函数中的新定义问题
专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。
高考数学之函数专项重点突破-专题18 函数中的新定义问题(解析版)

专题18函数中的新定义问题一、单选题1.x R ∀∈,[]x 表示不超过x 的最大整数,十八世纪,函数[]y x =被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[][]4.8 3.5--=()A .0B .1C .7D .8【解析】由题意可知[][]4.8 3.5--=4-(-4)=8.故选:D.2.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数[]2,1,2y x x =∈与函数[]2,2,1y x x =∈--即为“同族函数”.请你找出下面哪个函数解析式也能够被用来构造“同族函数”的是()A .y x=B .3y x =-C .1y x=D .1y x =+【解析】对于选项AD ,函数都为单调递增的,故不满足,因此AD 都错;对于选项C ,1y x=在区间(),0-∞和()0,∞+上都是单调递减的,且在两个区间上y 的取值一正一负,故不满足,因此C 错;对于选项B ,函数3y x =-,[]2,3x ∈和函数3y x =-,[]3,4x ∈即为“同族函数”,故满足,因此B 正确.故选:B.3.已知函数()M f x 的定义域为实数集R ,满足()1,=0,M x Mf x x M ∈⎧⎨∉⎩(M 是R 的非空子集),在R 上有两个非空真子集A ,B ,且A B =∅ ,则()()()()11A B A B f x F x f x f x +=++ 的值域为()A .20,3⎛⎤⎥⎝⎦B .{}1C .12,,123⎧⎫⎨⎬⎩⎭D .1,13⎡⎤⎢⎥⎣⎦【解析】当()R x A B ∈⋃ð时,()0A B f x ⋃=,()0A f x =,()0B f x =,()1F x ∴=同理得:当x B ∈时,()1F x =;当x A ∈时,()1F x =;故()()R 1,1,1,x A F x x B x A B ⎧∈⎪=∈⎨⎪∈⋃⎩ð,即值域为{1}.故选:B4.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x 存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点函数”,下列为“不动点函数”的是()A .()2x f x x =+B .2()3f x x x =-+C .221,1()2,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .1()2=+f x x x【解析】对于A ,由()f x x =,得2x x x +=,即20x =,方程无解,所以A 不符合题意,对于B ,由()f x x =,得23x x x -+=,即230x +=,方程无解,所以B 不符合题意,对于C ,由()f x x =,得当1x ≤时,221x x -=,即2210x x --=,解得1x =或12x =-,所以此函数为“不动点函数”,所以C 正确,对于D ,由()f x x =,得12x x x+=,即210x +=,方程无解,所以D 不符合题意,,故选:C5.四参数方程的拟合函数表达式为()01ba d y d x x c -=+>⎛⎫+ ⎪⎝⎭,常用于竞争系统和免疫检测,它的图象是一个递增(或递减)的类似指数或对数曲线,或双曲线(如1y x -=),还可以是一条S 形曲线,当4a =,1b =-,1c =,1d =时,该拟合函数图象是()A .类似递增的双曲线B .类似递增的对数曲线C .类似递减的指数曲线D .是一条S 形曲线【解析】依题意可得拟合函数为1311y x -=++,()0x >,即()31333 114111x x y x x x +--=+==++++,()0x >,由3y x-=()1x >向左平移1个单位,再向上平移4个单位得到3 41y x -=++,()0x >,因为3y x-=在()1,+∞上单调递增,所以拟合函数图象是类似递增的双曲线;故选:A6.在函数()f x 区间D 上的导函数为()f x ',()f x '在区间D 上的导函数为()g x .若在区间D 上,()0g x <恒成立,则称函数()f x 在区间D 上为“凸函数”.已知实数m 为常数,()4323126x mx f x x =--,若对满足1m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,则b a -的最大值为()A .4B .3C .2D .1【解析】由题设,32()632x mx f x x '=--,则2()6g x x mx =--,∴对任意||1m ≤,在(,)a b 上有2()60g x x mx =--<恒成立,令2()60h m mx x =-+-<在11m -≤≤上恒成立,∴22(1)60(1)60h x x h x x ⎧-=+-<⎨=--<⎩,可得22x -<<,∴2,2a b ≥-≤,故b a -的最大值为4.故选:A7.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为[]y x =,其中[]x 表示不超过x 的最大整数,例如][3.54,2.12⎡⎤-=-=⎣⎦,已知函数()11xxe f x e -=+,令函数()()g x f x =⎡⎤⎣⎦,则()g x 的值域为()A .()1,1-B .{}1,1-C .{}1,0-D .{}1,0,1-【解析】因为11xe +>,所以2021xe <<+,所以12()1(1,1)11x x xe f x e e -==-∈-++,则()[()]g x f x =的值域{}0,1-.故选:C .8.已知函数()y f x =,若在定义域内存在实数x ,使得()()f x kf x -=-,其中k 为整数,则称函数()y f x =为定义域上的“k 阶局部奇函数”,若()()2log f x x m =+是[]1,1-上的“1阶局部奇函数”,则实数m 的取值范围是()A .⎡⎣B .(C .⎡⎣D .⎡-⎣【解析】由题意,函数()()[]2log ,,11f x x m x =+-∈,满足0x m +>,解得1m >,因为函数()()2log f x x m =+是[]1,1-上的“1阶局部奇函数”,即关于x 的方程()()f x f x -=-在[]1,1-上有解,即()()22log log 0x m x m -+++=在[]1,1-上有解,可得[]221,1,1m x x -=∈-,所以221m x =+在[]1,1x ∈-有解,又由21[1,2]x +∈,因为1m >,所以212m <≤,解得1m <≤实数m 的取值范围是(.故选:B.9.如图所示的曲线就像横放的葫芦的轴截面的边缘线,我们把这样的曲线叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它每过相同的间隔振幅就变化一次,且过点33,42M π⎛⎫⎪⎝⎭,其对应的方程为12||2|sin |2x y x ωπ⎛⎫⎡⎤=- ⎪⎢⎣⎦⎝⎭(0x ≥,其中[]x 为不超过x 的最大整数,13ω<<).若该葫芦曲线上一点N 的横坐标为43π,则点N 的纵坐标为()A .13±B.C .12±D.【解析】由曲线过33,42M π⎛⎫ ⎪⎝⎭知,3231342sin 224ππωπ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=- ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎪⎣⎦⎝⎭,即3sin 14πω⎛⎫= ⎪⎝⎭,则3(Z)42k k ππωπ=+∈,解得42(Z)33k k ω=+∈,又13ω<<,则2ω=,若该葫芦曲线上一点N 的横坐标为43π,即43x π=,代入曲线方程得到42143||2sin 223y πππ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=-⨯=⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎪⎣⎦⎝⎭,则y =N的纵坐标为.故选:D 10.设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[]a b D ⊆,,使()f x 在[]a b ,上的值域为22a b ⎡⎤⎢⎥⎣⎦,,则称()f x 为“倍缩函数”.若函数()()2log 2xf x t =+(其中0t ≥)为“倍缩函数”,则t 的取值范围是()A .104⎛⎫ ⎪⎝⎭,B .()01,C .102⎛⎤⎥⎝⎦,D .14⎛⎫+∞ ⎪⎝⎭,【解析】由已知可得,()f x 在[]a b ,上是增函数;22log (2)2,log (2)2a b a t b t ⎧+=⎪⎪∴⎨⎪+=⎪⎩即222222aabb t t ⎧+=⎪⎨⎪+=⎩,a ∴,b 是方程2220x x t -+=的两个根,设22xm ==0m >,此时方程为20m m t -+=即方程有两个不等的实根,且两根都大于0;2(1)400t t ⎧-->∴⎨>⎩,解得:104t <<,∴满足条件t 的范围是104⎛⎫ ⎪⎝⎭,.故选:A二、多选题11.具有性质:()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数,下列函数中满足“倒负”变换的函数是()A .()22x f x x =-B .()1f x x x=-C .()1f x x x=+D .(),01,0,1,1,1x x f x x x x⎧⎪<<⎪==⎨⎪⎪->⎩【解析】对于A 选项,x =0在定义域内,不满足“倒负”变换;对于B 选项,()111f x x f x x x x ⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭,满足“倒负”变换;对于C 选项,()155,2222f f ⎛⎫=-=- ⎪⎝⎭,()122f f ⎛⎫≠- ⎪⎝⎭,不满足“倒负”变换;对于D 选项,当01x <<时,11x>,此时()111f x f x x x⎛⎫=-=-=- ⎪⎝⎭;当x =1时,11x=,此时()()101f f ==-;当1x >时,101x<<,此时()11f f x x x⎛⎫==- ⎪⎝⎭,()f x 满足“倒负”变换.故选:BD.12.对于函数()y f x =,若()00f x x =,则称0x 是()f x 的不动点:若()11f f x x ⎡⎤=⎣⎦,则称1x 是()f x 的稳定点,则下列函数有稳定点的是()A .()1f x x-=-B .()21f x x =+C .()31,02112x x f x x ⎧<<⎪⎪=≤<D .()2121,12x f x x x <<=⎨⎪≤<⎪⎩【解析】A :函数1()f x x=-的定义域为{}0x x ≠,假设存在稳定点1x ,则111()f x x =-,1111[()](f f x f x x =-=,所以对{}0x x x ∀∈≠,均有[()]f f x x =,故A 有稳定点;B :函数2()1f x x =+的定义域为R ,假设存在稳定点1x ,则211()1f x x =+,2421111[()](1)22f f x f x x x =+=++,而4211122x x x ++=在R 上无解,故B 无稳定点;C :()3102112x x f x x ⎧<<⎪⎪=≤<,,,当12x =时,12f ⎛⎫= ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭,故31122f f f ⎫⎡⎤⎛⎫===⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎭,故C 有稳定点;D:212()112x f x x x <<=⎨⎪≤<⎪⎩,,当12x =时,2111(()224f ==,而11(0,42∈,故111[()]()242f f f ===,故D 有稳定点.故选:ACD.13.华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.