Q_JD 5823-2019XLBA27动力电池总成

Q_JD 5823-2019XLBA27动力电池总成
Q_JD 5823-2019XLBA27动力电池总成

Q/JD T10

重庆长安汽车股份有限公司企业标准

Q/JD 5823-2019 XLBA27动力电池总成

2019-12-11发布 2019-12-16实施重庆长安汽车股份有限公司发布

Q/JD 5823-2019

前言

本标准依据GB/T 1.1的规则进行编写。

本标准由重庆长安汽车股份有限公司提出。

本标准由重庆长安汽车股份有限公司归口。

本标准起草单位: 重庆长安汽车股份有限公司。

本标准主要起草人:陈林。

本标准批准人:张法涛

本标准于2019年12月11日首次发布。

XLBA27动力电池总成

1范围

本标准规定了XLBA27动力电池总成的型号、型式及要求。

本标准适用于XLBA27动力电池总成(以下简称“动力电池总成”)。

2规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GBT 31467.2-2015 电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程

3型号及型式

3.1 型号

3.2型式

产品由电池模组总成、铜排、线束、高压元器件、电池管理系统、热管理组件,以及电池箱体等组成。电池类型为三元材料电池。

4要求

动力电池总成主要技术参数见表1。

表1 主要参数及要求

项目单位参数

额定容量Ah 100

额定电压V 322.08

常温20s脉冲放电功率kW 67

常温10s脉冲充电功率kW 46

常温30min持续放电功率kW 26

5试验方法

动力电池总成的试验方法按照GBT 31467.2-2015 电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试的规定进行。

动力电池自动化测试系统总体方案

动力电池自动化测试系统 总体方案 湖北德普电气股份有限公司(、3276513)

第一部分:模组来料OCV检测系统方案一、简述 本系统首先导入模组出厂数据到本地数据库,测试时通过条码扫描枪读取电池包的条码信息,按照预设好的测试方案,通过CAN总线读取BMS的电池OCV信息,并将电池OCV信息与出厂数据进行比对,按照预设的条件进行产品合格判定。并把相关信息记录在数据库中,同时将不合格结果进行标签打印。 二、组成 模组来料OCV检测系统主要由以下设备组成,系统原理框图如图1所示。 1)研华工控机 2)Honeywell条码扫描枪 3)NI PCI CAN通讯卡 4)明纬开关电源 5)NI PCI I/O板卡 6)Zebra标签打印机 7)扫描枪伺服系统 8)附属组件 图1 模组来料OCV检测系统原理框图

三、功能实现技术方案 图2 来料OCV检测系统示意 模组来料OCV检测系统由工控机通过软件进行设备集成。用户登录后,根据权限编写测试流程,测试流程包含扫描枪伺服系统的控制、DBC文件的选择、不合格条件的设定等,并将测试流程与条码进行模糊绑定。 在进行具体测试过程中,当完成线束连接后,可以点击启动按钮,模组来料OCV 检测系统自动按照测试方案驱动扫描枪伺服系统,扫描枪到预设位置后读取相应的条形码填入对应位置。条形码读取完毕后自动从数据库中搜索电池的相应出厂OCV值,并根据DBC文件,自动通过PCI CAN通讯卡读取并解析相应的电池OCV信息,按照预设的判定条件进行结果判定。完成测试后,将不合格的测试结果按照预设格式进行打印。同时出于满足手动调试的需要,所有的操作均可以单步手动操作。 工控机内安装PCI接口的CAN通讯卡、I/O板卡。工控机通过PCI I/O板卡控制的接触器对BMS上电、下电控制。工控机通过PCI CAN通讯卡与BMS进行通讯,完成数据的读取与解析。按照功能划分,软件具备如下功能: 3.1人机界面 提供用户的登入登出、新用户的建立、管理等功能。软件提供了测试流程的编辑、检查、载入等功能。并提供测试方案的启动、停止、暂停、回复等按钮,用于测试流程控制。软件提供了电池条码信息、接触器状态、BMS信息、测试流程的状态等信息。界面大致如下: 图3 模组来料测试系统主界面示意图 3.2测试流程控制 软件能根据预先编制好的测试方案,按照用户的命令启动测试方案,并能按照测试方案自动的执行测试流程,并完成结果判定。

Q_JD 5823-2019XLBA27动力电池总成

Q/JD T10 重庆长安汽车股份有限公司企业标准 Q/JD 5823-2019 XLBA27动力电池总成 2019-12-11发布 2019-12-16实施重庆长安汽车股份有限公司发布

Q/JD 5823-2019 前言 本标准依据GB/T 1.1的规则进行编写。 本标准由重庆长安汽车股份有限公司提出。 本标准由重庆长安汽车股份有限公司归口。 本标准起草单位: 重庆长安汽车股份有限公司。 本标准主要起草人:陈林。 本标准批准人:张法涛 本标准于2019年12月11日首次发布。

