中考试题专题01相反数、倒数、绝对值、开方和二次根式-微研究之必考概念(解析版)

合集下载

专题01 二次根式选填题压轴训练(解析版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)

专题01 二次根式选填题压轴训练(解析版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)

专题01 二次根式选填题压轴训练(时间:60分钟总分:120)班级姓名得分选择题解题策略:(1)注意审题。

把题目多读几遍,弄清这道题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。

可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。

若有时间,再去拼那些把握不大或无从下手的题目。

这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错、易混点。

(5)方法多样,不择手段。

中考试题凸显能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。

不要在一两道小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”,也有25%的正确率。

(6)控制时间。

一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

填空题解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

(中考数学)实数与二次根式(知识点梳理)(记诵版)

(中考数学)实数与二次根式(知识点梳理)(记诵版)

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。

2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。

3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。

二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。

2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。

3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。

一个正数a 的正的平方根就是它的算术平方根。

三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。

开平方运算是已知指数和幂求底数。

2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。

3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。

考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。

2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。

3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。

5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。

二次根式中考真题及详解

二次根式中考真题及详解

二次根式知识梳理知识点1.二次根式重点:掌握二次根式的概念 难点:二次根式有意义的条件 式子a (a ≥0)叫做二次根式. 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).解题思路:运用二次根式的概念,式子a (a ≥0)叫做二次根式.答案:1)、3)、4)、5)、7)例2若式子13x -有意义,则x 的取值范围是_______. 解题思路:运用二次根式的概念,式子a (a ≥0)注意被开方数的范围,同时注意分母不能为0 答案:3x >例3若y=5-x +x -5+2009,则x+y=解题思路:式子a (a ≥0),50,50x x -≥⎧⎨-≥⎩5x =,y=2009,则x+y=2014练习1使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、若11x x ---2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3答案:1. D 2. C知识点 2.最简二次根式 重点:掌握最简二次根式的条件 难点:正确分清是否为最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.例1.在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)解题思路:掌握最简二次根式的条件,答案:C 练习.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .2答案:C知识点3.同类二次根式 重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式. 例在下列各组根式中,是同类二次根式的是( )A .3和18B .3和13C .22.11a b ab D a a +-和和解题思路:∵18=32,∴3与18不是同类二次根式,A 错.13=33, ∴3与13是同类二次根,∴B 正确.∵22||,ab b a a b ==│a │b , ∴C 错,而显然,D 错,∴选B .练习已知最简二次根式322b a b b a --+和是同类二次根式,则a=______,b=_______. 答案:a=0 ,b=2知识点4.二次根式的性质 重点:掌握二次根式的性质难点:理解和熟练运用二次根式的性质①(a )2=a (a ≥0);0(0)a a ≥≥ ②2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;例1、若()22340a b c -+-+-=,则=+-c b a .解题思路:2|2|0,30,(4)0a b c -≥-≥-≥,非负数之和为0,则它们分别都为0,则2,3,4a b c ===,=+-c b a 3oba例2、化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4解题思路:由条件则30,3a a -≥≥,运用(a )2=a (a ≥0)则2(3)3a a -=- 答案:C例3.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a解题思路:运用2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;由数轴则0a b -> , 0a b +<,则原式=a b a b ---=-2b 选A练习1.已知a<0,那么│2a -2a │可化简为( )A .-aB .aC .-3aD .3a2.如图所示,实数a ,b 在数轴上的位置,化简222()a b a b ---.3.若y x -+-324=0,则2xy= 。

中考数学专题复习1实数与二次根式(解析版)

中考数学专题复习1实数与二次根式(解析版)