()f x 是定义在R上的函数,对于x ∈R ,令1()(123)n n x f x n -== ,,,,若存在正整数k 使得0k x x =,且当0<j <k 时,0j x x ≠,则称0x 是()f x 的一个周期为k 的周期点.若122()12(1)2x x f x x x ⎧<⎪⎪=⎨⎪-⎪⎩,,,下列各值是()f x 周期为2的周期点的有()A .0B .13C .23D .1【解析】A :00x =时,()100x f ==,周期为1,周期为2也正确,故A 正确;B :013x =时,1231222233333n x f x f x x ⎛⎫⎛⎫======= ⎪ ⎪⎝⎭⎝⎭ ,,,所以13不是()f x 的周期点.故B 错误;C :023x =时,1223n x x x ==== ,周期为1,周期为2也正确.故C 正确;D :01x =时,()()1201000x f x f x ====≠,,1∴不是()f x 周期为2的周期点,故D 错误.故选:AC.14.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.在平面直角坐标系中,如果一个函数的图象能够将某个圆的周长和面积同时平分,那么称这个函数为这个圆的“优美函数”.则下列说法中正确的有()A .对于一个半径为1的圆,其“优美函数”仅有1个B .函数()3f x x =可以是某个圆的“优美函数”C .若函数()y f x =是“优美函数”,则函数()y f x =的图象一定是中心对称图形D .函数32cos 2y x π⎛⎫=- ⎪⎝⎭可以同时是无数个圆的“优美函数”【解析】对于A ,过圆心的任一直线都可以满足要求,故A 错误;对于B ,函数3()f x x =为奇函数,关于原点对称,可以是单位圆的“优美函数”,故B 正确;对于C ,函数y =f (x )的图象是中心对称图形,函数一定是“优美函数”,但“优美函数”不一定是中心对称函数,如图,故C 错误;对于D ,函数32cos 2sin 2y x x π⎛⎫=-=- ⎪⎝⎭关于原点对称,是圆222,02x y k k +=<≤,的“优美函数”,满足无数个,故D 正确.故选:BD.15.德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为()1,=D x x 为有理数,()0D x x =,为无理数),关于函数()D x ,下列说法正确的是().A .()D x 既不是奇函数,也不是偶函数B .x ∀∈R ,()()1D D x =C .()D x 是周期函数D .,x y ∃∈R ,使得()()()D D y y D x x +=+【解析】因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以对x ∀∈R ,()()D x D x -=,故()D x 是偶函数,故A 错误;当x 为有理数时,()1D x =,当x 为无理数时,()0D x =,当x 为有理数时,()()()11D D x D ==,当x 为无理数时,()()()01D D x D ==,所以()()1D D x =恒成立,B 正确;若x 是有理数,T 是有理数,则x T +是有理数;若x 是无理数,T 是有理数,则x T +是无理数,所以任取一个不为0的有理数T ,()()D x T D x +=恒成立,即()D x 是周期函数,故C 正确;若x ,y 为无理数,则x y +也为无理数,所以()()()0x y x D D D y =+=+,故D 正确.故选:BCD16.函数()f x 满足条件:①对定义域内任意不相等的实数a ,b 恒有()[()()]0a b f a f b -->;②对定义域内任意两个实数1x ,2x 都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭成立,则称为G 函数,下列函数为G 函数的是()A .()21f x x =-B .()f x =C .2()43f x x x =-+-,1x <D .3()f x x =,0x >【解析】a ,b 恒有()[a b f -(a )f -(b )]0>,所以()f x 是增函数,因为对定义域内任意两个实数1x ,2x 都有1212()()()22x x f x f x f ++ 成立,所以()f x 为上凸函数,对于A ,函数()21f x x =-是增函数,且1212()()()22x x f x f x f ++=成立,所以函数为G 函数,故选项A 正确;对于B ,函数()f x =G 函数,故选项B 正确;对于C ,函数2()43f x x x =-+-,1x <是增函数,且函数的图象是上凸函数,所以函数为G 函数,故选项C 正确;对于D ,函数3()f x x =,0x >是增函数,但是函数的图象是下凹函数,所以函数不是G 函数,故选项D 错误.故选:ABC .17.已知函数()122,42,x x af x x x a x a -⎧<=⎨-++≥⎩,如果函数()f x 满足对任意()1,x a ∈-∞,都存在()2,x a ∈+∞,使得()()21f x f x =,称实数a 为函数()f x 的包容数,下列数中可以为函数()f x 的包容数的是()A .12-B .1C .4D .8【解析】记()1f x 的值域为A ,()2f x 的值域为B ,由题意可知:A B ⊆;对于A ,当12a =-时,312224x --<=;2413x x -+-≤;则4A ⎛⎫=-∞ ⎪ ⎪⎝⎭,(],3B =-∞,满足A B ⊆,A 正确;对于B ,当1a =时,10221x -<=,2426x x -++≤;则(),1A =-∞,(],6B =-∞,满足A B ⊆,B 正确;对于C ,当4a =时,13228x -<=,2488x x -++≤;则(),8A =-∞,(],8B =-∞,满足A B ⊆,C 正确;对于D ,当8a =时,1722128x -<=;241616x x -++≤-;则(),128A =-∞,(],16B =-∞-,不满足A B ⊆,D 错误.故选:ABC.18.若正整数m ,n 只有1为公约数,则称m ,n 互质.对于正整数n ,()n ϕ是小于或等于n 的正整数中与n互质的数的个数,函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()32ϕ=,()76ϕ=,()96ϕ=,则下列说法正确的是()A .()()510ϕϕ=B .()211nϕ-=C .数列(){}3nϕ为等比数列D .()()222n n ϕϕ+>,*n N ∈【解析】因为()()5104ϕϕ==,故A 正确;因为当4n =时,()151ϕ≠,故B 不正确;因为与3n 互质的数为1,2,4,5,7,8,10,11,…,32n -,31n -,共有()1131323n n ---⋅=⋅个,所以()1323n n ϕ-=⋅.则数列(){}3nϕ为等比数列,故C 正确;因为()()462ϕϕ==,故D 不正确;故选:AC 三、填空题19.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立(或()F x kx b ≤+和()G x kx b ≥+恒成立),则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()()2x x x f =-∈R ,()()10g x x x=>,若函数()f x 和()g x 之间存在隔离直线3y x b =-+,则实数b 的取值范围是______.【解析】因为函数()f x 和()g x 之间存在隔离直线3y x b =-+,所以当23x x b -≤-+时,可得230x x b -+-≤对任意的x ∈R 恒成立,则23b x x ≥-+,即239(24b x ≥--+,所以94b ≥;当13x b x ≥-+时,对0x >恒成立,即13(0)b x x x≤+>恒成立,又当0x >时,13x x +≥13x x =即x =b ≤综上所述,实数b的取值范围是94b ≤≤.20.如果函数()y f x =在其定义域上有且仅有两个不同的数0x ,满足()()0000f x f x x x '=-,那么就称函数()y f x =为“单值函数”,则下列四个函数:①()322f x x x =+;②()e xf x x =;③()ln 010x x x f x x x x >⎧⎪=⎨+<⎪⎩,,;④()()sin 1f x x x =+.其中为“单值函数”的是______.(写出所有符合题意的函数的序号)【解析】①()()322234f x x x f x x x ='=++,,()()2221234202102f x f x x x x x x x x x x x x =-⇒+=+-⇒+=⇒+=⇒=-',方程只有一个解,故该函数不为“单值函数”;②()()e e e x x xf x x f x x ==+',,()()e e e e 10x x x x f x f x x x x x x=-⇒-⇒='=+⇒=,∵x ≠0,故方程无解,该函数不是“单值函数”;③()ln 010x x x f x x x x >⎧⎪=⎨+<⎪⎩,,,当0x >时,()ln 1f x x ='+,()()ln ln 110f x f x x x x x x x=-⇒=-⇒='+>;当0x <时,()211f x x '=-,()()32221121120f x f x x x x x x x x x x'=-⇒+=--⇒=-⇒=-⇒=<,故f (x )在其定义域上有且仅有两个不同的数0x ,满足()()0000f x f x x x '=-,故该函数为“单值函数”;④()()()sin 1sin 1cos f x x x f x x x x '=+=++,,()()sin 1sin 1cos cos 1f x f x x x x x x x x x=-⇒+=++-⇒='20x k k k π⇒=≠∈Z ,,,方程有无数个解,故该函数不是“单值函数”﹒故选:③.21.若函数()f x 的定义域为D ,且满足如下两个条件:①()f x 在D 内是单调递增函数;②存在[],m n D ⊆,使得()f x 在[],m n 上的值域为[]2,2m n 那么就称函数()f x 为“希望函数”,若函数()()()log 0,1x a f x a t a a =->≠是“希望函数”,则实数t 的取值范围为___________.【解析】∵函数()()()log 0,1xa f x a t a a =->≠是“希望函数”,∴()()22f m m f n n ⎧=⎪⎨=⎪⎩,即()2f x x =有两个解,∴m ,n 是方程()20x x a a t +=-的两个不等的实根,设x y a =,则0y >,∴方程等价为20y y t -+=的有两个不等的正实根,即1212140010t y y t y y =-⎧⎪=⎨⎪+=⎩ >>>,∴140t t ⎧<⎪⎨⎪>⎩,解得104t <<,故答案为:10,4⎛⎫ ⎪⎝⎭.22.若函数()f x 在区间A 上,对,,a b c A ∀∈,()f a ,()f b ,()f c 为一个三角形的三边长,则称函数()f x 为“三角形函数”.已知函数()ln f x x x m =+在区间21,e e ⎡⎤⎢⎥⎣⎦上是“三角形函数”,则实数m 的取值范围为____【解析】1()ln ln 1f x x x x x'=+⋅=+,令()0f x '>,得1e x >,令()0f x '<,得10ex <<,所以()f x 在211,e e ⎡⎤⎢⎥⎣⎦上单调递减,在1,e e ⎛⎤⎥⎝⎦上单调递增,所以min 1()()e f x f =11ln e e m =+1em =-,因为222111((e)ln eln e e e e f f m m -=+--22e 0e =--<,所以max ()(e)e f x f m ==+,所以()f x 在区间21,e e ⎡⎤⎢⎥⎣⎦上的值域为1,e e m m ⎡⎤-+⎢⎥⎣⎦,因为函数()ln f x x x m =+在区间21,e e ⎡⎤⎢⎥⎣⎦上是“三角形函数”,所以11e e e m m m -+->+,解得2e em >+.四、解答题23.函数()f x 的定义域为()0,∞+,且存在唯一常数0k >,使得对于任意的x 总有()()1f kx f x k=+,成立.