(完整版)浙教版七年级下册数学期末复习题
浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。
浙教版数学七年级下学期期末训练题(含答案)

浙教版数学七年级下学期期末训练题(含答案)一、单选题1.计算:3﹣1=( )A.3B.﹣3C.13D.﹣132.若分式31+x在实数范围内有意义,则实数x的取值范围是( )A.x≠1B.x≠﹣l C.x≥l D.x>﹣1 3.使(x2+3x+p)(x2﹣qx+4)乘积中不含x2与x3项,则p+q的值为( )A.8B.﹣8C.﹣2D.﹣34.下列计算正确的是( )A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=6a4D.b3⋅b3=2b3 5.下列运算结果正确的是( )A.a3+a3=a6B.a2⋅a3=a6C.(ab4)3=a3b12D.a3÷a=a36.已知方程组a+b=4ab=2,下列说法正确的是( )①a2+b2=12;②(a﹣b)2=8;③1a+1b=2;④b a+ab=6.A.1B.2C.3D.47.某商店根据今年6-10月份的销售额情况,制作了如下统计图。
根据图中信息,可以判断相邻两个月销售额变化最大的是( )A.6月到7月B.7月到8月C.8月到9月D.9月到10月8.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4B.8C.―8D.±89.下列运算正确的是( )A.x8÷x2=x4B.4+9=4+9C.(―2a2)3=―8a6D.(―1)0―(12)―1=―310.一个长方形的长为(2x+y),宽为(y―2x),则这个长方形的面积为( ).A.2x2―y2B.y2―2x2C.4x2―y2D.y2―4x211.若关于x,y的方程组a1(x+y)―b1(x―y)=c1a2(x+y)―b2(x―y)=c2,解为x=2022y=2023.则关于x,y的方程组a1x+b1y=15c1a2x+b2y=15c2的解是( )A.x=809y=15B.x=4045y=1C.x=2022y=2023D.x=20225y=―2023512.如图1的8张宽为a,长为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC 的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )A.b=5a B.b=4a C.b=3a D.b=a二、填空题13.为了解某校1000名师生对“新型冠状病毒”的了解情况,从中随机抽取了50名师生进行问卷调查,这项调查中的样本是 .14.若a2―b2=16,a―b=13,则a+b的值为 .15.关于x的方程x+ax―1=2的解为正数,则a的取值范围为 .16.若x+y=5,x-y=1,则x2-y2= .17.分式(a―1)+a(1a―1)的值为 .18.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn= .19.已知关于x,y的二元一次方程组3x+y=2k,x―2y=k+6有下列说法:①当x与y相等时,解得k=-4;②当x与y互为相反数时,解得k=3;③若4x·8y=32,则k=11;④无论k为何值,x与y的值一定满足关系式x+5y+12=0,其中正确的序号是 20.如图,把五个长为b,宽为a(b>a)的小长方形,按图一和图二两种方式放在一个长比宽大(6―a)的大长方形上,设图一中两块阴影部分的周长和为C1,图2中阴影部分的周长和为C2,则C2―C1的值为 .三、计算题21.解方程组:x―2y=03x―y=522.解方程组:(1)x+4y=7 2x+11y=20(2)2x+(y―x)=1 5x+2(y―x)=523.利用分数指数幂计算:36÷32×63.(结果用根式的形式表示)四、解答题24.如图,已知∠1=∠2,∠A=29°,求∠C的度数.25.化简求值:(a―2a+2+8aa2―4)÷a2+2aa―2,其中a=2022;26.先化简,再求值:[(x+2y)2―(x+y)(x―y)―5y2]÷y;其中|x-12|+(y+2)2=0.答案1.C 2.B 3.A 4.A 5.C 6.D 7.C 8.D 9.C 10.D 11.A 12.A 13.50名师生“新型冠状病毒”的了解情况14.1215.a>﹣2且a≠﹣1 16.5 17.0 18.1 19.①②③④20.1221.解:x―2y=0①3x―y=5②将②×2―①得:5x=10,∴x=2,将x=2代入②得:6―y=5,∴y=1,∴该方程组的解为x=2 y=1.22.(1)解:x+4y=7①2x+11y=20②由①×2得:2x+8y=14③由②-③得:3y=6解之:y=2;把y=2代入①得x+8=7 解之:x=-1 ∴原方程组的解为:x=―1y=2.(2)解:将原方程组转化为:x+y=1①3x+2y=5②由①×2得:2x+2y=2③,由②-③得:x=3,把x=3代入①得3+y=1 解之:y=-2,∴原方程组的解为:x=3y=―2. 23.解:36÷32×63=613÷213×316=313×316=312=3 24.解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3 ∴AB∥CD∴∠A+∠C=180°,又∵∠A=29° ∴∠C=151°答:∠C的度数是151°.25.解:原式=(a―2)2+8a(a+2)(a―2)⋅a―2a(a+2)=(a+2)2(a+2)(a―2)⋅a―2a(a+2)=1a当a=2022时,原式=1202226.解:[(x+2y)2―(x+y)(x―y)―5y2]÷y=(x2+4xy+4y2-x2+y2-5y2)÷y =4xy÷y=4x,|+(y+2)2=0,∵|x-12,y=-2,∴x=12当x=1时,2=2.原式=4×12。
【浙教版】七年级数学下期末试题含答案

一、选择题1.已知关于x 的不等式组15x a x b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( ) A .6 B .8 C .10 D .122.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( ) A .21a -≤<- B .21a -≤≤- C .21a -<<- D .21a -<≤- 3.下列是二元一次方程组的是( )A .21342y x x z =+⎧⎨-=⎩B .56321x xy x y -=⎧⎨+=⎩C .73232x y y x ⎧-=⎪⎪⎨⎪=⎪⎩ D .32x y xy +=⎧⎨=⎩4.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( ) A .2,3 B .3,2 C .2,4 D .3,45.关于x 、y 的方程组53x ay x y +=⎧⎨-=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出a ,则a 的值是( )A .2B .-2C .1D .-1 6.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤28.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 9.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .4910.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是111.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个 12.若关于x 的不等式组327x x a -<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ). A .3a B .3a >C .3aD .3a < 二、填空题13.已知点()2,3P a a -在第四象限,那么a 的取值范围是________.14.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.15.某商店准备用每千克19元的A 糖果和每千克10元的B 糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A 糖果x 千克,B 糖果y 千克,根据题意可列二元一次方程组:_____. 