XLBA27动力电池总成 1范围 本标准规定了XLBA27动力电池总成的型号、型式及要求。 本标准适用于XLBA27动力电池总成(以下简称“动力电池总成”)。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GBT 31467.2-2015 电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程 3型号及型式 3.1 型号 3.2型式 产品由电池模组总成、铜排、线束、高压元器件、电池管理系统、热管理组件,以及电池箱体等组成。电池类型为三元材料电池。 4要求 动力电池总成主要技术参数见表1。

表1 主要参数及要求 项目单位参数 额定容量Ah 100 额定电压V 322.08 常温20s脉冲放电功率kW 67 常温10s脉冲充电功率kW 46 常温30min持续放电功率kW 26 5试验方法 动力电池总成的试验方法按照GBT 31467.2-2015 电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试的规定进行。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池组及管理系统试验方案

动力电池组及管理系统试验方案 型号规格:非标 用途:用于电动汽车用氢镍电池的综合性能测试,在功率允许范围内,可以完成所有充放电项目的性能测试。 一、购置理由: 动力电池及管理技术已经成为制约电动汽车及混合动力汽车发展的瓶颈之一,动力电池台架通过容量测试试验、效率试验、循环工况试验、电池模型参数识别试验以及电池检测精度和荷电状态估计试验等,能够得到动力电池组的工作特性,确定其合理的工作范围,验证电池管理系统的电池检测精度和能量状态估计的准确性,为电池组装车后有效管理提供试验依据。本着提高效率,减轻工作强度,降低企业成本,便于对动力车辆电池动态应力循环工况测试的角度考虑,该方案拟运用迪卡龙电动车辆测试系统硬件设备EVT-500-500,BTS-600电池测试软件对电动汽车用氢镍电池的综合性能进行测试。 二、技术要求及设备选型情况 1.技术要求 1.1 主要技术指标 1.1.1 充电电流: 充电电流范围: 1.0~100A(尽可能靠上限); 电流分辨率:0.1A, 电流控制与测量精度:0.1A 1.1.2充电电压范围:0~500V(电位器调节,最大调节电压500V) 显示电压分辨率: 0.1V 电压控制测量精度:0.1V(硬件控制0.01V) 1.1.3充电容量:系统在充电过程中对电池的充电容量计算,误差≤±1.5%,测试电池组在不同温度、不同放电率下所能放出的能量。放电倍率一般为C/3、C/2、1C、2C、3C、4C等,其中C为电池组容量,温度根据电池使用环境要求,一般为-25°C、-10°C、0°C、25°C、50°C等。 1.1.4 充电通道及方式:160CH电池组充电通道,每个电池组充电通道,通过提供的专用插头,与电池组连接,独立地对电池组中的最多4枚12V单体电池进行充电。

动力电池组测试平台设计

动力电池组测试平台设计 1 前言 作为电动汽车的能量存储部件,电池的功率密度、储电能力、安全性等不仅决定着电动车的行驶里程和行驶速度,更关系到电动车的使用寿命及市场前景。目前,电池在实际使用中普遍存在的问题是电荷量不足,一次充电行驶里程难以满足实用要求。 另外,用可测得的电池参数对电池荷电状态( SOC,S tate- O f- Charge)作出准确、可靠的估计,也一直是电动汽车和电池研究人员关注并投入大量精力的研究课题。因此有必要建立动力电池测试平台测试平台,利用该平台对电池相关参数进行全面、精确的测量,实现电池性能试验,工况模拟和算法研究,确定最合理的充放电充放电方式及更为精确的SOC 估算方法,从而合理的分配和使用电池有限的能量,尽可能延长电池的使用寿命,进一步降低电动汽车的整车成本。与以往的电池测试系统相比,该测试平台可全面监测电池相关参数,并加入充放电能量的计量,可从能量的角度对电池的性能进行描述,从能量状态( SOE,Sta te- O f- Energy)的角度对电池的使用效率进行分析。系统硬件电路具有电池过电压、欠电压保护及均衡功能,可对单体电池进行监视和保护,减小电池间的不一致性。在充放电设备与上位机之间建立通信,控制充电机按照编程指令改变控制策略和输出电流,检验充放电电流大小、方式和环境条件对电池的电荷量及使用寿命的影响。 2 测试平台结构 测试平台的结构,以单片机为核心的电池数据采集系统数据采集系统直接对电池组电池组的单体电压、总电压、温度、电流、充放电容量、充放电能量等信息进行精确测量,并通过RS232总线将数据发送到上位机。由微型计算机构成的上位机监控系统,实时显示并记录接收到的测试数据,对数据进行分析,监控测试系统工作状态。另外可根据具体的实验要求,控制充放电设备按照编程指令输出电流,模拟电池在某些特定条件下的使用情况。充放电设备实现电池组的充放电,完成电池和电网之间能量的双向流动,与监控PC 机通过CAN 通信,可接收监控PC机的编程控制指令。文中主要完成数据采集系统、上位机监控系统的设计并实现各部分之间的实时通讯。 图1 平台结构图 3 系统硬件设计 数据采集系统硬件结构,主要包括以下几个模块:微控制器、电源模块、电流及安时检测模块、瓦时检测模块、电压检测模块以及通信接口电路。 图2 硬件结构图 微控制器采用的是MC9S12DT128B 芯片,该芯片具有串行接口、CAN 控制器等丰富的外围资源,只需加入电平转换电路即可实现与上位机之间的232通信。本设计使用数字温度传感器DS18B20来实现温度检测,它支持1- w ire总线协议,可利用单片机的一个端口来读取多个检测点的数字化温度信息,扩展方便。 电压检测采用bq76PL536 芯片,它同时检测3到6节电池,测量的单只电池的电压范围为1~ 5V。 该芯片由所测电池直接供电,供电电压范围为5. 5~ 30V。为了保证芯片在所测电池少于3 节时仍能正常工作,电路中外接9V 的直流电源。在电池总电压小于9V 时,采用外部供电。该芯片具有电池过电压,欠电压保护功能,电压阈值及检测延迟时间这些保护参数可通过程序写入。当某节电池的实际情况超过设定的安全阈值范围时,芯片中电池故障寄存器相应字节置位,从而通知充电机动作,防止电池过充或过放。在芯片外围,有MOS管与电阻构