实数与二次根式考点1 实数的分类及正负数的意义1.(2021·四川乐山市)如果规定收入为正.那么支出为负.收入2元记作2+.支出5元记作( ).A .5元B .5-元C .3-元D .7元【分析】结合题意.根据正负数的性质分析.即可得到答案.【解答】根据题意得:支出5元记作5-元故选:B .2.(2021·浙江金华市·中考真题)实数12-.3-中.为负整数的是( )A .12-B .C .2D .3- 【分析】按照负整数的概念即可选取答案.【解答】解:12-是负数不是整数;2是正数;3-是负数且是整数故选D .3.下列说法正确的是( )①任何一个有理数的平方都是正数; ①任何一个有理数的绝对值都是非负数; ①如果一个有理数的倒数等于它本身.那么这个数是1;①如果一个有理数的相反数等于它本身.那么这个数是0.A .①①B .①①C .①①D .①① 【分析】根据有理数的定义和特点.绝对值、相反数的定义及性质.对选项进行一一分析.排除错误答案.【解答】解:①任何一个有理数的平方都不是负数.错误;①任何一个有理数的绝对值都是非负数.正确;①如果一个有理数的倒数等于它本身.那么这个数是1或﹣1.错误①如果一个有理数的相反数等于它本身.那么这个数是0.正确;故选:D .考点2 相反数、倒数4.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021-D .12021【分析】直接利用相反数的定义得出答案.【解答】解:2021的相反数是:-2021.故选:A .5.-52倒数是 . 【分析】根据倒数的概念解答即可.【解答】解:-52的倒数是 25-. 故答案为:25-. 6.已知a .b 互为相反数.c .d 互为倒数.x 的绝对值等于2.求x 3+cdx 22b a +-的值. 【分析】根据a .b 互为相反数.c .d 互为倒数.x 的绝对值等于2.可以求得a +b .cd .x 的值.然后即可求得所求式子的值.【答案】解:①a .b 互为相反数.c .d 互为倒数.x 的绝对值等于2.①a +b =0.cd =1.x =±2.当x =2时.x 3+cdx 2−a+b 2=23+1×22−02=8+1×4﹣0=8+4﹣0=12;当x =﹣2时.x 3+cdx 2−a+b 2=(﹣2)3+1×(﹣2)2−02=﹣8+1×4﹣0=﹣8+4﹣0=﹣4.由上可得.x 3+cdx 2−a+b 2的值为12或﹣4.考点3 数轴7.(2021·四川南充市)数轴上表示数m 和2m +的点到原点的距离相等.则m 为( ) A .2- B .2 C .1 D .1-【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>.可得m 和2m +互为相反数.由此即可求得m 的值.【解答】①数轴上表示数m 和2m +的点到原点的距离相等.2m m +>.①m 和2m +互为相反数.①m +2m +=0.解得m =-1.故选D .8.(2020•铜仁市)实数a .b 在数轴上对应的点的位置如图所示.下列结论正确的是( )A .a >bB .﹣a <bC .a >﹣bD .﹣a >b【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小.根据有理数的大小比较方法进行比较即可求解.【解答】根据数轴可得:a <0.b >0.且|a |>|b |.则a <b .﹣a >b .a <﹣b .﹣a >b .故选:D .9.(2020•新疆)实数a .b 在数轴上的位置如图所示.下列结论中正确的是( )A .a >bB .|a |>|b |C .﹣a <bD .a +b >0【分析】直接利用数轴上a .b 的位置进而比较得出答案.【解答】如图所示:A 、a <b .故此选项错误;B 、|a |>|b |.正确;C 、﹣a >b .故此选项错误;D 、a +b <0.故此选项错误;故选:B .考点4 绝对值10.(2021·浙江)实数2-的绝对值是( )A .2-B .2C .12D .12- 【分析】根据负数的绝对值是它的相反数.可得答案.【解答】解:实数-2的绝对值是2.故选:B.11.(2020•鞍山一模)|﹣2020|的结果是()A.12020B.2020C.−12020D.﹣2020【分析】根据绝对值的性质直接解答即可.【解答】|﹣2020|=2020;故选:B.12.(2021·云南中考真题)已知a.b都是实数.2(2)0b-=则a b-=_______.【分析】根据非负数的性质列式求出a、b的值.然后代入代数式进行计算即可得解.【解答】解:根据题意得.a+1=0.b-2=0.解得a=-1.b=2.所以.a-b=-1-2=-3.故答案为:-3.考点5 科学计数法12.光速约为3×108米/秒.太阳光射到地球上的时间约为5×102秒.地球与太阳的距离约是()米.A.15×1010B.1.5×1011C.15×1016D.1.5×1017【分析】先计算地球与太阳的距离.再根据科学记数法的形式选择即可.【解答】解:3×108×5×102=1.5×1011.故选:B.13.(2020•黑龙江)2019年1月1日.“学习强国”平台全国上线.截至2019年3月17日.某市党员“学习强国”客户端注册人数约1180000.将数据1180000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n的绝对值与小数点移动的位数相同.当原数绝对值≥10时.n是正数;当原数的绝对值<1时.n是负数.【解析】1180000=1.18×106.故答案为:1.18×106.考点6 实数的大小比较14.(2020•乐山)用“>”或“<”符号填空:﹣7﹣9.【分析】根据正数都大于0.负数都小于0.正数大于一切负数.两个负数比较大小.绝对值大的反而小.即可解答.【解析】①|﹣7|=7.|﹣9|=9.7<9.①﹣7>﹣9.故答案为:>.15.(2021·四川)若a =b =2c =.则a .b .c 的大小关系为( )A .b c a <<B .b a c <<C .a c b <<D .a b c <<【分析】根据无理数的估算进行大小比较.【解答】解:>又.①a c b <<故选:C .考点7 二次根式的估算16.(2021·浙江中考真题)已知,a b 是两个连续整数.1a b <<.则,a b 分别是( ) A .2,1-- B .1-.0 C .0.1 D .1.2.1的范围即可得到答案.【解答】解: 12,<<∴ 011,<<0,1,a b ∴==故选:.C17.(2021·安徽)埃及胡夫金字塔是古代世界建筑奇迹之一.其底面是正方形.侧面是全等的等腰三角形.1.它介于整数n 和1n +之间.则n 的值是______..1即可完成求解.【解答】解: 2.236≈;1 1.236≈;因为1.236介于整数1和2之间.所以1n =;故答案为:1.18.(2020•自贡)与√14−2最接近的自然数是 .【分析】根据3.5<√14<4.可求1.5<√14−2<2.依此可得与√14−2最接近的自然数.【解答】①3.5<√14<4.①1.5<√14−2<2.①与√14−2最接近的自然数是2.故答案为:2.考点8 平方根与算术平方根19.(2021·)A.3±B.3C.9±D.9【分析】求出81的算术平方根.找出结果的平方根即可.【详解】解:±3.故选:A.20.(2021·0-=______.(1)【分析】先算算术平方根以及零指数幂.再算加法.即可.(1)213-=+=.故答案为3.考点9 立方根21.已知4a+1的平方根是±3.b﹣1的算术平方根为2.(1)求a与b的值;(2)求2a+b﹣1的立方根.【分析】(1)首先根据4a+1的平方根是±3.可得:4a+1=9.据此求出a的值是多少;然后根据b﹣1的算术平方根为2.可得:b﹣1=4.据此求出b的值是多少即可.(2)把(1)中求出的a与b的值代入2a+b﹣1.