16.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.17.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .18.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=19.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________. 三、解答题21.解方程组或解不等式组.(1)解方程组:54332x y x y -=⎧⎨-=⎩ (2)解不等式组:3(2)41213x x x x --≥⎧⎪+⎨<-⎪⎩,并把解集在数轴上表示出来.22.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:甲 乙 进价(元/件)14 35 售价(元/件) 20 43、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.23.2019年12月3日,140余件从明末清初延续至民国时期的民间晋绣在山西省太原美术馆展出,这是山西首次将这一传承百年的工艺品进行系统梳理.某校组织学生前去参观,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满.问这批学生的人数是多少?原计划租用45座客车多少辆?24.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴25.已知2x +1的算术平方根是0,y =4,z 是﹣27的立方根,求2x +y +z 的平方根. 26.如图1,AB ∥CD ,直线AE 分别交AB 、CD 于点A 、E .点F 是直线AE 上一点,连结BF ,BP 平分∠ABF ,EP 平分∠AEC ,BP 与EP 交于点P .(1)若点F 是线段AE 上一点,且BF ⊥AE ,求∠P 的度数;(2)若点F 是直线AE 上一动点(点F 与点A 不重合),请直接写出∠P 与∠AFB 之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求出两个不等式的解集,再求其公共解,再根据不等式组的解集列出求出a 、b 的值,再代入代数式进行计算即可得解.【详解】15x a x b -≥⎧⎨+≤⎩①②, 由①得,x≥a +1,由②得,x≤b−5,∵不等式组的解集是3≤x≤5,∴a +1=3,b−5=5,解得a =2,b =10,所以,a +b =2+10=12.故选:D .【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 2.A解析:A【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知和不等式组的解集求解即可.【详解】∵解不等式0x a ->得:x a >,解不等式122x x ->-得:1x <,∴不等式组的解集为1a x <<,又∵不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,即整数解为-1,0, ∴21a -≤<-,故选:A .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式组的解集和已知得出答案是解此题的关键.3.C解析:C【分析】根据二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组,逐一判断即可得.【详解】A .此方程组中有3个未知数,不是二元一次方程组;B .此方程组中第1个方程是二元二次方程,不是二元一次方程组;C .此由两个一次方程组成,并含有两个未知数的方程组,是二元一次方程组;D .此方程组中第2个方程是二元二次方程,不是二元一次方程组;故选:C .【点睛】本题主要考查二元一次方程组的定义,二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程. 4.B解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值.【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩, 解得:23x y =⎧⎨=⎩, 将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩, 得:23122313a b b a +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2.故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.5.B解析:B【分析】把1x =代入②,得到y 的值,再将x 和y 的值代入①即可求解.【详解】解:53x ay x y +=⎧⎨-=⎩①②,把1x =代入②,得2y =-, 把12x y =⎧⎨=-⎩代入①可得:125a -=,解得2a =-, 故选:B .【点睛】本题考查二元一次方程组的解,把1x =代入②得到y 的值是解题的关键.6.A解析:A【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可.【详解】解:图2所示的算筹图所表示的方程组是211 4327 x yx y+=⎧⎨+=⎩.故选:A.【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.B解析:B【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度以及第二象限内点的坐标特征解答.【详解】∵点A位于第二象限∴横坐标为负,纵坐标为正∵点A到x轴的距离为3,到y轴的距离为6∴点A的坐标为(-6,3)故答案为:B.【点睛】本题考查点的坐标和象限的特征,解题的关键是掌握点的坐标和象限的特征.9.B解析:B【分析】设边长为10的正方形内部的整点的坐标为(x,y),x,y都为整数,根据题意可得规律求解.【详解】解:设边长为10的正方形内部的整点的坐标为(x,y),x,y都为整数.则﹣5<x<5,﹣5<y<5,故x只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,y只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,它们共可组成点(x,y)的数目为9×9=81(个).故选:B.【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标特点规律,然后进行求解即可.10.A解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A 、正数的算术平方根一定是正数,故选项正确;B 、如果a 表示一个实数,那么-a 不一定是负数,例如a=0,故选项错误;C 、和数轴上的点一一对应的数是实数,故选项错误;D 、1的平方根是±1,故选项错误;故选:A .【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质.11.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围.【详解】解:327x x a -<⎧⎨<⎩①②, ①式化简得:39,3x x <<又∵该不等式的解集为x a <,∴3a .故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题13.【分析】点在第四象限的条件是:横坐标是正数纵坐标是负数根据题意列出不等式组即可求解【详解】解:∵点(2-a3a )在第四象限∴解得a <0故答案为:a <0【点睛】坐标平面被两条坐标轴分成了四个象限每个象解析:0a <【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数,根据题意列出不等式组即可求解.【详解】解:∵点(2-a ,3a )在第四象限,∴2030a a -⎧⎨⎩>< , 解得a <0,故答案为:a <0.