(1)若()10f =,求()1f k f k ⎛⎫+ ⎪⎝⎭;(2)求证:函数()ln g x x =符合题设条件.【解析】(1)因为()()1f kx f x k=+,所以()()11f k f k =+,又()10f =,所以()1f k k =,又()1111f f k f k k k⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=⋅=+,所以11f k k ⎪⎝⎭=-⎛⎫,所以()1110f k f k k k ⎛⎫+ ⎪⎝⎭=-+=(2)因为()ln g x x =的定义域为()0,∞+,假设存在常数00k >满足()()001g k x g x k =+,即()001ln ln k x x k =+,所以001ln k k =,设()1ln h x x x =-,显然()h x 在()0,∞+上单调递增,又()11ln1101h =-=-<,()11e ln e 10e eh =-=->,所以存在唯一的常数()01,e k ∈使得()0001ln 0h k k k =-=,即存在唯一的常数()01,e k ∈使得函数()ln g x x =符合题设条件;24.已知函数()f x 和()g x 的定义域分别为1D 和2D ,若对任意的01x D ∈,都恰好存在n 个不同的实数122,,,n x x x D ∈ ,使得()()0i g x f x =(其中*1,2,,,N i n n =⋅⋅⋅∈),则称()g x 为()f x 的“n 重覆盖函数”.(1)判断下面两组函数中,()g x 是否为()f x 的“n 重覆盖函数”,并说明理由;①()()cos 04g x x x π=<<,()()11f x x x =-<<,“4重覆盖函数”;②()()22g x x x =-≤≤,()()1sin f x x x R =+∈,“2重覆盖函数”;(2)若()1sin x g x xπ-=,()0,x ∈+∞为()1f x x =,(),x s t ∈()0s t <<的“9重覆盖函数”,求t s -的最大值.【解析】(1)①:当11x -<<时,()11f x -<<,根据余弦函数的图象可知,()g x 是()f x 的“4重覆盖函数”;②:由1sin 1x -≤≤可知:()02f x ≤≤,函数()()22g x x x =-≤≤的图象如下图所示:当3π2x =时,3π3π1sin 022f ⎛⎫=+= ⎪⎝⎭,当()00g x x x ==⇒=,所以()g x 不是()f x 的“2重覆盖函数”;(2)因为(),x s t ∈,所以()1f x t s<<,因为0sin 1x π≤≤,所以当()0,x ∈+∞时,()0g x ≥,当1(0,]2x ∈时,()1sin 1sin πx x g x x xπ--==,函数1sin πy x =-和函数1y x=都是单调递减函数,故该函数单调递减,当1(,1]2x ∈时,()1sin 1sin πx x g x x xπ--==,函数1sin πy x =-是单调递增函数,函数1y x=是单调递减函数,而函数1sin πy x =-递增的速度快于函数1y x=递减的速度,所以函数单调递增,而函数1sin πy x =-的最小正周期为:12π12π⨯=,因此函数()1sin xg x xπ-=,()0,x ∈+∞的图象如下图所示:因此要想()1sin x g x xπ-=,()0,x ∈+∞为()1f x x =,(),x s t ∈()0s t <<的“9重覆盖函数”,只需()()111444*********g s s s s t s t t g t t⎧⎧≥≥⎪⎪≥-≤-⎧⎧⎪⎪⇒⇒⇒⇒-≤⎨⎨⎨⎨≤≤⎩⎩⎪⎪≤≤⎪⎪⎩⎩,所以t s -的最大值1.25.已知O 为坐标原点,R a b ∈、,对于函数()sin cos f x a x b x =+,称向量(),a M b O =为函数()f x 的伴随向量,同时称函数()f x 为向量OM 的伴随函数.已知函数()ππ2sin 62g x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,(1)求()g x 的伴随向量ON,并求ON .(2)关于x 的方程()0g x t -=在π0,2⎡⎤⎢⎥⎣⎦内恒有两个不相等实数解,求实数t 的取值范围.(3)将函数()g x 图象上每一点纵坐标不变,横坐标变为原来的2倍,再把整个图象向左平移23π个单位长度得到函数()h x 的图象,已知()33A -,,()311B ,,在函数()h x 的图象上是否存在一点P ,使得AP BP ⊥,若存在,求出点P 坐标;若不存在,说明理由.【解析】(1)因为()ππ2sin 62g x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ππcos sin sin 2cos 66x x x=⋅+⋅-cos x x =,所以ON =,2ON == .(2)因为关于x 的方程()0g x t -=在π0,2⎡⎤⎢⎥⎣⎦内恒有两个不相等实数解,所以()y g x =的图象与直线y t =在π0,2⎡⎤⎢⎥⎣⎦内恒有两个不同的交点,π()2sin()6g x x =+(π02x ≤≤)的图象如图:2t ≤<.(3)依题意可得12ππ()2sin 236h x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦1π2sin 22x ⎛⎫=+ ⎪⎝⎭12cos 2x =,||10AB ==,AB 的中点为(0,7),假设在函数()h x 的图象上是否存在一点00(,)P x y ,使得AP BP ⊥,则点P 在以AB 为直径的圆上,该圆的圆心为(0,7),半径为5,所以2200(0)(7)25x y -+-=,即22001(2cos 7)252x x +-=,所以201(2cos 7)252x -≤,所以0152cos 752x -≤-≤,所以011cos 62x ≤≤,又011cos 12x -≤≤,所以01cos 12x =,所以220(217)25x +⨯-=,所以00x =,所以012cos 22x =,所以(0,2)P .综上所述:在函数()h x 的图象上是否存在一点P ,使得AP BP ⊥,且(0,2)P .26.若函数()f x 和()g x 的图象均连续不断,()f x 和()g x 均在任意的区间上不恒为0,()f x 的定义域为1I ,()g x 的定义域为2I ,存在非空区间()12A I I ⊆⋂,满足:x A ∀∈,均有()()0f x g x ≤,则称区间A 为()f x 和()g x 的“Ω区间”(1)写出()2sin f x x =和()sin cos g x x x =+在[0,]π上的一个“Ω区间”,并说明理由;(2)若()21e 2ln cos2ex x f x x x -=+-,且()f x 在区间(0,1]上单调递增,(0,)+∞是()f x 和()g x 的“Ω区间”,证明:()g x 在区间(0,)+∞上存在零点.【解析】(1)()2sin f x x = ,()sin cos g x x x =+,令()()0f x g x ≤则()2sin sin cos 0x x x +≤,因为[0,]x π∈,所以sin 0x ≥,sin cos 0x x ∴+≤04x π⎛⎫+≤ ⎪⎝⎭,[]0,x π∈ ,所以5,444x πππ⎡⎤+∈⎢⎥⎣⎦,令544x πππ≤+≤,解得34x ππ≤≤,3,4x ππ⎡⎤∴∈⎢⎥⎣⎦,∴()2sin f x x =和()sin cos g x x x =+在[0,]π上的一个“Ω区间”为3,4ππ⎡⎤⎢⎥⎣⎦(答案为3,4ππ⎡⎤⎢⎥⎣⎦的非空子集都可)(2)()0,∞+ 是()f x 和()g x 的“Ω区间”,()0,x ∞∀∈+ 均有()()0f xg x ≤()f x 在区间(0,1]上单调递增,而()11cos20f =->,则()10g ≤又220222212ln11112e cos21cos 0ee e e e ef ⎛⎫=+-=-+-< ⎪⎝⎭,则210e g ⎛⎫≥ ⎪⎝⎭()g x ∴在21e ,1⎡⎤⎢⎥⎣⎦内有零点,()g x ∴在区间(0,)+∞上存在零点.27.对于函数()f x ,若在其定义域内存在实数0x ,t ,使得()()()00f x t f x f t +=+成立,称()f x 是“t 跃点”函数,并称0x 是函数()f x 的“t 跃点”.(1)若函数()sin =-f x x m ,x ∈R 是“π2跃点”函数,求实数m 的取值范围;(2)若函数()()sin =+f x x m ,x ∈R ,求证:“sin 0=m ”是“对任意t ∈R ,()f x 为‘t 跃点’函数”的充要条件;(3)是否同时存在实数m 和正整数n 使得函数()cos 2h x x m =-在[]0,πn 上有2021个“π4跃点”?若存在,请求出所有符合条件的m 和n 的值;若不存在,请说明理由.【解析】(1)由已知得存在实数0x ,使得00ππsin sin sin 22x m x m m ⎛⎫+-=-+- ⎪⎝⎭,∴000πsin cos 1sin 1112m x x x ⎛⎫⎡⎤=-+-+∈+ ⎪⎣⎦⎝⎭,∴实数m 的取值范围是11⎡⎤⎣⎦.(2)由题意得“对任意t ∈R ,()()sin =+f x x m 为‘t 跃点’函数”等价于:对是任意实数t ,关于x 的方程()()()sin sin sin x t m x m t m ++=+++都有解,则对于0t =时有解,即()()()sin sin sin x m x m m +=++,∴sin 0=m ;反之,当sin 0=m 时,()πm k k =∈Z ,()()()sin sin sin x t m x m t m ++=+++等价于()()()sin sin sin x t x t +=+0x =是此方程的解,故此方程对于任意实数t 都有实数解.综上所述,“sin 0=m ”是“对任意t ∈R ,()f x 为‘t 跃点’函数”的充要条件;(3)由已知得,()ππππcos 2cos 2cos 04422h x h x h x m x m m ⎛⎫⎛⎫⎛⎫+--=+--+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得π24m x ⎛⎫=+ ⎪⎝⎭π24x ⎛⎫+ ⎪⎝⎭的最小正周期为π;根据函数π24y x ⎛⎫=+ ⎪⎝⎭在[]0,πn 上的图象可知:①当()(m ∈⋃时,在[]0,πn 有2n 个“π4跃点”,故不可能有2021个“π4跃点”;②当1m =时,在[]0,πn 有21n +个“π4跃点”,此时2120211010n n +=⇒=;③当m =m =[]0,πn 上有n 个“π4跃点”,故2021n =;综上:11010m n =⎧⎨=⎩或2021m n ⎧=⎪⎨=⎪⎩或2021m n ⎧=⎪⎨=⎪⎩.28.对于函数()()y f x x D =∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”.(1)判断函数2()f x x =是否为“T 同比不减函数”?并说明理由;(2)若函数()sin f x kx x =+是“π2同比不减函数”,求实数k 的取值范围;(3)是否存在正常数T ,使得函数()|1||1|f x x x x =+--+为“T 同比不减函数”?若存在,求T 的取值范围;若不存在,请说明理由.【解析】(1)依题意0T >,函数2()f x x =不是“T 同比不减函数”,理由如下:()2f x x =,()()()()22222f x T f x x T x xT T T x T +-=+-=+=+不恒大于零,所以()()f x T f x +≥不恒成立,所以函数2()f x x =不是“T 同比不减函数”.(2)函数()sin f x kx x =+是“π2同比不减函数”,()π2f x f x ⎛⎫+≥ ⎪⎝⎭恒成立,πππsin sin 222k x x k x ⎛⎫⎛⎫+++≥⋅+ ⎪ ⎪⎝⎭⎝⎭,ππ4sin cos ,π22x k x x k ⎛⎫- ⎪⎝⎭≥-≥π4x ⎛⎫-≤ ⎪⎝⎭,所以ππ2k ≥=.所以k的取值范围是π⎡⎫+∞⎪⎢⎪⎣⎭.