求出算术的值是多少.进而求出它的立方根是多少即可.【答案】解:(1)①4a+1的平方根是±3.①4a+1=9.解得a=2;①b﹣1的算术平方根为2.①b﹣1=4.解得b=5.(2)①a=2.b=5.①2a+b﹣1=2×2+5﹣1=8.①2a +b ﹣1的立方根是:√83=2.考点10 二次根式22.(2021·有意义.则x 可取的一个数是__________.【分析】根据二次根式的开方数是非负数求解即可.【详解】解:①有意义.①x ﹣3≥0.①x ≥3.①x 可取x ≥3的任意一个数.故答案为:如4等(答案不唯一.3x ≥.23.(2021·浙江杭州市)下列计算正确的是( )A 2=B 2=-C 2=±D 2=±【分析】由二次根式的性质.分别进行判断.即可得到答案. 【详解】2==.故A 正确.C 错误;2.故B 、D 错误;故选:A .考点11 实数与二次根式运算24.(2021·云南)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 【分析】原式分别利用乘方.特殊角的三角函数值.零指数幂.负整数指数幂.乘法法则分别计算.再作加减法.【详解】解:201tan 452(3)1)2(6)23-︒-++-+⨯- =1191422++-- =625.(2021·浙江金华市)计算:()202114sin 45+2-︒-.【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.26.(2021·山东临沂市)计算221122⎫⎫+-⎪⎪⎭⎭. 【分析】化简绝对值.同时利用平方差公式计算.最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦=27.(2021·四川眉山市)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; …… 根据以上规律.计算12320202021x x x x ++++-=______.【分析】根据题意.找到第n 等式右边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021.然后把12化为1﹣12.16化为12﹣13.120152016⨯化为12015﹣12016.再进行分数的加减运算即可. 【详解】解:由题意可知11(1)n n =++.20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 28.(2021·重庆)对于任意一个四位数m .若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍.则称这个四位数m 为“共生数”例如:3507m =.因为372(50)+=⨯+.所以3507是“共生数”:4135m =.因为452(13)+≠⨯+.所以4135不是“共生数”;(1)判断5313.6437是否为“共生数”?并说明理由;(2)对于“共生数”n .当十位上的数字是千位上的数字的2倍.百位上的数字与个位上的数字之和能被9整除时.记()3n F n =.求满足()F n 各数位上的数字之和是偶数的所有n . 【答案】(1)5313是“共生数”. 6437不是“共生数”. (2)2148n =或3069.n =【分析】(1)根据“共生数”的定义逐一判断两个数即可得到答案;(2)设“共生数”n 的千位上的数字为,a 则十位上的数字为2,a 设百位上的数字为,b 个位上的数字为,c 可得:1a ≤<5, 09,09,b c ≤≤≤≤ 且,,a b c 为整数.再由“共生数”的定义可得:32,c a b =+而由题意可得:9b c +=或18,b c += 再结合方程的正整数解分类讨论可得答案.【详解】解:(1)()5+3=21+3=8,⨯5313∴是“共生数”.()6+7=1324+3=14,≠⨯6437∴不是“共生数”.(2)设“共生数”n 的千位上的数字为,a 则十位上的数字为2,a 设百位上的数字为,b 个位上的数字为,c1a ∴≤<5, 09,09,b c ≤≤≤≤ 且,,a b c 为整数.所以:1000100201020100,n a b a c a b c =+++=++由“共生数”的定义可得:()22,a c a b +=+32,c a b ∴=+1023102,n a b ∴=+()34134,3n F n a b ∴==+ 百位上的数字与个位上的数字之和能被9整除.0b c ∴+=或9b c +=或18,b c +=当0,b c += 则0,b c == 则0,a = 不合题意.舍去.当9b c +=时.则339,a b +=3,a b ∴+=当1a =时.2,7,b c ==此时:1227,n = ()12274093F n ==.而4+0+9=13不为偶数.舍去. 当2a =时.1,8,b c ==此时:2148,n = ()2148716,3F n ==.而7+1+6=14为偶数. 当3a =时.0,9,b c ==此时:3069,n = ()30691023,3F n ==.而1+0+2+3=6为偶数. 当18b c +=时.则9,b c ==而3318,a b +=则3a =-不合题意.舍去.综上:满足()F n 各数位上的数字之和是偶数的2148n =或3069,n =29.(2021·四川凉山彝族自治州)阅读以下材料.苏格兰数学家纳皮尔(J .Npler .1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前.直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地.若x a N =(0a >且1a ≠).那么x 叫做以a 为底N 的对数. 记作log a x N =.比如指数式4216=可以转化为对数式24log 16=.对数式32log 9=可以转化为指数式239=.我们根据对数的定义可得到对数的一个性质:log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>.理由如下:设log ,log a a M m N n ==.则,n m M a N a ==.m n m n M N a a a +∴⋅=⋅=.由对数的定义得log ()a m n M N +=⋅ 又log log a a m n M N +=+log ()log log a a a M N M N ∴⋅=+.根据上述材料.结合你所学的知识.解答下列问题: (1)填空:①2log 32=___________;①3log 27=_______.①7log l =________; (2)求证:log log log (0,1,0,0)a a a M M N a a M N N=->≠>>; (3)拓展运用:计算555log 125log 6log 30+-.【答案】(1)5.3.0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程.同理根据同底数幂的除法即可证明; (3)根据公式:log a (M •N )=log a M +log a N 和log a M N =log a M -log a N 的逆用.将所求式子表示为:5125630log ⨯.计算可得结论. 【详解】解:(1)①①5232=.①2log 32=5.①①3327=.①3log 27=3.①①071=.①7log 1=0;(2)设log a M =m .log a N =n .①m a M =.n a N =. ①m n m n M a a a N -÷==. ①log aM m n N =-. ①log log log a a a M M N N=-; (3)555log 125log 6log 30+- =5125630log ⨯ =5log 25=2.。