【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,列出不得式是解题的关键.14.63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是 解析:63【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可.【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=,长方形的宽是:257+=,面积是:7963⨯=.故答案是:63.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解. 15.【分析】设需要每千克19元的糖果x 千克每千克10元糖果y 千克根据题意可得糖果150千克;混合后糖果的价格是每千克16元;据此列方程组解答即可【详解】设需要每千克19元的糖果x 千克每千克10元糖果y 千解析:150191016150x y x y +=⎧⎨+=⨯⎩. 【分析】设需要每千克19元的糖果x 千克,每千克10元糖果y 千克,根据题意可得糖果150千克;混合后糖果的价格是每千克16元;据此列方程组解答即可.【详解】设需要每千克19元的糖果x 千克,每千克10元糖果y 千克,根据题意可得:150191016150x y x y +=⎧⎨+=⨯⎩, 故答案为:150191016150x y x y +=⎧⎨+=⨯⎩. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.16.55【分析】在直角坐标系下现根据题意确定AB 点的位置和方向最后确定C 点的位置和方向依次连接ABC 三点根据角之间的关系求出∠5的度数即可【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到解析:55【分析】在直角坐标系下现根据题意确定A 、B 点的位置和方向,最后确定C 点的位置和方向.依次连接A 、B 、C 三点,根据角之间的关系求出∠5的度数即可.【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到达点B ,从点B 沿南偏西10°的方向走了100米到达点C ,∴∠1+∠2=60°,AB=BC=100,∴∠2=50°,且△ABC 是等腰三角形,∴∠BAC=180502︒-︒=65°, ∴∠5=180°-65°-60°=55°, ∴点C 在点A 的南偏东55°的方向上.故答案为:55.【点睛】本题考查了直角坐标系的建立和运用,运用直角坐标系来确定点的位置和方向. 17.二【分析】先根据x 轴上的点的纵坐标等于0可求出n 的值从而可得出点B 的坐标由此即可得【详解】点在x 轴上即点在第二象限故答案为:二【点睛】本题考查了点坐标掌握理解x 轴上的点的纵坐标等于0是解题关键 解析:二【分析】先根据x 轴上的点的纵坐标等于0可求出n 的值,从而可得出点B 的坐标,由此即可得.【详解】点(2,)A n -在x 轴上,0n ∴=,22,11n n ∴-=-+=,即(2,1)B -,20,10-<>,∴点(2,1)B -在第二象限,故答案为:二.【点睛】本题考查了点坐标,掌握理解x 轴上的点的纵坐标等于0是解题关键.18.(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立 解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 19.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.20.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的 解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.(1)5717 xy⎧=⎪⎪⎨⎪=⎪⎩;(2)不等式组无解,画图见解析.【分析】(1)①-②4⨯求出57x=,把57x=代入①求出y即可;(2)先求出不等式组的解集,再在数轴上表示出不等式组的解集即可.【详解】(1)54332x yx y-=⎧⎨-=⎩①②,由①-②4⨯得:51238x x-=-,75x-=-,57x=,把57x=代入①得:17y=,∴方程组的解为5717xy⎧=⎪⎪⎨⎪=⎪⎩.(2)3(2)41213x xxx--≥⎧⎪⎨+<-⎪⎩①②,由①得:364x x-+≥,1x≤,由②得:2331x x+<-,4x>,∴不等式组无解.表示在数轴上为【点睛】本题考查了解二元一次方程组,解一元一次不等式组和在数轴上表示不等式组的解集,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解此题的关键.22.(1)甲种商品购进100件,乙种商品购进80件;(2)方案一:甲种商品购进61件,乙种商品购进119件.方案二:甲种商品购进62件,乙种商品购进118件.方案三:甲种商品购进63件,乙种商品购进117件.获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【分析】(1)等量关系为:甲件数+乙件数=180;甲总利润+乙总利润=1240.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<5040;甲总利润+乙总利润≥1314.【详解】解:(1)(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:180 681240 x yx y+=⎧⎨+=⎩.解得:10080xy=⎧⎨=⎩.答:甲种商品购进100件,乙种商品购进80件.(2)设甲种商品购进a件,则乙种商品购进(180)a-件.根据题意得1435(180)504068(180)1314a aa a+-<⎧⎨+-≥⎩解不等式组得6063a<.a为非负整数,a∴取61,62,63180a∴-相应取119,118,117方案一:甲种商品购进61件,乙种商品购进119件,此时利润为:66181191318⨯+⨯=元;方案二:甲种商品购进62件,乙种商品购进118件,此时利润为:66281181316⨯+⨯=元;方案三:甲种商品购进63件,乙种商品购进117件,此时利润为:66281181314⨯+⨯=元;所以,有三种购货方案,其中获利最大的是方案一:甲种商品购进61件,乙种商品购进119件.【点睛】本题考查了二元一次方程组的应用及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.学生人数为240人,原计划租用45座客车5辆【分析】此题注意总人数是不变的,设原计划租用45座客车x辆,学生人数为y人.根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满”列出方程组并解答.【详解】解:设原计划租用45座客车x辆,学生人数为y人.根据题意,得154560(1)y x x y -=⎧⎨-=⎩. 解,得5240x y =⎧⎨=⎩. 答:学生人数为240人,原计划租用45座客车5辆.【点睛】本题考查了二元一次方程组的应用.此题要抓住不变量,可以有不同的解法,本题关键是找到等量关系.24.(1)1a =-,6b =;(2)3a =,4b =-;(3)3a ≠,6b =【分析】(1)关于y 轴对称,纵坐标不变,横坐标变为相反数,据此可得a ,b 的值; (2)关于x 轴对称,横坐标不变,纵坐标变为相反数,据此可得a ,b 的值; (3)AB ∥x 轴,即两点的纵坐标相同,横坐标不相同,据此可得a ,b 的值.【详解】解:(1)因为A ,B 两点关于y 轴对称,所以1215a b -=-⎧⎨-=⎩, 则1a =-,6b =.(2)因为A ,B 两点关于x 轴对称,所以1215a b -=⎧⎨-=-⎩则3a =,4b =-.(3因为//AB x 轴则满足15b -=,即6b =,12a -≠,即3a ≠.【点睛】本题考查了关于x 轴的对称点的坐标特点以及关于y 轴的对称点的坐标特点,即点P(x,y)关于x 轴对称点P´的坐标是(x,-y),关于y 轴对称点P´的坐标是(-x,y).25.