(3)存在,理由如下:2,1()11,112,1x x f x x x x x x x x +≤-⎧⎪=+--+=--<<⎨⎪-≥⎩,画出()f x 的图象如下图所示,()f x T +的图象是由()f x 的图象向左平移T 个单位所得,由图可知,当4T ≥时,对任意的x D ∈,都有()()f x T f x +≥成立,所以存在正常数T ,使得函数()|1||1|f x x x x =+--+为“T 同比不减函数”,且4T ≥.29.若函数()y f x =自变量的取值区间为[a ,b ]时,函数值的取值区间恰为22[,]b a,就称区间[a ,b ]为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当,()0x ∈+∞时,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,求函数()y h x =的值域【解析】(1)因为()g x 为R 上的奇函数,则(0)0g =,设(,0)x ∈-∞,则(0,)x -∈+∞,()()(3)3g x g x x x =--=-+=--;3,0()0,03,0x x g x x x x --<⎧⎪∴==⎨⎪-+>⎩(2)设0a b <<,由()g x 在(0,)+∞上递单调递减,可得2()32()3g b b bg a a a ⎧==-+⎪⎪⎨⎪==-+⎪⎩,即,a b 是方程23x x =-+的两个不等正根.∵0a b <<∴12a b =⎧⎨=⎩∴()g x 在(0,)+∞内的“和谐区间”为[1,2].(3)设[a ,b ]为()g x 的一个“和谐区间”,则22a bb a<⎧⎪⎨<⎪⎩,∴a ,b 同号.当0a b <<时,同理可求()g x 在(,0)-∞内的“和谐区间”为[2,1]--.3,[1,2]()3,[2,1]x x h x x x -+∈⎧∴=⎨--∈--⎩,3,[1,2]()3,[2,1]x x h x x x -+∈⎧∴=⎨--∈--⎩的值域是[2,1][1,2]-- 30.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,同时满足:①()f x 在[],n m 内是单调增函数;②当定义域是[],m n 时,()f x 的值域是[]2,2m n ,则称[],n m 是该函数的“翻倍区间”.(1)证明:[]1,2是函数()2xf x =的一个“翻倍区间”;(2)判断函数()3g x x =是否存在“翻倍区间”?若存在,求出所有“翻倍区间”;若不存在,请说明理由;(3)已知函数()31x h x x a-=+有“翻倍区间”[],m n ,求实数a 的取值范围.【解析】(1)证明:由函数()2xf x =在[]1,2上单调增函数知,()f x 的值域为[]2,4,故[]1,2是函数()2xf x =的一个“翻倍区间”;(2)假设()g x 存在一个“翻倍区间”[],m n ,由函数()g x 是R 上的单调增函数,有()()332,2,g m m m g n n n ⎧==⎪⎨==⎪⎩解得m =,n =由m n <知所有“翻倍区间”为][[,,⎡⎣;(3)由函数()h x 有“翻倍区间”[],m n 知,()h x 为[],m n 上的单调增函数,而()()33131313x a a x a h x x a x a x a+-----===++++,可得310a --<,解得13a >-,由②知()()312,312,m h m m m an h n n n a -⎧==⎪⎪+⎨-⎪==⎪+⎩可得m ,n 是方程312x x x a -=+的两个根,等价于方程312x x x a-=+在(,)a -∞-上有两个不等实根或者在(,)a -+∞上有两个不等实根,即方程()222310x a x +-+=在(,)a -∞-上有两个不等实根或者在(,)a -+∞上有两个不等实根,则有()()22Δ(23)803242()2310a a a a a a ⎧=-->⎪-⎪<-⎨⎪-+-⨯-+>⎪⎩或()()22Δ(23)803242()2310a a a a a a ⎧=-->⎪-⎪>-⎨⎪-+-⨯-+>⎪⎩,解得1332a -<<32a >+综上,实数a的取值范围为133(,()322-⋃+∞.31.根据人教2019版必修一P 87页的13题介绍:函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.题:设函数()39x t f x =+,且()110(1)15f f +=,(其中t 是常数),函数()243()2x x g x f x x -+=+-.(1)求t 的值,并证明()f x 是中心对称函数;(2)是否存在点A ,使得过点A 的直线若能与函数()y g x =围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点A 的坐标;若不存在,说明理由.【解析】(1)∵函数()39xt f x =+,且()()110115f f +=,11101215t t ∴+=,∴4t =,所以4()39x f x =+;依题假设存在点(,)P a b 使函数()y f x a b =+-为奇函数,则()()2f a x f a x b ++-=对x R ∀∈恒成立,439a x +∴+4239a x b -+=+,2211931312a x a x b -+--∴+=++,∴22223(33)9(31)(31)2a x x a x a xb ---+--++=++,∴22223(33)9193(33)2a x x a a x xb -----++=+++,22222193(33)199193(33)2a a x x a a a x xb -------⎡⎤++++-⎣⎦∴=+++,2221991193(33)2a a a x x b -----∴+=+++,对x R ∀∈恒成立,2190912a b-⎧-=⎪∴⎨=⎪⎩,22,9a b ∴==,∴对于4()39xf x =+存在22,9a b ==,使函数()y f x a b =+-为奇函数,∴4()39xf x =+是以22,9⎛⎫ ⎪⎝⎭为对称中心的中心对称函数.(2)设()2431(2)22x x N x x x x -+==----,所以()()()()111122222202222N x N x x x x x x x x x ⎛⎫++-=+--+---=-+--= ⎪+----⎝⎭即(2)(2)0N x N x ++-=,即()2432x x N x x -+=-关于()2,0对称,又()42(2)9f x f x ++-=,4(2)(2)9g x g x ∴++-=,()g x ∴的对称中心是22,9⎛⎫⎪⎝⎭,依题意,使得过点A 的直线若能与函数()y g x =围成两个封闭图形,则这两个封闭图形的面积总相等,则直线必过()y g x =的对称中心,所以所求为22,9A ⎛⎫⎪⎝⎭;32.定义:如果函数()y f x =在定义域内的给定区间[],a b 上存在0x (0a x b ≤≤),满足()()()0f b f a f x b a-=-,则称函数()y f x =为[],a b 上的“平均值函数”,0x 为它的平均值点.(1)函数2y x =是否为[]0,2上的“平均值函数”?如果是,请求出它的平均值点;如果不是,请说明理由.(2)若函数211221x x y m ++=-+⋅+是[]1,1-上的平均值函数,求实数m 的取值范围.【解析】(1)函数2y x =是[]0,2上的“平均值函数”.令()y f x =,因为()()20402202f f --==-,设0x 是它的平均值点,则有()0022f x x ==,解得01x =,[]10,2∈,故2y x =为[]0,2上的“平均值函数”,1是它的平均值点.(2)令()y f x =,()()()()()211121112212211131511224m m f f m ++-+-+-+⋅+--+⋅+--==---,设0x 是它的平均值点,则()031524f x m =-,即0021131522124x x m m ++-+⋅+=-,整理得0022122426190x x m m ++⋅-⋅+-=.令012x t +=,则[]1,4t ∈,则需方程2246190t mt m -+-=在[]1,4t ∈上有解,令()224619g t t mt m =-+-,[]1,4t ∈,()()2234426191611602m m m ⎛⎫∆=--⨯⨯-=-+> ⎪⎝⎭,①当()0g t =在[]1,4内有一个实根时,()()140g g ⋅≤,即(217)(1013)0m m --≥,解得172m ≥,或1310m ≤;②当()0g t =在[]1,4内有两个不等的实根时,需满足()()414221040m g g -⎧≤-≤⎪⨯⎪≥⎨⎪≥⎪⎩,可得141721310m m m ⎧⎪≤≤⎪⎪≥⎨⎪⎪≤⎪⎩,无解.综上,实数m 的取值范围是1317,,102⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭.。
专题71 函数中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题

例题精讲考点1一次函数新定义问题【例1】.定义:我们把一次函数y=kx+b(k≠0)与正比例函数y=x的交点称为一次函数y=kx+b(k≠0)的“不动点”.例如求y=2x﹣1的“不动点”:联立方程,解得,则y=2x﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y=3x+2的“不动点”为(﹣1,﹣1);(2)若一次函数y=mx+n的“不动点”为(2,n﹣1),求m、n的值;(3)若直线y=kx﹣3(k≠0)与x轴交于点A,与y轴交于点B,且直线y=kx﹣3上没=3S△ABO,求满足条件的P点坐标.有“不动点”,若P点为x轴上一个动点,使得S△ABP解:(1)联立,解得,∴一次函数y=3x+2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y=mx+n的“不动点”为(2,n﹣1),∴n﹣1=2,∴n=3,∴“不动点”为(2,2),∴2=2m+3,解得m=﹣;(3)∵直线y=kx﹣3上没有“不动点”,∴直线y=kx﹣3与直线y=x平行,∴k=1,∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,=×|t﹣3|×3,∴S△ABPS△ABO=×3×3,=3S△ABO,∵S△ABP∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是0<a<9.解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m=﹣2,a=3,b=4;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为x<0或x>4..解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是2,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF和△SWG是等腰直角三角形,∴SW=SG,WF=OW,∴SF=SW+WF=SG+OW=a+(b﹣a)=(a+b),∵EF====,∵OF=OW=(b﹣a),∴OE=(b﹣a)+,设b﹣a=m(m>0),则OE=m+≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE=2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是﹣1<m<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是()A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是y=x;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,=GI•(x E﹣x F),又∵S△GFE设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为()A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为(,)或(﹣,﹣).