专题01 实数与二次根式【考点精讲】(解析版)

专题01  实数与二次根式【考点精讲】(解析版)

【考点1】实数的概念与正负数的意义1.实数:有理数与无理数统称为实数。

实数与数轴上的点一一对应。

实数的分类如下:① 按定义分:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎭⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数② 按大小分:实数可分为正实数、零、负实数.2.正负数的意义:表示具有相反意义的量【例1】纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间1月7日8时时,纽约的时间是( )专题01 实数与二次根式A.1月6日21时B.1月7日21时C.1月6日19时D.1月6日20时【分析】纽约与北京的时差为﹣13小时,表示纽约的时间比北京时间晚13个小时,比得北京时间1月7日8时晚13个小时的时间为1月6日19时,从而得出答案.【解答】解:24﹣[8+(﹣13)]=19故选:C.【例2】下列实数中是无理数的是()A.3.14BCD.17【分析】根据算术平方根、无理数的定义即可得.【解答】A、3.14是有限小数,属于有理数,此项不符题意;B3=,是有理数,此项不符题意;C是无理数,此项符合题意;D、17是分数,属于有理数,此项不符题意;故选:C.1.(2021·山东济宁市)若盈余2万元记作2+万元,则2-万元表示()A.盈余2万元B.亏损2万元C.亏损2-万元D.不盈余也不亏损【分析】根据正数和负数表示具有相反意义的量解答.【解答】解:∵盈余2万元记作+2 万元,∴-2万元表示亏损2万元,故选:B.2.(2021·广西来宾市)下列各数是有理数的是()A.p BCD.0【分析】利用有理数和无理数的定义判断即可.【解答】解:四个选项的数中:p 0是有理数,故选项D 符合题意.故选:D .【考点2】相反数、倒数1.相反数:只有符号不同的两个数互为相反数.(1)若a,b 互为相反数,则a +b =0;(2)0的相反数是0;(3)在数轴上,互为相反数的两个数对应的点到原点的距离相等. 2.倒数:乘积为1的两个数互为倒数.(1)ab =1⇔a,b 互为倒数;(2)0没有倒数;(3)倒数等于它本身的数是1和-1.【例3】-2021的相反数是( )A .2021B .-2021C .12020D .12020-【分析】直接利用相反数的定义得出答案.【解答】解:-2021的相反数是:2021.故选:A .【例4】﹣211的相反数是,倒数是 .【分析】根据相反数与倒数的概念解答即可.【解答】解:∵﹣211的相反数是 211,∵﹣1=﹣,∴﹣1倒数是﹣. 故答案为:1,﹣.【考点3】数轴【例5】(2021·青海)若123a =-,则实数a 在数轴上对应的点的位置是( ).A .B .C .D .【分析】首先根据a 的值确定a 的范围,再根据a 的范围确定a 在数轴上的位置.【解答】解:∵123a =-∴ 2.3a »,∴ 2.52a -<<-,∴点A 在数轴上的可能位置是:,故选:A .【例6】(2021·湖南)实数a ,b 在数轴上的位置如图所示,则下列式子正确的是()A .a b>B .||||a b >C .0ab >D .0a b +>【分析】由数轴易得21,01a b -<<-<<,然后问题可求解.【解答】解:由数轴可得:21,01a b -<<-<<,∴,,0,0a b a b ab a b <><+<,∴正确的是B 选项;故选B.注:实数与数轴上的点是一一对应的.1.(2021·北京)实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .2a >-B .a b >C .0a b +>D .0b a -<【分析】由数轴及题意可得32,01a b -<<-<<,依此可排除选项.【解答】解:由数轴及题意可得:32,01a b -<<-<<,∴,0,0a b a b b a >+<->,∴只有B 选项正确,故选B .2.如图,数轴上点A ,B ,C 对应的有理数分别为a ,b ,c ,则下列结论中,正确的有( )①a +b +c >0 ②a •b •c >0 ③a +b ﹣c <0 ④10<<ab A .1个B .2个C .3个D .4个【分析】根据数轴可知a <﹣1,0<b <1,从而可以判断题目中的结论哪些是正确的,哪些是错误的,从而解答本题.【解答】解:∵由数轴可知,a <﹣1,0<b <1,∴ab <0,a ﹣b <0,a +b <0,|a |﹣|b |>0,故①②③错误,④正确.故选:A .3.有理数a ,b 在数轴上的对应点的位置如图所示,把a 、b 、﹣a 、﹣b 、0按照从小到大的顺序排列,正确的是( )A .﹣a <a <0<﹣b <bB .a <﹣a <0<﹣b <bC .﹣b <a <0<﹣a <bD .a <0<﹣a <b <﹣b【分析】根据正数大于负数和0,0大于负数,两个负数,绝对值大的反而小,即可解答.【解答】解:根据数轴可得:a <0<b ,|a |<|b |,则﹣b <a <0<﹣a <b .故选:C .【考点4】绝对值1.绝对值:在数轴上表示数a 的点到原点的距离叫做a 的绝对值,记为|a |.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.绝对值具有非负性:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 【例7】已知(x ﹣3)2+|2x ﹣3y ﹣3|=0,则y = .【分析】根据非负数的性质列出二元一次方程组,求解得到x 、y 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,x ―3=0①2x ―3y ―3=0②,由①得,x =3,把x =3代入②得,6﹣3y ﹣3=0,解得y =1.故答案为:1.【例8】9-的绝对值是( )A .9B .9-C .19D .19-【分析】利用绝对值的定义直接得出结果即可【解答】解:9-的绝对值是:9故选:A1.(2021·四川雅安市)-2021的绝对值等于( )A .2021B .-2021C .12021D .12021-【分析】根据绝对值的意义,负数的绝对值是它的相反数即可求出答案.【解答】解:﹣2021的绝对值即为:|﹣2021|=2021.故选:A .2.已知|x ﹣y +3|与(x ﹣2)2互为相反数,则yx yx -+2= .【分析】根据绝对值非负数,偶次方非负数的性质列出二元一次方程组,然后再利用加减消元法求出y 的值,再代入其中一方程求出x 的值,进一步计算即可.【解答】解:∵|x ﹣y +3|与(x ﹣2)2互为相反数,∴|x ﹣y +3|+(x ﹣2)2=0,∴x ―y +3=0x ―2=0,解得:x =2,y =5,x 2y x y =21025=―4.