【分析】先根据算术平方根的定义求得2x 的值,再根据算术平方根的定义求出y ,根据立方根的定义求z ,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x +1的算术平方根是0,∴2x +1=0,∴2x =﹣1,∵=4,∴y=16,∵z是﹣27的立方根,∴z=﹣3,∴2x+y+z=﹣1+16﹣3=12,∴2x+y+z的平方根是±12 ±23.【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.26.(1)45°;(2)当E点在A点上方时,∠BPE=12∠AFB,当E点在A点下方时,∠BPE=90°﹣12∠AFB【分析】(1)过点P作PQ∥AB,过点F作FH∥AB,由平行线的性质得∠ABP+∠CEP=∠BPE,∠ABF+∠CEF=∠BFE,再由垂直定义和角平分线定义求得结果;(2)分三种情况:点F在EA的延长线上时,点F在线段AE上时,点F在AE的延长线上时,分别进行探究便可.【详解】解:(1)过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BF⊥AE,∴∠ABF+∠CEF=∠BFE=90°,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF)=45°,∴∠BPE=45°;(2)①当点F在EA的延长线上时,∠BPE=12∠AFB,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠CEP﹣∠ABP=∠EPQ﹣∠BPQ=∠BPE,∠CEF﹣∠ABF=∠EFH﹣∠BFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP﹣∠ABP=12(∠CEF﹣∠ABF)=12∠BFE=∠AFB,∴∠BPE=12∠AFB;②当点F在线段AE上(不与A点重合)时,∠BPE=90°﹣12∠AFB;理由如下:如备用图2,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=12(∠ABF+∠CEF),∴∠BPE=12∠BFE∴∠BFE=180°﹣∠AFB,∴∠BPE=90°﹣12∠AFB;③当点F在AE的延长线上时,∠BPE=90°﹣12∠AFB,理由如下:如备用图3,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,180°﹣∠ABF=∠BFH,∠AEC=∠EFH,∴∠CEP+∠ABP=∠EPQ+∠BPQ=∠BPE,∠BFH﹣∠EFH=180°﹣∠ABF﹣∠AEC=∠AFB,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP+∠ABP=12(∠AEC+∠ABF)=12(180°﹣∠AFB),∴∠BPE=90°﹣12∠AFB;综上,当E点在A点上方时,∠BPE=12∠AFB,当E点在A点下方时,∠BPE=90°﹣12∠AFB.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.。
【浙教版】初一数学下期末试题带答案

一、选择题1.下列事件中,是必然事件的是( )A .多边形的外角和等于360°B .车辆随机到达一个路口,遇到红灯C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,正面向上2.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定 3.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P 1,摸到红球的概率是P 2,则 ( )A .P 1=1,P 2=1B .P 1=0,P 2=1C .P 1=0,P 2=14 D .P 1=P 2=144.如图,四边形ABCD 中,点M N ,分别在,AB BC 上,100,70,A C ∠=∠=将BMN △沿MN 翻折,得FMN ,若////,MF AD FN DC ,则B 的度数为( )A .80B .85C .90D .955.如图,点P 是AOB ∠外的一点,点,M N 分别是AOB ∠两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若2.5,3,4PM cm PN cm MN cm ===,则线段QR 的长为( )A .4.5B .5.5C .6.5D .7 6.长方形按下图所示折叠,点D 折叠到点D′的位置,已知∠D′FC=60°,则∠EFD 等于( )A .30°B .45°C .50°D .60°7.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 8.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒9.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .4 10.学校计划买100个乒乓球,买的乒乓球的总费用w (元)与单价n (元/个)的关系式w =100n 中( ) A .100是常量,w 、n 是变量B .100、w 是常量,n 是变量C .100、n 是常量,w 是变量D .无法确定11.用一副三角板不能画出的角是( ).A .75°B .105°C .110°D .135° 12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是( )A .(a+b )(a-b )=a 2-b 2B .(a-b )2=a 2-2ab+b 2C .a (a+b )=a 2 +abD .a (a-b )=a 2-ab二、填空题13.将一个表面涂满红色的正方体的每条棱五等份,此正方体分割成若干个小正方体,从中任取一个小正方体,各面均无色的概率为_____.14.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是_____. 15.如图,三角形纸片中,7cm AB =,5cm =BC ,4cm AC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边的点E 处,折痕为BD ,则AED 的周长为______.16.如图,△ABE 和△ACD 是△ABC 分别沿着AB,AC 边翻折180°形成的,若∠BAC=140°,则∠a 的度数是________17.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)18.在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间(分)和温度T(℃)的数据:在水烧开之前(即),温度T 与时间的关系式为__________.19.如图,AB CD ∥,EF 平分BED ∠,66DEF D ︒∠+∠=,28B D ∠-∠=︒,则BED ∠=__________.20.若2211392781n n ++⨯÷=,则n =____.三、解答题21.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6. (1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为13.22.观察设计(1)观察如图①②中阴影部分构成的图案,请写出这2个图案都具有的2个共同特征(2)借助后面的空白网格,请设计2个新的图案,使该图案同时具有你在解答(1)中所写出的2个共同特征.(注意新图案与已有的2个图案不能重合)23.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=35°,求∠BAC的度数.24.某学校的复印任务原来由甲复印社承包,其收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000…y(元)4080160400…(1)根据表格信息写出y与x之间的关系式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费.乙复印社每月收费y(元)与复印页数x(页)之间的关系式为_______________;(3)若学校每月复印页数在1200页左右,应选择哪个复印社?的边OB上的一点.25.