解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a ≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1.解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是C.A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;(3)若抛物线y=ax2﹣3x+c(a、c为常数)上有且只有一个“不动点”,①当a>1时,求c的取值范围.②如果a=1,过双曲线图象上第一象限的“不动点”做平行于x轴的直线l,若抛物线上有四个点到l的距离为m,直接写出m的取值范围.解:(1)设坐标平面内任意一个“不动点”的坐标为(n,n),直线y=x,当x=n时,则y=n,∴点(n,n)在直线y=x上,∴直线y=x上有无数个“不动点”,故A正确;将(n,n)代入y=,得n=,此方程无解,∴函数y=的图象上没有“不动点”,故B正确;将(n,n)代入y=x+1,得n=n+1,此方程无解,∴直线y=x+1上没有“不动点”,故C错误;将(n,n)代入y=x2,得n=n2,解得n1=0,n2=1,∴函数y=x2的图象上有两个“不动点”(0,0)和(1,1),故D正确,故选:C.(2)设双曲线上的“不动点”为(x,x),则x=,解得x1=﹣3,x2=3,∴双曲线上的“不动点”为(﹣3,﹣3)和(3,3).(3)①设抛物线y=ax2﹣3x+c上的“不动点”为(x,x),则x=ax2﹣3x+c,即ax2﹣4x+c=0,∵该抛物线上有且只有一个“不动点”,∴关于x的一元二次方程ax2﹣4x+c=0有两个相等的实数根,∴(﹣4)2﹣4ac=0,∴a=,∵a>1,∴>1,∴0<c<4.②∵当a=1时,则=1,∴c=4,∴抛物线为y=x2﹣3x+4,由(2)得,双曲线在第一象限的不动点为(3,3),∴直线l即直线y=3,如图,∵y=x2﹣3x+4=(x﹣)2+,∴该抛物线的顶点B(,),对称轴为直线x=,设直线r在直线l下方且到直线l的距离为m,直线x=交直线l于点A,交直线r于点C,∴AC=m,A(,3),∴AB=3﹣=,设直线t与直线r关于直线l对称,∵当点C在点B的上方时,抛物线上有四个点到l的距离为m,∴0<m<.5.在并联电路中,电源电压为U总=6V,小亮根据“并联电路分流不分压”的原理知道:I总=I1+I2(I1=,I2=),已知R1为定值电阻,当R变化时,干路电流I总也会发生变化,且干路电流I总与R之间满足如下关系:I总=1+.(1)定值电阻R1的阻值为6Ω;(2)小亮根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I2=来探究函数I=1+的图象与性质.总①列表:如表列出I总与R的几组对应值,请写出m,n的值:m= 2.5,n=2;R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.2n…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①I总随R的增大而减小;(填“增大”或“减小”)②函数I总=1+的图象是由I2=的图象向上平移1个单位而得到.解:(1)∵I1==1,∴R1=6,故答案为:6;(2)①当R=4时,m=1+1.5=2.5,当R=6时,n=1+1=2,故答案为:2.5,2;②图象如下:(3)①根据图象可知,I随R的增大而减小,总故答案为:减小;②函数I总=1+的图象是由I2=的图象向上平移1个单位得到,故答案为:上,1.6.小欣研究了函数的图象与性质.其研究过程如下:(1)绘制函数图象①列表:下表是x与y的几组对应值,其中m=1;x…﹣4﹣3﹣2012…y…﹣1﹣2﹣332m…﹣﹣②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质:下列说法不正确的是AA.函数值y随x的增大而减小B.函数图象不经过第四象限C.函数图象与直线x=﹣1没有交点D.函数图象对称中心(﹣1,0)(3)如果点A(x1,y1)、B(x2,y2)在函数图象上,如果x1+x2=﹣2,则y1+y2=0.解:(1)把x=0代入到中可得:y=1,即m=1,图象如下所示:故答案为:1,图象如上所示;(2)A.当x<﹣1或x>﹣1时,函数值y随x的增大而减小,故选项A不正确;B.根据图象可得,函数图象不经过第四象限,故选项B正确;C.根据函数表示可得:x≠﹣1,所以函数图象与直线x=﹣1没有交点,故选项C正确;D.根据图象可知,函数图象对称中心(﹣1,0),故选项D正确;故选:A;(3)∵x1+x2=﹣2,∴y1+y2====0;故答案为:0.7.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,列表:下表是x与y的几组对应值,其中m=.x…﹣3﹣2﹣1123…y…124421m…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点,请你描出剩下的点;连线:用平滑的曲线顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是:②;(填写代号)①函数值y随x的增大而增大;②关于y轴对称;③关于原点对称;(3)在上图中,若直线y=2交函数的图象于A,B两点(A在B左边),连接OA.过点B作BC∥OA交x轴于C.则S四边形OABC=4.解:(1)将x=3代入得y=,故答案为:.(2)由(1)中的图象可知,在第一象限内,y随x的增大而减小;在第二象限内,y随x的增大而增大;函数图象关于y轴对称,故②正确;故答案为:②.(3)将y=2代入得x=1或x=﹣1,∴AB=1﹣(﹣1)=2,∵AB在直线y=2上,OC在x轴上,∴AB∥OC,又∵BC∥OA,∴四边形OABC为平行四边形,=AB•y A=2×2=4.∴S四边形OABC故答案为:4.8.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为30°;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x =﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.解:(1)延长BA交x轴于点D,过点C作CE⊥x轴于点E,∵点,,,∴AB∥y轴,,OE=3,∴AB⊥x轴,∴,OD=2,∴,,∴∠BOD=60°,∠COE=30°,∴∠BOC=∠BOD﹣∠COE=30°,即原点O对三角形ABC的视角为30°过答案为:30°(2)证明:如图,过圆O2上任一点P作圆O1的两条切线交圆O1于A,B,连接OA,OB,OP,则有OA⊥PA,OB⊥PB,在中,OA=2,OP=4,∴,∴∠OPA=30°,同理可求得:∠OPB=30°,∴∠APB=60°,即圆O2上任意一点P对圆O1的视角是60°,∴圆O2上任意一点P对圆O1的视角是定值.(3)当在直线AB与直线CD之间时,视角是∠APD,此时以E(﹣4,0)为圆心,EA 半径画圆,交直线于P3,P6,∵∠DP3B>∠DP3A=45°,∠AP6C>∠DP6C=45°,不符合视角的定义,P3,P6舍去.同理,当在直线AB上方时,视角是∠BPD,此时以A(﹣2,2)为圆心,AB半径画圆,交直线于P1,P5,P5不满足;过点P1作P1M⊥AD交DA延长线于点M,则AP1=4,P1M=5﹣2=3,∴,∴当在直线CD下方时,视角是∠APC,此时以D(﹣2,﹣2)为圆心,DC半径画圆,交直线于P2,P4,P4不满足;同理得:;综上所述,直线上满足条件的位置坐标或.9.小明在学习函数的过程中遇到这样一个函数:y=[x],若x≥0时,[x]=x2﹣1;若x<0时,[x]=﹣x﹣1.小明根据学习函数的经验,对该函数进行了探究.(1)①列表:下表列出y与x的几组对应值,请写出m,n的值m=0;n=3;x…﹣2﹣1012…y…1m00n…②描点:在平面直角坐标系中,以①给出的自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点并连线,作出函数图象;(2)下列关于该函数图象的性质正确的是③;(填序号)①y随x的增大而增大;②该函数图象关于y轴对称;③当x=0时,函数有最小值为﹣1;④该函数图象不经过第三象限.(3)若函数值y=8,则x=3或﹣9;(4)若关于x的方程2x+c=[x]有两个不相等的实数根,请结合函数图象,直接写出c 的取值范围是c>﹣2.解:(1)①m=﹣(﹣1)﹣1=0;n=22﹣1=3;故答案为:0,3;②描点,连线,作出函数图象如下:(2)从图象可知:下列关于该函数图象的性质正确的是③;故答案为:③;(3)若x≥0时,x2﹣1=8,解得x=3或x=﹣3,∴x=3;若x<0时,﹣x﹣1=8,解得x=﹣9,故答案为:3或﹣9;(4)由图象可知:关于x的方程2x+c=[x]有两个不相等的实数根,则c>﹣2,故答案为:c>﹣2.10.某公园内人工湖上有一座拱桥(横截面如图所示),跨度AB为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.下面是小红的探究过程,请补充完整:(1)经过测量,得出了d和h的几组对应值,如表.d/米00.61 1.8 2.43 3.64h/米0.88 1.90 2.38 2.86 2.80 2.38 1.600.88在d和h这两个变量中,d是自变量,h是这个变量的函数;(2)在下面的平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合表格数据和函数图象,解决问题:①桥墩露出水面的高度AE为0.88米;②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且CE=DF,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离CE至少为0.7米.(精确到0.1米)解:(1)d是自变量,h是这个变量的函数,故答案为:d,h;(2)如图,(3)①当x=0时,y=0.88,∴桥墩露出水面的高度AE为0.88米,故答案为:0.88;②设y=ax2+bx+c,把(0,0.88)、(1,2.38)、(3,2.38)代入得,,解得,∴y=﹣0.5x2+2x+0.88,对称轴为直线x=2,令y=2,则2=﹣0.5x2+2x+0.88,解得x≈3.3(舍去)或0.7.故答案为:0.7.11.小明为了探究函数M:y=﹣x2+4|x|﹣3的性质,他想先画出它的图象,然后再观察、归纳得到,并运用性质解决问题.(1)完成函数图象的作图,并完成填空.①列出y与x的几组对应值如表:x…﹣5﹣4﹣3﹣2﹣1012345…y…﹣8﹣3010﹣3010a﹣8…表格中,a=﹣3;②结合上表,在下图所示的平面直角坐标系xOy中,画出当x>0时函数M的图象;③观察图象,当x=﹣2或2时,y有最大值为1;(2)求函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标;(3)已知P(m,y1),Q(m+1,y2)两点在函数M的图象上,当y1<y2时,请直接写出m的取值范围.解:(1)①把x=4代入y=﹣x2+4|x|﹣3得:y=﹣16+16﹣3=﹣3,∴a=﹣3,故答案为:﹣3;②画出当x>0时函数M的图象如下:③观察图象,当x=﹣2或2时,y有最大值为1;故答案为:﹣2或2,1;(2)由解得或,由解得或,∴函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标为(﹣6,﹣15)、(0,﹣3)、(2,1);(3)∵P(m,y1),Q(m+1,y2)两点在函数M的图象上,且y1<y2,∴m的取值范围m<﹣2.5或﹣0.5<m<1.5.12.定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W 上,则称点M为函数图象W的“直旋点”.例如,点是函数y=x图象的“直旋点”.