故答案为:﹣4.【考点5】科学计数法科学记数法:把一个数写成a ×10n (其中1≤|a |<10,n 为整数)的形式,这种记数法叫做科学记数法.【例9】(2021·广东)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为( )A .90.51085810´B .751.085810´C .45.1085810´D .85.1085810´【分析】根据科学记数法的表示形式10n a ´,其中1||10a £<,n 为整数,一定要将题目中的“51085.8万”转化为数字510858000,即可将题目中的数据用科学记数法表示出来.【解答】51085.8万=51085800085.1085810=´ ,故选:D .1.(2021·内蒙古)据交通运输部报道,截至2020年底,全国共有城市新能源公交车46.61万辆,位居全球第一.将46.61万用科学记数法表示为4.66110n ´,则n 等于( )A .6B .5C .4D .3【分析】把46.61万表示成科学记数法的形式10n a ´,即可确定n .【解答】46.61万=466100=4.661510´ ,故n =5故选:C .2.(2021·湖南张家界市)我国是世界上免费为国民接种新冠疫苗最多的国家,截至2021年6月5日,免费接种数量已超过700000000剂次,将700000000用科学计数法表示为( )A .90.710´B .80.710´C .8710´D .9710´【分析】将700000000写成a×10n (1<|a|<10,n 为正整数)的形式即可.【详解答】解:700000000=8710´.故选C .3.(2021·贵州铜仁市)2021年2月25日,全国脱贫攻坚总结表彰大会在京举行,习近平总书记在大会上庄严宣告:“我国脱贫攻坚战取得了全面胜利.这是中国人民的伟大光荣,是中国共产党的伟大光荣,是中华民族的伟大光荣!”现行标准下9899万农村贫困人口全部脱贫,创造了又一个彪炳史册的人间奇迹.98990000用科学记数法表示为( ).A .69.89910´B .798.9910´C .89.89910´D .79.89910´【分析】根据科学记数法的性质分析,即可得到答案.【解答】98990000用科学记数法表示为:79.89910´ 故选:D .科学记数法的表示方法:一般形式:a ×10n .1.a 值的确定:1≤|a |<10.2.n 值的确定:① 当原数的绝对值大于或等于10时,n 等于原数的整数位数减1;② 当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数左起第一个非零数字前所有零的个数(含小数点前的零).注意:若含有计数单位,则先把计数单位转化为数字,再用科学记数法表示.【考点6】实数的大小比较【例10】(2021·__________12(填写“>”或“<”或“=”).12,结果大于0大;结果小于0,则12大.【解答】102-,12>,故答案为:>.【例11】若0<m <1,m 、m 2、m1的大小关系是( )A .m <m 2m1<B .m 2<m m 1<C .<m1m <m 2D .<m1m 2<m 【分析】利用特殊值法进行判断.【解答】解:当m =12时,m 2=14,1m =2,所以m 2<m <1m.故选:B .1.(2021·广西柳州市)在实数3,12,0,2-中,最大的数为( )A .3B .12C .0D .2-【分析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可.【解答】根据有理数的比较大小方法,可得:12032-<<< ,因此最大的数是:3,故选:A .2.(2021·湖北襄阳市)下列各数中最大的是( )A .3-B .2-C .0D .1【分析】把选项中的4个数按从小到大排列,即可得出最大的数.【解答】由于-3<-2<0<1,则最大的数是1故选:D .比较实数大小的5种方法1.数轴比较法:将两个数表示在同一条数轴上,右边的点表示的数总比左边的点表示的数大.2.类别比较法:正数大于零;负数小于零;正数大于一切负数;两个负数比较大小,绝对值大的反而小.3.差值比较法:若a,b 是任意两个实数,则a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b .4.倒数比较法:若a 1>b1,ab >0,则a <b .5.平方比较法:由a >b >0,可得b a >,故可以把比较与的大小问题转化成比较a 和b 的大小问题.【考点7】二次根式的估算【例12】(2021·1+在数轴上的对应点可能是()A .A 点B .B 点C .C 点D .D 点1+的近似值,再判定它位于哪两个整数之间即可找出其对应点.【解答】解:1.414»,1 2.414+»,∴它表示的点应位于2和3之间,所以对应点是点D ,故选:D .1.(2021·湖北随州市·中考真题)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率p 精确到小数点后第七位的人,他给出p 的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有bd x a c <<,其中a ,b ,c ,d 为正整数),则b d a c++是x 的更为精确的近似值.例如:已知15722507p <<,则利用一次“调日法”后可得到p 的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457p »<,再由17922577p <<,可以再次使用“调日法”得到p 的更为精确的近似分数……现已知7352<<,则使用两次“调日法”的近似分数为______.【答案】1712【分析】根据“调日法”的定义,第一次结果为:107,所以,根据第二次“调日法”进行计算即可.【详解】解:∵∴第一次“调日法”,结果为: ∵∴ ∴第二次“调日法”,结果为: 故答案为:2.(2020•黔东南州)实数A .4和5之间B .5和6之间C .6和7之间D .7和8之间71057<<7352<<7+310=5+2710 1.42867»>71057<<7+1017=5+7121712【分析】首先化简【解析】∵67,∴6<7.故选:C.求二次根式离哪个整数较近时,先确定这个二次根式在哪两个连续整数之间,再求这两个整数的平均数,用平方法比较这个二次根式和平均数的大小.若二次根式的平方大于平均数的平方,则离较大的整数近;若二次根式的平方小于平均数的平方,则离较小的整数近.【考点8】平方根与算术平方根1.平方根与算术平方根:如果一个数的平方等于a,那么这个数叫做a的平方根,记作a±;如果一个正数的平方等于a,即x2=a,那么这个数x叫做a的算术平方根,记作a.2.