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)若每个小正方形的边长是1,则点P到OA的距离是___________;PE PH OE的大小关系是_____________________(用“<”连接).(5)线段,,26.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a,b的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b)2,ab和(2a+b)2的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据事件发生的可能性大小判断相应事件的即可.【详解】解:A、多边形的外角和等于360°,是必然事件;B、车辆随机到达一个路口,遇到红灯,是随机事件;C、如果a2=b2,那么a=b,是随机事件;D、掷一枚质地均匀的硬币,正面向上,是随机事件;故答案为A.【点睛】本题考查了随机事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.2.C解析:C【解析】【分析】根据调查方式,可判断A ,根据概率的意义一,可判断B 根据中位数、众数,可判断c ,根据方差的性质,可判断D .【详解】A 、 一个游戏中奖的概率是1100 ,做100次这样的游戏有可能中奖,而不是一定中奖,故A 错误;B 、为了了解全国中学生的心理健康状况,应采用抽查方式,故B 错误;C 、一组数据0,1,2,1,1的众数和中位数都是1,故C 正确;D. 若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D 错误.故选:C .【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键. 3.B解析:B【详解】解:由题意可知:摸到红球是必然发生的事件,摸到白球是不可能发生的事件, 所以P 1=0,P 2=1故选B .【点睛】本题考查概率的意义及计算,掌握概念是关键,此题难度不大.4.D解析:D【分析】首先利用平行线的性质得出100,70BMF FNB =︒=︒∠∠,再利用翻折的性质得出50,35FMN BMN FNM MNB ==︒==︒∠∠∠∠,进而求出∠B 的度数.【详解】∵//,//MF AD FN DC ,100,70,A C ∠=∠=∴100,70BMF FNB =︒=︒∠∠∵将△BMN 沿MN 翻折,得△FMN∴50,35FMN BMN FNM MNB ==︒==︒∠∠∠∠∴180503595F B ==︒-︒-︒=︒∠∠故答案为:D .【点睛】本题考查了四边形翻折的问题,掌握翻折的性质、平行线的性质是解题的关键. 5.A解析:A【分析】根据轴对称性质可得出PM=MQ ,PN=RN ,因此先求出QN 的长度,然后根据QR=QN+NR 进一步计算即可.【详解】由轴对称性质可得:PM=MQ=2.5cm ,PN=RN=3cm ,∴QN=MN−MQ=1.5cm ,∴QR=QN+RN=4.5cm ,故选:A.【点睛】本题主要考查了轴对称性质,熟练掌握相关概念是解题关键.6.D解析:D【分析】由折叠得到DFE D FE '∠=∠,再根据平角定义,即可求出答案.【详解】由折叠得:DFE D FE '∠=∠,∵∠D′FC=60°,∴18060120D FD '∠=-=,∴∠EFD=60°,故选:D.【点睛】此题考查折叠的性质,邻补角的定义,理解折叠的性质得到DFE D FE '∠=∠是解题的关键.7.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.8.A解析:A【分析】根据全等三角形对应角相等即可求解;【详解】∵ABC A BC '∆≅∆ ,∴ ∠A=∠A '=110°,∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°,故选:A .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键; 9.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠∴EAF BAC ∠=∠E B∠=∠,即E BEAF BACEA BA∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF≌△△()ASA,故②符合题意;AF AC=,即AF ACEAF BACEA BA=⎧⎪∠=∠⎨⎪=⎩∴ABC AEF≌△△()SAS,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B.【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.10.A解析:A【解析】∵买的乒乓球的总费用W(元)与单价n(元/个)的关系式W=100n,∴100是常量,在此式中W、n是变量.故选:A.点睛:此题主要考查了常量与变量,关键是掌握常量和变量的定义.11.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。
浙教版数学七年级下册期末考试试卷及答案

浙教版数学七年级下册期末考试试题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.下列实数中,为无理数的是()A.B.C.5 D.π2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与34.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.68.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300 9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是,依据是.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为.三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.18.解不等式<,并把它的解集在数轴上表示出来.19.小明同学解方程组的过程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE==90°().∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴∥().∴∠2=∠EDF().又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)参考答案一、选择题(本大题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项)1.下列实数中,为无理数的是()A.B.C.5 D.π解:A.是有理数,不是无理数,故本选项不符合题意;B.=3,是有理数,不是无理数,故本选项不符合题意;C.5是有理数,不是无理数,故本选项不符合题意;D.π是无理数,故本选项符合题意;故选:D.2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查解:A.了解永安溪的水质,无法普查,适合采用抽样调查,此选项不符合题意;B.检测神州十二号飞船的零部件质量,事关安全,需要普查,此选项符合题意;C.了解我县中学生视力情况,工作量大,适合采用抽样调查,此选项不符合题意;D.了解某班同学的数学成绩,工作量不大,而且普查能得到准确数据,适合采用全面调查,此选项不符合题意;故选:B.3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与3解:∵4<5<9,∴,∴2<<3,∴1<﹣1<2,故选:C.4.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 解:∵4x+5y=5,∴5y=5﹣4x.∴y=.∴y=1﹣.即y=.故选:A.5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 解:A、根据不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,故本选项不成立;B、∵a>b,∴2a>2b,故本选项不成立;C、∵a>b,∴a﹣1>b﹣1,故本选项成立;D、∵a>b,∴﹣4a<﹣4b,故本选项不成立.