(1)在①(3,0),②(﹣1,0),③(0,3)三点中,是一次函数图象的“直旋点”的有②③(填序号);(2)若点N(3,1)为反比例函数图象的“直旋点”,求k的值;(3)二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y=﹣x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.解:(1)①点(3,0)绕原点顺时针旋转90°得点(0,﹣3),当x=0时,y=1,∴点(3,0)不是一次函数图象的“直旋点”;②点(﹣1,0)绕原点顺时针旋转90°得点(0,1),当x=0时,y=1,∴点(﹣1,0)是一次函数图象的“直旋点”;③点(0,3)绕原点顺时针旋转90°得(3,0),当x=3时,y==0,∴点(0,3)是一次函数图象的“直旋点”;∴是一次函数图象的“直旋点”的有②③;故答案为:②③;(2)点N(3,1)绕原点顺时针旋转90°得点(1,﹣3),∵点N(3,1)为反比例函数图象的“直旋点”,∴,∴k=﹣3;(3)∵二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),令y=0,则﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∵二次函数y=﹣x2+2x+3与y轴交于点C,令x=0,则y=3,∴C(0,3),设直线AC的解析式为y=kx+b,,解得:,∴直线AC的解析式为y=3x+3,设点D(a,3a+3),则D(a,3a+3)绕原点顺时针旋转90°得点(3a+3,﹣a),∵点D是二次函数y=﹣x2+2x+3图象的“直旋点”,∴﹣(3a+3)2+2(3a+3)+3=﹣a,解得:a=0或a,∴点D的坐标为(0,3)或.13.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,当x=﹣4时,y=9,当x=2时,y=﹣3,∴对于﹣4<x≤2时,任意函数值都满足﹣9<y≤9,∴边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.14.在平面直角坐标系中,由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线C1与抛物线C2:y=mx2+4mx﹣12m(m >0)的部分图象组成一个“月牙线”,相同的交点分别为M,N(点M在点N的左侧),与y轴的交点分别为A,B,且点A的坐标为(0,﹣1).(1)求M,N两点的坐标及抛物线C1的解析式;(2)若抛物线C2的顶点为D,当m=时,试判断三角形MND的形状,并说明理由;(3)在(2)的条件下,点P(t,﹣)是抛物线C1上一点,抛物线C2第三象限上是=S△ONQ,若存在,请直接写出点Q的坐标;若不存在,说否存在一点Q,使得S△APM明理由.解:(1)令y=0,则mx2+4mx﹣12m=0,解得x=2或x=﹣6,∴M(﹣6,0),N(2,0),设抛物线C1的解析式为y=a(x+6)(x﹣2),将点A(0,﹣1)代入,得﹣12a=﹣1,解得a=,∴y=(x2+4x﹣12);(2)∵m=,∴y=x2+3x﹣9=(x+2)2﹣12,∴D(﹣2,﹣12),∴MD=4,ND=4,MN=8,∴MD=ND,∴△MND是等腰三角形;=S△ONQ,理由如下:(3)∵存在一点Q,使得S△APM∵点P(t,﹣)是抛物线C1上一点,∴﹣=(t2+4t﹣12),解得t=﹣1或t=﹣3,∴P(﹣1,﹣)或P(﹣3,﹣),设直线AM的解析式为y=kx+b,∴,解得,∴y=﹣x﹣1,过点P作PG∥y轴交AM于点G,当P(﹣1,﹣)时,G(﹣1,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);当P(﹣3,﹣)时,G(﹣3,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);综上所述:Q点坐标为(﹣﹣2,﹣)或(﹣﹣2,﹣).15.阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=﹣a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y =a2;当x=﹣a时,y=(﹣a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1是对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2﹣2|x|+1的图象如图2所示,当它与直线y=﹣x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(﹣3,0),B(2,0),C(2,﹣3),D(﹣3,﹣3),当二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.解:(1)∵在实数范围内任取x=a时,y=2|a|+1,当x=﹣a时,y=2|﹣a|+1=2|a|+1,∴y=2|x|+1是“对称函数”.故答案为:是;y=2|x|+1的图象如图1所示,(2)①当直线y=﹣x+n经过点(0,1)时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,∴n=1;②当直线y=﹣x+n与函数y=x2﹣2|x|+1的图象的右半侧相切时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,即方程组有一个解,∴方程x2﹣x+1﹣n=0有两个相等的实数根.∴Δ=(﹣1)2﹣4×1×(1﹣n)=0,解得:n=.综上,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,则n的值为1或;(3)当x>0时,函数y=x2﹣bx+1的图象与x轴相切时,方程x2﹣bx+1=0有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×1=0,∵b>0,∴b=2;当x>0时,函数y=x2﹣bx+1的图象与直线DC相切时,方程x2﹣bx+1=﹣3有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×4,∵b>0,∴b=4;当x<0时,函数y=x2+bx+1的图象经过点(﹣3,﹣3)时,﹣3=(﹣3)2﹣3b+1,解得:b=.综上,当2<b<4或b>时,二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点.16.定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“蛋圆”抛物线部分的解析式y=﹣x2+4x+8,自变量的取值范围是﹣2≤x≤4;(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;(3)求经过点D的“蛋圆”切线的解析式.解:(1)∵半圆的圆心M的坐标为(1,0),半圆半径为3,∴A(﹣2,0),B(4,0),设抛物线解析式为y=ax2+bx+c,则,解得,∴“蛋圆”抛物线部分的解析式y=﹣x2+2x+8(﹣2≤x≤4);故答案为:=﹣x2+2x+8;﹣2≤x≤4.(2)如图,设过点C的切线与x轴相交于E,连接CM,∵CE与半圆相切,∴CE⊥CM,∴∠OCE+∠MCO=90°,∵∠CEO+∠ECO=90°,∴∠CEO=∠MCO,又∵∠COE=∠MOC=90°,∴△COE∽△MOC,∴=,由勾股定理得,OC==2,∴OE===8,∴过点C的“蛋圆”切线与x轴的交点坐标为(﹣8,0);(3)设过点D的“蛋圆”切线解析式为y=kx+8,联立,消掉y得,x2+(k﹣2)x=0,∵直线与“蛋圆”抛物线相切,∴△=(k﹣2)2=0,解得k=2,∴过点D的“蛋圆”切线的解析式为y=2x+8.17.规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O—函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(﹣1,﹣1)在函数y=﹣x﹣2上,点P与点Q关于原点对称,此时函数y=x2和y=﹣x﹣2互为“O—函数”,点P与点Q则为一组“XC点”.(1)已知函数y=﹣2x﹣1和y=﹣互为“O—函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n﹣2022互为“O—函数”,求n的最大值并写出“XC 点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O—函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为﹣,连接OP,AP,BP.若∠OPA=∠OBP,求t的最小值.解:(1)设P(a,b)在y=﹣2x﹣1上,则Q(﹣a,﹣b)在y=﹣上,∴,解得或,∴“XC点”为(﹣2,3)与(2,﹣3)或(,﹣4)与(﹣,4);(2)设P(s,t)在y=x2+2x+4上,则Q(﹣s,﹣t)在y=4x+n﹣2022上,∴,∴n=﹣t+4s+2022=﹣s2+2s+2018=﹣(s﹣1)2+2019,当s=1时,n有最大值2019,此时“XC点”为(1,7)与(﹣1,﹣7);(3)设P(x,y)在y=ax2+bx+c上,则Q(﹣x,﹣y)在y=2bx+1上,∴,整理得ax2﹣bx+c+1=0,∵有且仅存在一组“XC点”,∴Δ=b2﹣4a(c+1)=0,即=﹣1,∴顶点M的纵坐标为﹣1,∵ax2+bx+c=0,∴x1+x2=﹣,x1•x2=,∴AB==,∵AB=,∴=,∴=,∵∠OPA=∠OBP,∠AOP=∠POB,∴△POA∽△BOP,∴OP2=OB•OA=x1•x2,∵P的横坐标为﹣,∴P(﹣,﹣1),∴t+1===(c﹣1)2+,∴当c=1时,t有最小值.18.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ三角形”.(1)判断下列三角形是否为“CJ三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形×;②其中有两内角分别为50°,60°的三角形×;③其中有两内角分别为70°,100°的三角形√;(2)如图1,点A在双曲线y=(k>0)上且横坐标为1,点B(4,0),C为OB中点,D为y轴负半轴上一点,若∠OAB=90°.①求k的值,并求证:△ABC为“CJ三角形”;②若△OAB与△OBD相似,直接写出D的坐标;(3)如图2,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,E为BC边上一点,BE >CE且△ABE是“CJ三角形”,已知A(﹣6,0),记BE=t,过A,E作抛物线y=ax2+bx+c(a>0),B在A右侧,且在x轴上,点Q在抛物线上,使得tan∠ABQ=,若符合条件的Q点个数为3个,求抛物线y=ax2+bx+c的解析式.。
中考数学新定义问题

例3、图1,已知四边形ABCD ,点P 为平面内一动点. 如果∠PAD =∠PBC ,那么我们称点P 为四边形ABCD 关于A 、B 的等角点. 如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.(1)若A 、D 两点的坐标分别为A (0,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为______;(2)若A 、D 两点的坐标分别为A (2,4)、D (6,4),当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;(3)若A 、D 两点的坐标分别为A (2,4)、D (10,4),点P (x ,y )为四边形ABCD 关于A 、B 的等角点,其中x >2,y >0,求y 与x 之间的关系式.练习3:定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”。
根据上述定义,距离坐标为(2,3)的点的个数是_______。