平方根的性质:正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【例13】(2020•湖州)数4的算术平方根是( )A.2B.﹣2C.±2D【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解析】∵2的平方为4,∴4的算术平方根为2.故选:A.1.(2020•泰州)9的平方根等于 .【分析】直接根据平方根的定义进行解答即可.【解析】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.2.(2021·=________【分析】先算4(2)-,再开根即可.==4=故答案是:4.【考点9】立方根1.立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根,记作3a .2.立方根的性质:正数只有一个正的立方根;0的立方根是0;负数只有一个负的立方根.【例14】(2020•宁波)实数8的立方根是 .【分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解析】实数8的立方根是:2.故答案为:2.【考点10】二次根式1.二次根式:式子)0(≥a a 叫做二次根式.注意被开方数a 只能是非负数.2.最简二次根式:被开方数不含分母,被开方数不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.3.同类二次根式:化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.【例15】(2020苏州)使31-x 在实数范围内有意义的x 的取值范围是 .【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.【解析】由题意得,x ﹣1≥0,解得,x ≥1,故答案为:x ≥1.【例16】下列二次根式中,与3是同类二次根式的是( )A .6B .9C .12D .18【分析】根据同类二次根式的定义,先化简,再判断.【解析】A .6与3的被开方数不相同,故不是同类二次根式;B .39=,与3不是同类二次根式;C .3212=,与3被开方数相同,故是同类二次根式;D .2312=,与3被开方数不同,故不是同类二次根式.故选:C .【例17】(2020济宁)下列各式是最简二次根式的是( )A .13B .12C .3aD .35【分析】利用最简二次根式定义判断即可.【解析】A 、13是最简二次根式,符合题意;B 、2312=,不是最简二次根式,不符合题意;C 、a a a =3,不是最简二次根式,不符合题意;D 、31535=,不是最简二次根式,不符合题意.故选:A .1.(2021·化为最简二次根式,其结果是( )ABCD【分析】根据二次根式的化简方法即可得.【详解】解:原式=,=故选:D .2.(2021·湖南娄底市)2,5,m 等于()A .210m -B .102m -C .10D .4【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m Q 是三角形的三边,5252m \-<<+,解得:37x <<,374m m =-+-=,故选:D .3.(2020苏州)使31-x 在实数范围内有意义的x 的取值范围是 .【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.【解析】由题意得,x ﹣1≥0,解得,x ≥1,故答案为:x ≥1.【考点11】实数与二次根式运算1.实数运算:在实数范围内,加、减、乘、除(除数不为零)、乘方运算都可以进行,但开方运算不一定能进行,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方.2.二次根式的运算法则:(1)());0(2≥=a a a (2);)0()0(2⎩⎨⎧£-≥=a a a a a a (3));0,0(≥≥⋅=b a b a ab(4));0,0(>≥=b a bb 操作方法示例(1)分段:以加、减号为界,把式子分成几段(有括号的,先算括号内的,再分段);(2)先计算每一小段中每一小项的值(如零次幂、负整数指数幂、开方、绝对值、乘方等);(3)进行每段中的乘除运算;(4)进行段与段之间的加减运算.注意:同级运算按照从左到右的顺序进行.二次根式运算的注意事项1.在进行二次根式的运算时,一般先把二次根式化为最简二次根式,再利用二次根式的乘除法法则进行乘除运算,同类二次根式之间可以进行加减运算(类似于合并同类项).2.运算结果要化成最简形式.3.在二次根式的运算中,要注意2a 与次()2a 的区别.①取值不同:前者的a 为任意实数,后者的a 为非负数;② 化简结果不同:2a =|a |,2a =a .【例18】(2021·广西来宾市)计算:.【分析】先分别计算出有理数的乘方及括号内的有理数加减,再计算乘除,即可求得结果.【解答】3121(13)2öæ´-+¸-ç÷èø解:.【例19】下列等式成立的是( )A .27243=+B .532=´C .32613=¸D .()332=-【分析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解析】A .3与24不是同类二次根式,不能合并,此选项计算错误;B .632=´,此选项计算错误;C .2363613=´=¸,此选项计算错误;D .()332=-,此选项计算正确;故选:D .1.计算533345´¸的结果正确的是( )A .1B .35C .5D .9【分析】根据二次根式的性质化简二次根式后,再根据二次根式的乘除法法则计算即可.【解析】原式51593535153353´´=´¸= 11515151535==´´=故选:A .321(13)2´-+¸-ç÷èø18(2)2=´¸-4(2)=¸-2=-2.(2021·()0130p+-+°.【分析】根据算术平方根的定义、零指数幂的意义、绝对值的意义、特殊角的三角函数值、实数的运算等知识即可完成本题的计算.【解答】原式212p=++--p=3.(2021·江苏盐城市)计算:.【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案.【解答】.4.(2021·【分析】先运用绝对值、特殊角的三角函数值、负整数次幂以及平方根的知识化简,然后再计算即可..5.(2021·湖南娄底市)计算:11)2cos452p-æö-+-°ç÷èø.【分析】直接利用零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值计算即可.【详解】解:11)2cos452p-æö-+-°ç÷èø111)3-æö+--ç÷èø111)3-æö+-ç÷èø312=+-2=21cos45--+°-+21cos45--+°-112-+32122 =++-112=+-+-=.2。