故选:C.6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°解:∵∠AOC=∠BOD,∠BOD=42°,∴∠AOC=42°,∵OA平分∠EOC,∴∠AOE=∠AOC=42°,∴∠EOD=180°﹣(∠AOE+∠BOD)=180°﹣(42°+42°)=96°.故选:A.7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.6解:,①﹣②,得x+3y=3.故选:A.8.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300解:依题意得:,∴260<x<300.故选:B.9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°解:如图,延长CD交AB于点M.∵∠CDE+∠EDM=180°,∠CDE=70°,∴∠EDM=180°﹣∠CDE=110°.∵AB∥DE,∴∠AMD=∠EDM=110°.又∵∠ABC=∠BMC+∠BCD,∴∠BCD=∠ABC﹣∠BMC=126°﹣110°=16°.故选:B.10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3解:∵输入3时输出的运算结果是5,输入4时输出的运算结果是7.∴3a+b=5,4a+b=7,∴a=2,b=﹣1,∴P=2x﹣1,Q=6x﹣1,∴(Q+1):(P+1)=(6x):(2x)=3,故选:D.二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是±3.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是AC<AB,依据是垂线段最短.解:∵AC⊥BC,∴边AC与边AB的大小关系是AC<AB,依据为垂线段最短.故答案为:AC<AB,垂线段最短.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是m<﹣3.解:∵A(m﹣2,m+3)在第三象限,∴,解得m<﹣3.故答案为:m<﹣3.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.解:设购买篮球x个,购买足球y个,根据题意可列方程组:,故答案为:.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为5.解:解不等式3x﹣a<2,得:x<,解不等式x+2b>1,得:x>1﹣2b,∵不等式组的解集为﹣1<x<2,∴1﹣2b=﹣1,=2,解得a=4,b=1,∴a+b=5,故答案为:5.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为(﹣19,8).解:观察图形可知:A3(﹣2,1),A6(﹣5.2),A9(﹣8,3),•••,∵﹣5=﹣2﹣3,﹣8=﹣2+2×(﹣3),∴﹣2+6×(﹣3)=﹣19,∴A18(﹣17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(﹣19,8).故答案为:(﹣19,8)三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.解:原式=﹣3+2=﹣1.18.解不等式<,并把它的解集在数轴上表示出来.解:去分母得:2(x﹣1)<3x+1,去括号得:2x﹣2<3x+1,移项得:2x﹣3x<1+2,合并得:﹣x<3,解得:x>﹣3.19.小明同学解方程组的过程如下:③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.解:错误;理由如下:①×2,得2x﹣6y=2③,③﹣②,得﹣6y+y=2﹣7,∴﹣5y=﹣5,∴y=1,把y=1代入①得x﹣3×1=1,x=4,∴这个方程组的解为.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.解:(1)如图所示,三角形A1B1C1即为所求;点B1、C1的坐标分别为(3,1),(1,﹣1).(2)点F的对应点F1的坐标为(a+6,b﹣3).21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).【解答】证明:∵AC⊥BC(已知),∴∠ACB=90°(垂线的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂线的定义).∴∠AFE=∠DEF(等量代换).∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).故答案为:∠ACB;两直线平行,同位角相等;DE;AC;内错角相等,两直线平行;两直线平行,内错角相等,22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为100;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.解:(1)27÷27%=100(人);故答案为:100;(2)100﹣27﹣8﹣30=35(人),补全频数分布直方图如下:(3)1600×=480(人),答:估计该校1600名学生中睡眠时间达标人数约为480人,睡眠达标人数占总人数的30%,该校学生睡眠时间不足.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.【解答】证明:(1)如图1,∵AB∥DE,∴∠D=∠BFO.∵DF∥AC,∴∠FOB=∠ACB.又∵∠A+∠B+∠ACB=180°,∠BFO+∠B+∠FOB=180°,∴∠BFO=∠A.∴∠A=∠D.(2)DF∥AC,理由如下:如图2,延长AC交DE于点M.∵AB∥DE,∴∠A=∠AMD.又∵∠A=∠D,∴∠AMD=∠D.∴AM∥DF,即AC∥DF.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是2500元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)解:(1)110×150+(500﹣150﹣500×10%)×30﹣6×500﹣40×500=2500;(2)设售出“特优”杨梅x千克,“普通”杨梅y千克,则解得;答:售出“特优”杨梅250千克,“普通”杨梅470千克.(3)设收购总量为m千克,“特优”杨梅占收购总量的百分比为a,则≥35%,解得a≥43.875%,即a≥44%.答:他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到44%.。
浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
浙教版七年级下册数学期末试卷及参考答案

浙教版七年级下册数学期末试卷及参考答案一、填空题1、大于2、1/43、y=(10-3x)/2,x=(10-2y)/34、1x10^-75、x=1/46、4cm²7、x≠1,x=08、60°9、-1/210、x(y-9)11、吊桥、塔吊等12、x=-3,x=213、①、③、④14、B15、C16、C17、5㎝二、选择题14、B15、C16、C17、D18、B二、选择题。
(20分)14.选B。
由题意可知,当x=0时,y=1;当x=1时,y=0;当x=2时,y=-1;当x=3时,y=-2,可得出y=-x+1,故选B。
15.选C。
将y=2x-1代入2x-y=1中,得2x-(2x-1)=1,解得y=-1,故选C。
16.选D。
将y=2x+1代入x-y+1=0中,得x-(2x+1)+1=0,解得x=-2,故选D。
17.选D。
由题意可得,当x=1时,y=2;当x=2时,y=3;当x=3时,y=4,可得出y=x+1,故选D。
18.选D。
解方程组得x=1,y=4,将其代入选项中可得2x+3y=14,故选D。
19.选B。
由题意可得,x+3y=6,3x+5y=12,解得x=3,y=1,代入选项中可得3x+y=12,故选B。
20.选B。