例4.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;,求证:△ABC是“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA= 32(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC 和AD-DC向终点C运动,记点P经过的路程为s.的值;①当β=45°时,若△APQ是“好玩三角形”,试求as②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.练习4:若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数几何新定义例5、如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB 是⊙O上关于A、B的滑动角.(1)已知∠APB是⊙O上关于A、B的滑动角.①若AB是⊙O的直径,则∠APB=____;②若⊙O的半径是1,AB=2,求∠APB的度数.(2)已知O2是⊙O1外一点,以O2为圆心做一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于A、B的滑动角,直线PA、PB分别交⊙O2于点M、N(点M与点A、点N与点B 均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.BA0P练习5:阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt △ABC 中,∠ACB =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt △ABC 是奇异三角形,求a :b :c.(3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合),D 是半圆的中点,C 、D 在直径AB 的两侧,若在⊙O 内存在点E ,使得AE =AD ,CB =CE. ①求证:△ACE 是奇异三角形.②当△ACE 是直角三角形时,求∠AOC 的度数.课堂练习1.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若x ]=5,则x的取值可以是()[410A.40 B.45 C.51 D.563.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.5.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF 的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.6.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BE;DC EC(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)。
中考数学《二次函数中的新定义问题》专项训练含答案解析

专题22.11 二次函数中的新定义问题专项训练(30道) 【人教版】 考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对新定义函数的理解!1.(2021•雅安)定义:min {a ,b }={a(a ≤b)b(a >b),若函数y =min {x +1,﹣x 2+2x +3},则该函数的最大值为( )A .0B .2C .3D .4 【解题思路】根据题意画出函数图象,通过数形结合求解.【解答过程】解:x +1=﹣x 2+2x +3,解得x =﹣1或x =2.∴y ={x +1(−1≤x ≤2)−x 2+2x +3(x <−1或x >2), 把x =2代入y =x +1得y =3,∴函数最大值为y =3.故选:C .2.(2021•章丘区模拟)定义:对于二次函数y =ax 2+(b +1)x +b ﹣2(a ≠0),若存在自变量x 0,使得函数值等于x 0成立,则称x 0为该函数的不动点,对于任意实数b ,该函数恒有两个相异的不动点,则实数a 的取值范围为( )A .0<a <2B .0<a ≤2C .﹣2<a <0D .﹣2≤a <0【解题思路】设x 为不动点,使y =x ,可得关系式ax 2+bx +b ﹣2=0,由恒有两个相异的不动点知Δ>0,即得a 的取值范围.【解答过程】由题意可知方程x =ax 2+(b +1)x +b ﹣2(a ≠0),恒有两个不相等的实数解,则△=b 2﹣4a (b ﹣2)=b 2﹣4ab +8a >0,对任意实数b 恒成立,把b 2﹣4ab +8a 看作关于b 的二次函数,则有△1=(4a )2﹣4×8a =16a 2﹣32a =16a (a ﹣2)<0,令16a (a ﹣2)=0,解得a =0或a =2,①当a ≥2时,16a >0,a ﹣2≥0,即16a (a ﹣2)≥0,②当a ≤0时,16a ≤0,a ﹣2<0,即16a (a ﹣2)≥0,③0<a <2时,16a >0,a ﹣2<0,即16a (a ﹣2)<0,即16a (a ﹣2)<0的解集,解得0<a <2,故选:A .3.(2021•岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,﹣1B .5−√172,﹣1 C .4,0 D .5+√172,﹣1 【解题思路】画出图象,从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值.【解答过程】解:如图,由题意可得,互异二次函数y =(x ﹣m )2﹣m 的顶点(m ,﹣m )在直线y =﹣x 上运动,在正方形OABC 中,点A (0,2),点C (2,0),∴B (2,2),从图象可以看出,当函数从左上向右下运动时,若抛物线与正方形有交点,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C , ∴只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值.当互异二次函数y =(x ﹣m )2﹣m 经过点A (0,2)时,m =2,或m =﹣1;当互异二次函数y =(x ﹣m )2﹣m 经过点B (2,2)时,m =5−√172或m =5+√172. ∴互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值分别是5+√172,﹣1. 故选:D .4.(2020•宁乡市一模)定义[a ,b ,c ]为函数y =ax 2+bx +c 的特征数,下面给出特征数为[m ﹣1,m +1,﹣2m ]的函数的一些结论,其中不正确的是( )A .当m =2时,函数图象的顶点坐标为(−32,−254)B .当m >1时,函数图象截x 轴所得的线段长大于3C .当m <0时,函数在x <12时,y 随x 的增大而增大D .不论m 取何值,函数图象经过两个定点【解题思路】A 、把m =2代入[m ﹣1,1+m ,﹣2m ],求得[a ,b ,c ],求得解析式,利用顶点坐标公式解答即可;B 、首先求得对称轴,利用二次函数的性质解答即可;C 、当x 大于二分之一时,在对称轴右侧,又开口向下,所以y 随x 增大而减小正确;B 、根据特征数的特点,直接得出x 的值,进一步验证即可解答.【解答过程】解:因为函数y=ax2+bx+c的特征数为[m﹣1,m+1,﹣2m];A、当m=2时,y=x2+3x﹣4=(x+32)2−254,顶点坐标是(−32,−254);此结论正确;B、当m>1时,令y=0,有(m﹣1)x2+(1+m)x﹣2m=0,解得,x1=1,x2=−2mm−1,|x2﹣x1|=3m−1m−1>3,所以当m>1时,函数图象截x轴所得的线段长度大于3,此结论正确;C、当m<0时,y=(m﹣1)x2+(1+m)x﹣2m是一个开口向下的抛物线,其对称轴是:x=−m+12(m−1),在对称轴的左边y随x的增大而增大,因为当m<0时,−m+12(m−1)=−m−1+22(m−1)=−12−1m−1>−12,即对称轴在x=−12右边,可能大于12,所以在x>12时,y随x的增大而减小,此结论错误;D、因为y=(m﹣1)x2+(1+m)x﹣2m=0 即(x2+x﹣2)m﹣x2+x=0,当x2+x﹣2=0时,x=1或﹣2,∴抛物线经过定点(1,0)或(﹣2,﹣6),此结论正确,故选:C.5.(2020•市中区二模)对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m≤13B.m<13C.13<m≤12D.m≤12【解题思路】根据函数的上确界和函数增减性得到﹣2m+1=n,函数的最小值为﹣2n+1,根据m<n,函数的最小值不超过2m,列不等式求解集即可.【解答过程】解:∵在y=﹣2x+1中,y随x的增大而减小,∴上确界为﹣2m+1,即﹣2m+1=n,∵函数的最小值是﹣2n+1≤2m,解得m≤1 2,∵m<n,∴m<﹣2m+1.解得m<13,综上,m<13故选:B.6.(2020秋•思明区校级期末)对于一个函数:当自变量x取a时,其函数值y也等于a,我们称a为这个函数的不动点,若二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,则c的取值范围是()A.c<﹣3B.c>−14C.﹣3<c<﹣2D.﹣2<c<14【解题思路】设a是二次函数y=x2+2x+c的不动点,则a2+a+c=0,根据二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,可知关于a的方程a2+a+c=0有两个不相等的实数根,且两个实数根都小于1,设这两个实数根为a1、a2,则Δ>0,a1<1,a2<1,即有1﹣4c>0,且(a1﹣1)+(a2﹣1)<0,(a1﹣1)(a2﹣1)>0,即可解得﹣2<c<1 4.【解答过程】解:设a是二次函数y=x2+2x+c的不动点,则a=a2+2a+c,即a2+a+c=0,∵二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,∴关于a的方程a2+a+c=0有两个不相等的实数根,且两个实数根都小于1,设这两个实数根为a1、a2,则a1+a2=﹣1,a1•a2=c,∴Δ>0,a1<1,a2<1,∴1﹣4c>0①,且(a1﹣1)+(a2﹣1)<0②,(a1﹣1)(a2﹣1)>0③,由①得c<1 4,∵a1+a2=﹣1,∴②总成立,由③得:a1•a2﹣(a1+a2)+1>0,即c﹣(﹣1)+1>0,∴c>﹣2,综上所述,c的范围是﹣2<c<1 4,故选:D.7.(2020秋•亳州月考)定义:在平面直角坐标系中,过一点P分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P叫作和谐点,所围成的矩形叫作和谐矩形.已知点P是抛物线y=x2+k上的和谐点,所围成的和谐矩形的面积为16,则k的值可以是()A.16B.4C.﹣12D.﹣18【解题思路】根据和谐点的定义与二次函数的性质列出m ,n 的方程,求解m ,n 即可.【解答过程】解:∵点P (m ,n )是抛物线y =x 2+k 上的点,∴n =m 2+k ,∴k =n ﹣m 2,∴点P (m ,n )是和谐点,对应的和谐矩形的面积为16,∴2|m |+2|n |=|mn |=16,∴|m |=4,|n |=4,当n ≥0时,k =n ﹣m 2=4﹣16=﹣12;当n <0时,k =n ﹣m 2=﹣4﹣16=﹣20;故选:C .8.(2021•河南模拟)新定义:[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 为实数)的“图象数”,如:y =x 2﹣2x +3的“图象数”为[1,﹣2,3],若“图象数”是[m ,2m +4,2m +4]的二次函数的图象与x 轴只有一个交点,则m 的值为( )A .﹣2B .14C .﹣2或2D .2【解题思路】根据新定义得到二次函数的解析式为y =mx 2+(2m +4)x +2m +4,然后根据判别式的意义得到△=(2m +4)2﹣4m (2m +4)=0,从而解m 的方程即可.【解答过程】解:二次函数的解析式为y =mx 2+(2m +4)x +2m +4,根据题意得△=(2m +4)2﹣4m (2m +4)=0,解得m 1=﹣2,m 2=2,故选:C .9.