中考数学必考知识点归纳

中考数学必考知识点归纳

中考数学必考知识点归纳一、数与代数。

1. 有理数。

- 有理数的概念:整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

数轴上的点与有理数一一对应。

- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。

若a与b互为相反数,则a + b=0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a≥0) -a(a<0)。

- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

2. 实数。

- 无理数:无限不循环小数叫做无理数,如√(2)、π等。

- 实数的概念:有理数和无理数统称为实数。

实数与数轴上的点一一对应。

- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。

3. 代数式。

- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。

- 整式:单项式和多项式统称为整式。

单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

2023学年浙江七年级数学上学期专题训练专题01运算能力课之平方根及立方根高频考点(解析版)

2023学年浙江七年级数学上学期专题训练专题01运算能力课之平方根及立方根高频考点(解析版)
21.(1)已知 , ,则 ____________.
【答案】1
【分析】
先根据平方根,立方根的定义列出关于a、b的方程,求出a、b后再代入进行计算求出 的值,然后根据算术平方根的定义求解.
【详解】
解:根据题意得,2a-1=(±3)2=9,b+2 =23,
∴a=5,b=6,
∴b-a=1,
∴ 的算术平方根是1,
故答案是:1.
【点睛】
本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.
C.倒数是本身的数为1D.互为相反数的绝对值相等
【答案】D
【分析】
当m是负数时,-m表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.
【详解】
A.若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A选项错误;
B.平方根等于它本身的数为0,故B选项错误;
C.倒数是本身的数为1和﹣1,故C选项错误;
【答案】C
【分析】
分别根据相关的知识点对四个选项进行判断即可.
【详解】
解:①所有无理数都能用数轴上的点表示,故①正确;
②若一个数的平方根等于它本身,则这个数是0,故②错误;
③任何实数都有立方根,③说法正确;
④ 的平方根是 ,故④说法错误;
故其中正确的个数有:2个.
故选:C.
【点睛】
本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.
【答案】
【分析】
根据立方根的性质即可求解.
【详解】
已知 ,
故答案为: .
【点睛】
此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.
9.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数 的范围是 ;③ 的平方根是 ;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)