将y=2x-1代入4x+3y=9中,得4x+3(2x-1)=9,解得x=2,代入y=2x-1中,得y=3,故选B。
21.选B。
解方程组得x=2,y=1,代入选项中可得x2+y2=5,故选B。
22.选A。
将y=-2x+1代入x2+y2=5中,得x2+(-2x+1)2=5,化简得5x2-4x-4=0,解得x=-1或x=0.8,代入y=-2x+1中,得y=3或y=-0.6,故选A。
23.选C。
将y=3x-1代入2x-y=1中,得2x-(3x-1)=1,解得x=2,代入y=3x-1中,得y=5,故选C。
三、计算题。
(23分)24.(1)解:将2x+1作为分母,得frac{3x-2}{2x+1}=\frac{2x+4}{2x+1}$$化简,得3x-2=2x+4$$解得x=3,将x=3代入原方程检验,左边=3*3-2=7,右边=2*3+1=7,故x=3是原方程的根。
浙教版七年级(下)期末数学试卷附答案

浙教版初中数学七年级下册期末试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列现象属于平移的是()A.足球在草地上沿一条直线向前滚动B.钟摆的摆动C.投影仪将图片投影转换到屏幕上D.水平运输带上砖块的运动2.计算(﹣3x3)2的结果正确的是()A.﹣6x5B.9x6C.9x5D.﹣6x63.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠54.下列多项式中,能用公式法分解因式的是()A.a2﹣a B.a2+b2C.﹣a2+9b2D.a2+4ab﹣4b25.下列分式中是最简分式的是()A.B.C.D.6.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组7.方程3x+2y=18的正整数解的个数是()A.1B.2C.3D.48.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°9.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%10.已知(2018+m)(2016+m)=n,则代数式(2018+m)2+(2016+m)2的值为()A.2B.2n C.2n+2D.2n+4二、填空题(本题有6小题,每小题2分,共12分)11.当x=﹣2时,代数式的值是.12.某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.若关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,则常数m的值为.14.如图,∠AOB的一边OA为平面镜,∠AOB=α,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是.(用含α的代数式表示)15.若关于x的分式方程=2﹣有增根,则常数a的值是.16.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是.三、解答题(共8小题,满分58分)17.(6分)因式分解:(1)1﹣x2(2)3x3﹣6x2y+3xy218.(6分)先化简,再求值:x(x﹣1)﹣(x﹣2)2,其中x=﹣119.(6分)(1)解方程组(2)解分式方程:=﹣120.(6分)阅读材料并回答问题:我们可以用平面几何图形的面积来表示一些代数恒等式,如(a+b)(a+2b)=a2+3ab+2b2,就可以用图1的几何图形的面积表示.(1)请写出图2的几何图形的面积所表示的代数恒等式;(2)试画一个几何图形,使它的面积所表示的代数恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.21.(6分)如图,直线a∥b∥c,直线AC与直线a交于点C,与直线b交于点A,过点A作直线AB交直线c于点B,若AP平分∠CAB,且∠1=30°,∠2=70°,求∠3的度数.22.(8分)人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理沦、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状况?A.非常了解B.了解C.基本了解D.不了解将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本容量相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.23.(10分)2018年,浙江省开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某环保公司接到A型垃圾桶和B型垃圾桶各1600只的订单,已知一只A型垃圾桶的成本比一只B型垃圾桶的成本多10元,这份订单总成本为176000元.(1)问该份订单中A型垃圾桶和B型垃圾桶的单只成本各是多少元?(2)该公司有甲、乙两个车间,甲车间生产A型垃圾桶,乙车间生产B型垃圾桶,已知乙车间每天生产的垃圾桶数是甲车间每天生产的垃圾桶数的2倍,这样乙车间比甲车间提前2天完成订单任务.问甲乙两个车间每天各生产多少只垃圾桶?24.(10分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.A 6.C 7 .B 8.B 9.D 10.D 二、填空题(本题有6小题,每小题2分,共12分)11.12.28 13.±2 14.2α.15.5 16.27°三、解答题(共8小题,满分58分)17.解:(1)原式=(1+x)(1﹣x);(2)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2.18.解:原式=x2﹣x﹣x2+4x﹣4=3x﹣4,当x=﹣1时,原式=﹣3﹣4=﹣7.19.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.20.解:(1)由图可得:(a+b)(3a+b)=3a2+4ab+b2;(2)根据题意得:.21.解:如图,∵a∥b,∠1=30°,∴∠DAC=∠1=30°,∵b∥c,∠2=70°,∴∠DAB=∠2=70°,∴∠CAB=∠CAD+∠DAB=30°+70°=100°,∵AP平分∠CAB,∴∠CAP=∠BAP=∠CAB=50°,∴∠3=∠CAP﹣∠CAD=50°﹣30°=20°.22.解:(1)回答“基本了解”的学生有50﹣(5+15+10)=20人,补全图形如下:(2)估计该校全体学生中回答“非常了解”和“了解”的一共有600×=240人;(3)第二次“非常了解”的人数为50×(1﹣56%﹣12%﹣8%)=12人,则前后两次调查中回答“非常了解”的学生人数的增长率×100%=14%.23.解:(1)设B型垃圾桶的成本为x元/只,则A型垃圾桶的成本为(x+10)元/只,根据题意得:1600x+1600(x+10)=176000,解得:x=50,则x+10=50+10=60,答:该份订单中A型垃圾桶单只成本是60元,B型垃圾桶单只成本是50元,(2)设甲车间每天生产y只垃圾桶,则乙车间每天生产2y只垃圾桶,根据题意得:﹣=2,解得:y=400,经检验:y=400是原方程的解且符合题意,则2y=800,答:甲车间每天生产400只垃圾桶,则乙车间每天生产800只垃圾桶.24.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学期末复习题一、平行线1. 下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有( ). A.1个; B.2个; C.3个; D.4个.2. 如图1所示,图中共有内错角( ).A.2组;B.3组;C.4组;D.5组. 3. 如图2所示,下列推理中正确的有( ).①因为∠1=∠4,所以BC ∥AD ; ②因为∠2=∠3,所以AB ∥CD ;③因为∠BCD +∠ADC =180°,所以AD ∥BC ;④因为∠1+∠2+∠C =180°,所以BC ∥AD. A.1个; B.2个; C.3个; D.4个.4.如图3所示,四条直线两两相交,且任意三条不相交于同一点,则四条直线共可构成的内错角有 A .24组 B.48组 C .12组 D.16组5.如图4,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG=20cm ,MG=5cm ,MC=4cm ,则阴影部分的面积是________.6. 如图所示,已知射线CB ∥OA ,∠C=∠OAB =120°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . (1)求∠EOB 的度数;(2)若平行移动AB ,那么∠OBC :∠OFC 的值是否随之变化?若变化,请找出规律;若不变,求出这个比值;(3)在平行移动AB 的过程中,若∠OE C=∠OBA ,则∠OBA =______度.7. 探究:如果一个角的两边分别和另一个角的两边垂直,那么这两个角________________________。