(2021春•江岸区校级月考)定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B (3,0)、C (﹣1,3)都是“整点”.抛物线y =ax 2﹣2ax +a +2(a <0)与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是( )A .﹣1≤a <0B .﹣2≤a <﹣1C .﹣1≤a <−12D .﹣2≤a <0【解题思路】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得m 的取值范围.【解答过程】解:抛物线y =ax 2﹣2ax +a +2(a <0)化为顶点式为y =a (x ﹣1)2+2,故函数的对称轴:x =1,M 和N 两点关于x =1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(1,0),((1,1),(1,2),(2,0), 如图所示:∵当x =0时,y =a +2∴0≤a +2<1当x =﹣1时,y =4a +2<0即:{0≤a +2<14a +2<0, 解得﹣2≤a <﹣1故选:B .10.(2021•深圳模拟)我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,b 2﹣4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2﹣2x ﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当﹣1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =﹣1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4,A.4B.3C.2D.1【解题思路】由(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|知①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的;根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的;逐个判断之后,可得出答案.【解答过程】解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,存在函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;故选:A.。
与函数有关的新定义问题

与函数有关的新定义问题以学习过的函数相关知识为基础,通过一类问题共同特征的“数学抽象”,引出新的概念,然后在快速理解的基础上,解决新的问题.[例4] 设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的五个函数:①f (x )=x 2;②f (x )=1x -1; ③f (x )=ln(2x +3);④f (x )=2x -2-x ;⑤f (x )=2sin x -1,其中是“美丽函数”的序号有________.解析:由已知,在函数定义域内,对任意的x 都存在着y ,使x 所对应的函数值f (x )与y 所对应的函数值f (y )互为相反数,即f (y )=-f (x ).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意; ③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数的值域为R ,值域关于原点对称,故④符合题意;⑤中函数f (x )=2sin x -1的值域为[-3,1],不关于原点对称,故⑤不符合题意. 答案:②③④1.紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.2.巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.3.构造函数:有些新定义型函数可看成是由两个已知函数构造而成的.[素材库]1.(2018·长沙市高三模拟)定义运算:x Δy =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:3Δ4=3,(-2)Δ4=4,则函数f (x )=x 2Δ(2x -x 2)的最大值为________.解析:由已知得f (x )=x 2Δ(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 2(2x -x 2)≥0,2x -x 2,x 2(2x -x 2)<0=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x <0或x >2,易知函数f (x )的最大值为4.答案:42.(2018·济宁高三模拟)如果定义在R 上的函数f (x )对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x );③y =e x +1;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.以上函数是“H 函数”的是________.(填上所有正确的序号)解析:若函数f (x )为“H 函数”,则有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),x 1[f (x 1)-f (x 2)]>x 2[f (x 1)-f (x 2)],即(x 1-x 2)[f (x 1)-f (x 2)]>0.所以“H 函数”f (x )就是R 上的单调递增函数.①y ′=-3x 2+1,由y ′>0,解得-33<x <33,所以该函数的单调递增区间为⎝⎛⎭⎫-33,33,而在区间(-∞,-33)和⎝⎛⎭⎫33,+∞上单调递减,显然在R 上不是单调递增函数,即不是“H 函数”.②y ′=3-2(cos x +sin x )=3-22sin ⎝⎛⎭⎫x +π4.因为sin ⎝⎛⎭⎫x +π4∈[-1,1],所以y ′=3-22sin ⎝⎛⎭⎫x +π4≥3-22>0,③因为函数y =e x 在R 上是单调递增函数,所以y =e x+1在R 上也是单调递增函数,即“H 函数”.④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0=⎩⎪⎨⎪⎧ln x ,x >0,ln (-x ),x <0,0,x =0.故该函数在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以在R 上不是单调递增函数,即不是“H 函数”.综上,②③正确.答案:②③。
专题一 微重点1 函数的新定义问题

规律方法 以某些特殊函数为背景考查函数的基本概念及应用时,关 键是理解函数的实质,与熟悉的函数类比,通过赋特殊值 或数形结合解决.
跟踪演练1
1,x>0, (1)(2022·东北师大附中模拟)已知符号函数sgn x=0,x=0,
-1,x<0,
偶函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=x,则
得 3sin x=-cos x,即 tan x=-13, 因为函数y=tan x的周期为π, 所以 tan x=-13的根有无数个, 故函数g(x)有无数个“新不动点”,不符合题意.
(2)(多选)在实数集R上定义一种运算“★”,对于任意给定的a,b∈R,
a★b为唯一确定的实数,且具有下列三条性质:
f
-2
0522=-f
2
0522=-f
4×101+25
=-f 25=-R25=-15,
∴f(2
022)+f
-2
0522=-15.
考向4 欧拉函数
例4 (多选)(2022·重庆八中调研)若正整数m,n只有1为公约数,则称m,
n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,
A.sgn[f(x)]>0
√C.sgn[f(2k+1)]=1(k∈Z)
B.f
2
0221=1
D.sgn[f(k)]=|sgn k|(k∈Z)
对于A选项,sgn[f(0)]=sgn 0=0,A错;
对于
B
选项,f
2
0221=f
1
010+12=f
12=12,B
错;
对于C选项,
对任意的k∈Z,f(2k+1)=f(1)=1,
新定义函数问题

新定义、新概念创新函数问题解析信息迁移题是近几年高考中函数题的热点题型,解答这类问题的关键在于阅读理解时,要准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情景下的问题。
1. 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=-x 2, 值域为{-1,-9}的“同族函数”共有( )A.9个 B 。
8个 C 。
5个 D 。
4个解析:函数y=-x 2, 值域为{-1,-9},可知自变量x 从1,-1,±1中任取一个,和从3,-3,±3中任取一个构成函数,故满足条件的“同族函数”有3×3=9个。
2.若直角坐标平面内两点P 、Q 满足条件:①P 、Q 都在函数f(x)的图象上;②P 、Q 关于原点对称,则称点对(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与(Q,P)看作同一个“友好点对”)。
已知函数f(x)=⎪⎩⎪⎨⎧≥<++0,0,14222x x x x xe 则f(x)的“友好点对”有_______个。
解析:本题若直接求解显然不行,不妨作出函数f(x)=2x 2+4x+1,(x<0) 图象关于原点对称的函数记为g(x)=-f(-x)=-2x 2+4x-1=-2(x-1)2+1,g(1)=1, 而f(1)=e2<1, 作出g(x)与f(x)(x ≥0)的图象,数性结合可知,g(x)与f(x)(x ≥0)有两个交点,故f(x)的“友好点对”有两个。
3,(2010湖南卷)用min{a,b}表示a,b 俩数中的最小值,若函数f(x)= min{|x|,|x+t|}的图象 关于直线x=-21对称,则t=_________________解析:在同一坐标系中,分别作出函数xy =与tx y +=的图像,由图像知f(x)的图像为图中的实线部分(A-B-C-O-E)。
由于f(x) 的图象 关于直线x=-21对称,于是1,2120=∴-=+-t t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数中的新定义问题
一、填空题
1、定义区间[x1,x2](x1?x2)的长度为x2?x1,已知函数
f(x)?|log1x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值与最小值的差
2
为 .
2、(2015余杭区模拟)已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称函数f(x)为F﹣函数.给出下列函数:①f(x)=x;②f(x)=
x2;③f(x)=2;④f(x)=sin2x.其中是F﹣函数的序号为.
3、(2009厦门十中)定义:若存在常数k,使得对定义域D内的任意两个x1,x2?x1?x2?,均有f?x1??f?x2?kx1?x2成立,则称函数f?x?在定义域D上满足利普希茨条件。
若函数f?x??
4、(2012格致三模)已知全集为U,P??U,定义集合P的特征函数为x?x?1?满足利普希茨条件,则常数k的最小值为_____。
??1,x?P,fP?x???,对于A??U, B??U,给出下列四个结论: 0,x?eP.?U?
①对任意x?U,有feUA?x??fA?x??1;
②对任意x?U,若A??B,则fA?x??fB?x?;
③对任意x?U,有fAIB?x??fA?x??fB?x?;
④对任意x?U,有fA?B?x??fA?x??fB?x?。
其中,正确结论的序号是__________。
5、定义运算:a*b=,对于函数f(x)和g(x),函数|f(x)﹣g(x)|在闭区间[a,b]上的最大值称为f(x)与g(x)在闭区间[a,b]上的“绝对差”,记为(f(x),g(x)),则(sinx*cosx,1)= .。