初中常考的数值知识点相反数、绝对值、互为倒数

初中常考的数值知识点相反数、绝对值、互为倒数

初中常考的数值知识点相反数、绝对值、互为倒数
初中常考的数值知识点(相反数、绝对值、互为倒数)
导语形成天才的决定因素应该是勤奋。

……有几分勤学苦练是成正比例的,下面是小编为大家整理,数学知识点,希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!
相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 Û a+b=0 Û a、b互为相反数.
绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的.相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:
;绝对值的问题经常分类讨论;
互为倒数:
乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.
对于互为倒数的知识学习,相信同学们会从中学习到很多,希望同学们会学习的更好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、(2014原创)下列运算正确的是( )
A. B. C. D.
3、(2014原创)下列计算或化简正确的是( )
A. B. C. D.
姓名:班级:得分:
2014年中考数学必考概念研究第一讲效果测试(作者原创题目)
总分:10分,时间:5分钟
选择题(共10分,每小题2分,请选择正确的答案填在下边表格中。)
:平方根和算术平方根
真题1、(3分).(2013•淄博)9的算术平方根是( )
A. B.± C.3D.±3
考点:算术平方根。
分析:根据算术平方根的定义求解即可.因为“算术平方根只有一个非负的值”,所以B和D答案就一
真题2、(3分).(2013•盐城)16的平方根是
(2014中考模拟题作者原创题目)
1、(2014原创)-8的立方根是
(2014中考模拟题作者原创题目)
1、(2014原创)-6的倒数是( )
A. B. C.6D.-6
2、(2014原创)2014的倒数是( )
A. B. C.2014D.-2014
3、(2014原创) 的倒数是( )
A. B. C.2D.-2
:绝对值
真题1、(3分)(2013•德阳)-5的绝对值是( )
2、(2014原创) 的算术平方根是( )
A. B.± C.3D.±3
3、(2014原创) 的平方根是
:乘方和二次根式的运算
真题1、(3分).(2013•龙岩)下列计算正确的是( )
A.a+a=a2B.a2•a3=a6C.(-a3)2=-a6D.a7÷a5=a2
考点:乘方、同类项。
在2013中考试卷中还有许多类似题目:
2、(2014原创)﹣2014的相反数是()
A. B. C.2014 D.﹣2014
3、(2014原创) 的相反数是()
A.2B.-2C.±2D.
4、(2014原创) 的相反数是()
A. B.﹣5 C.5 D.
:倒数
真题1、(3分)(2013•安徽)-2的倒数是( )
A. B. C.2D.-2
真题2、(4分)(2013•武鸣县)5和互为倒数,没有倒数。
1
2
3
4
5
6
7
8
9
10
1、(2014原创) 的相反数是( )
A.2B.-2C. D.
2、(2014原创)-2的相反数的倒数是( )
A. B. C.2D.-2
3、(2014原创)2014的绝对值是()
A. B. C.2014 D.﹣2014
4、(2014原创) 的平方根是( )
A.± B. C.2D.±2
A.5 B. C. D.﹣5
真题2、(3分)(2013•南充)-3.5的绝对值是
(2014中考模拟题作者原创题目)
1、(2014原创)-6的绝对值是( )
A. B. C.6D.-6
2、(2014原创) 的绝对值是( )
A. B. C.2014D.-2014
3、(2014原创) 的绝对值是( )
A. B.-2C.2D.
(1)(2003•十堰)下列计算正确的是( )
A.a3•a4=a7B.(a3)4=a7C.a12÷a2=a6D.2a3-a3=2
(2)(2013•遂宁)下列计算错误的是( )
A.-|-2|=-2B.(a2)3=a5C.2x2+3x2=5x2D.
(3)(2013•莆田)下列运算正确的是( )
A.(a+b)2=a2+b2B.3a2-2a2=a2C.-2(a-1)=-2a-1D.a6÷a3=a2
学易初中数学微精品团队
:相反数
真题1、(3分)(2013•攀枝花)﹣5的相反数是()
A分)(2013•黔西南州)|3|的相反数是( )
A.3B.-3C.±3D.
考点:绝对值;相反数.
(2014中考模拟题作者原创题目)
1、(2014原创)﹣9的相反数是()
A. B.9 C.3 D.﹣9
在2013中考试卷中还有许多类似题目:
如(2013•锦州)下列运算正确的是( )参考答案为D
A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(-3x3)=-6x5
(2014中考模拟题作者原创题目)
1、(2014原创)下列运算正确的是( )
A.-|-2|=-2B.(a2)3=a5C.2x2+3x2=5x4D.
5、(2014原创)下列计算或化简错误的是( )
A.-|-3|=-3 B. C. D.
(4)(2003•山东)下列运算正确的是( )
A.x3+x3=2x6B.x6÷x2=x3C.(-3x3)2=2x6D.x2•x-3=x-1
真题2、(3分)(2013•南雄市)下列各式中,运算错误的是( )
A.5x-2x=3xB.5mn-5nm=0C.4x2y-5xy2=1D.3x2-x2=2x2
考点:同类项。
相关文档
最新文档