在图中以P 为顶点画∠P ,使∠P 的两边分别和∠1的两边垂直。
图11·P1·P图21·P图3二、二元一次方程组1. . 为安置100名中考女生入住,需要同时租用6人间和4人间两种客房,若每个房间都住满,则租房方案共有()1. A. 8种 B. 9种 C. 16种 D. 17种2.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时,若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从上午到下午一共走了_______________千米3.一辆汽车在公路上行驶,看到里程碑上是一个两位数,1小时后又看到一里程碑,其上的数也是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程碑上是一个三位数,她是第一次看到的两位数中间加一个0,求汽车的速度和第一次看到的两位数.4.某校初三(2)班40名同学为希望工程捐款,共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,请你根据已有的信息求出捐款2元和3元的人数分别是多少5. 若关于x、y的方程组的解是,求方程组的解.6. 若关于x,y的方程组的解为,求方程组的解。
三、整式的乘除1. 我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。
如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律。
例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。
(1)根据上面的规律,写出的展开式。
(2)利用上面的规律计算:2. 一个正整数,若分别加上100与168,则可得到两个完全平方数.则这个正整数为______.3.若x 2—2(m-3)x+25是一个完全平方式,则m 的值为________. 若多项式是一个完全平方式,则m =________. 4. 已知a=x+20,b=x+19,c=x+21,那么代数式a 2+b 2+c 2-ab-bc-ac 的值是________.5. 如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .B .C .D .6. 设m >n >0,m 2+n 2=4mn ,则= 若31=+mm ,=()na b +()2222a b a ab b +=++()3322233a b a a b ab b +=+++()5a b +5432252102102521-⨯+⨯-⨯+⨯-()1a +(0)a >22(25)cm a a +2(315)cm a +2(69)cm a +2(615)cm a +22m nmn-221m m -则1 112 1 13 311 …………………………(a +b )1 …………………………(a +b )2 …………………………(a +b )3…………………7. 有两个正方形A,B,现将B 放在A 的内部得图甲,将A,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B 的面积之和为________________。
8. 是一个长为2m 、宽为2n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于多少? (2)请用两种不同的方法求图2中阴影部分的面积. (3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m +n )2,(m -n )2,mn .(4)根据(3)题中的等量关系,解决如下问题:若a +b =7,ab =5,则(a -b )2= .9. 定义新运算“⊕”如下:当a ≥b 时,a ⊕b=ab +b ,当a <b 时,a ⊕b=ab-a ;若(2x -1)⊕(x +2)=0,则x = .四、因式分解 1. 分解因式:3m (2x -y )2-3mn 2=_________________;x 3-9x = ;4416y x -= .=_________________;=_________________;2. 已知a ,b ,c 是△ABC 的三边,且a 2+b 2+c 2=ab+ac+bc ,则△ABC 是 ( ) A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形 3.已知a ,b ,c 分别是三角形的三边长,且满足222166100a b c ab bc --++=,则2b a c --=____________.4. 已知x 、y 互为相反数,且(x+2)2-(y+2)2=4,则x=________,y=________. 5.对于一个图形,通过不同的方法计算其面积时,可得到一个数学等式,例如由图1可得到2232(2)()a ab b a b a b ++=++.图1 图2请根据上述内容解答下列问题:(1)由图2可得到的一个数学等式为___________________;(2)请用拼图的方法推出2223a ab b ++因式分解的结果,并画出你的拼图.22a b ac bc -++321a a a +--ba bba ba ab ba 图1 图2五、 分式1.(1) 若分式(a ,b 均为正数)中每个字母的值都扩大为原来的3倍,则分式的值( )A.扩大为原来3倍B.缩小为原来的31 C.不变 D.缩小为原来的91(2)若分式abb a 22+(a ,b 均为正数)中每个字母的值都扩大为原来的3倍,则分式的值( )A.扩大为原来3倍B.缩小为原来的31 C.不变 D.缩小为原来的91 (3)若分式ba b a ++222(a ,b 均为正数)中每个字母的值都扩大为原来的3倍,则分式的值( )A.扩大为原来3倍B.缩小为原来的31 C.不变 D.缩小为原来的91 2.(1)若方程122-=-+x ax 的解是正数,则a 的取值范围____________ (2)关于x 的方程23+15ax x =的解为非正数,则a 的取值范围____________ 3.(1) 若分式方程61(1)(1)1mx x x -=+--有增根,则它的可能增根是( )A .0B .1C .1-D .1和1-(2)若关于x 的方程33011m x x x ++=++无解,则m 的值为__________(3)若关于x 的方程有解,则a 的值为( )A. a≠8B. a≠-6且a≠8且a≠1C. a≠1D. a=-6或a=84.已知:2310a a +-=,求:(1)1a a -;(2)221a a +;(3)331a a +5.化简下列分式. (1)2481124811111x x x x x ++++-++++;(2)111(1)(3)(3)(5)(2011)(2013)x x x x x x +++++++++;6.(1)若2112x x x =-+,则2421x x x =++_________. (2)若a ,b ,c 为实数,且13ab a b =+,14bc b c =+,15ac a c =+,则abcab bc ca ++的值为________.(3)若2310x x -+=,则2421x x x ++的值为_________.7.观察分析下列方程:①32=+x x ,②56=+xx ,③;请利用它们所蕴含的规律,求关于x 的方程4232+=-++n x nn x (n 为正整数)的根。
8.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.712=+x x。