122n a a a +++L ③,用1n +去换n 得11(1)()n n a a +++=()1212n a a a ++++L ④,④-③得,11(1)0n n n a na a +--+=⑤,用1n +去换n 得211(1)0n n na n a a ++-++=⑥,⑥-⑤得,2120n n n na na na ++-+=,即212n n n a a a +++=,故{}n a 是等差数列,因为33a =,915a =,所以公差93293a a d -==-, 故3(3)23n a a n d n =+-=-.(Ⅲ)由(Ⅱ)知{}n a 是等差数列,因212a a -=,所以12(1)n a a n =+-,假设存在这样的“封闭数列”,则对任意*,m n ∈N ,必存在*t N ∈,使得12(1)a m +-+12(1)a n +-=12(1)a t +-, 所以12(1)a t m n =--+,故1a 偶数,1{2,4,6,8,10}a ∈,又由已知,111112S <<, 所以1112a <<,此时1(1)n S n n a =+-;当1112a <<时,0n S ≠,111111()11n S a n n a =--+-,所以11123111111n a S S S S S =≤+++⋅⋅⋅+ 111111(1)1111a n a a =-<≤-+--, 故1{2,4,6,8,10}a ∈【点睛】本题考查数列的前n 项和的求法,考查数列的通项公式的求法,考查数列的首项的求法,解题时要认真审题,是一道中档题.。