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

电动汽车动力电池剩余电量在线测量

182 电动汽车动力电池剩余电量在线测量 程艳青 高明煜 徐 杰 徐洪峰 (杭州电子科技大学电子信息学院,浙江 杭州 310018) 摘要:为了精确可靠估算以蓄电池为动力的电动汽车所用电池的剩余电量,在讨论目前一些蓄电池剩余电量估算方法的基础上,以聚合物锂离子电池组为研究对象,将电池荷电状态作为系统的状态,建立了单变量的锂电池组的状态空间模型,采用了开路电压法和卡尔曼滤波递推算法相结合的方法。经试验这种方法能够获得蓄电池组精确和可靠的荷电状态预测值。 关键字:聚合物锂离子电池组;卡尔曼滤波;电动汽车;荷电状态 中图分类号:TM91 文献标识码:A The Estimation of the State of Charge of Storage Battery Based on the Kalman Filtering Theory for Electric Vehicle Cheng Yanqing Gao Mingyu Xu Jie Xu Hongfeng (School of Electronics Information, Hang Zhou Dianzi University, Hangzhou Zhejiang 310018, China) Abstract: To estimate residual capacity of traction battery in electric vehicle accurately and reliably, the paper chooses a lithium-ion polymer battery pack as a research object, takes the SOC (State of charge) as the state of the system, and builds the battery's state space model with single state, and then develops a method combining open circuit voltage method and Kalman filtering recursive algorithm method, based on some methods of residual capacity estimation of battery often used at present. The experiments proved that accurate and reliable battery SOC estimation of battery could be obtained by adopting the new method. Keywords: Lithium-Ion Polymer Battery ; Kalman Filter; Electric Vehicle; State-of-charge 蓄电池是各类电动汽车中最常用的储能元件, 其剩余电量的精确测量在电动汽车的发展中一直是一个非常关键的问题[1],因为只有对电池剩余电量进行精确测量才能使驾驶员及时掌握正确的信息,预测自己的后续行驶里程,并及时进行充电。蓄电池荷电状态SOC(State of charge)描述蓄电池的剩余电量,其大小直接反映了电池所处的状态,是电池使用过程中最重要的参数之一。 1 SOC 定义 蓄电池的荷电状态SOC 被用来反映电池的剩余容量情况,这是目前国内外比较统一的认识,其数值上定义为为蓄电池所剩电量占电池总容量的比值: m n m Q ]/ )I ( Q - Q [ = SOC (1) 国家自然科学基金项目,60871088 dt I t = ) I ( Q n n ∫ (2) 式中: Q m 为蓄电池最大放电容量,指的是在室温条件下,电池从完全充电后开始工作一直到电池完全放电为止,其所能放出的最大安时数值,表示为标准放电电流和放电时间的乘积;Q ( I n ) 为标准放电电流 I n 下 t 时间蓄电池释放的电量。 公式1还可以表示为: m n Q )/I ( Q - 1 = SOC (3) 式中:SOC=1表示电池为充满电状态,SOC=0则表示电池已处于全放电状态。 由于电池所放出的电量受自放电率、充放电倍率、电池温度、电池充放电循环次数等影响,表示电池容量状态的SOC也必然与这些因素有关。在放电电流变化的情况下,上述定义就会出现不适应性,得到矛盾的结果,因此实际使用中要对SOC 的定义进行调整,不同电动汽车对SOC 定义的使用形式不一致,最常用的定义为:

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无常工作。为了使动力电池组保持在合理的温度围工作,电池组必须拥有科学和高效的热管理系统。目前,国外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测;国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最大功率控制。 我国在十二五期间设立电动汽车重大专门研究项目,经过几年的发展之后,在BMS方面取得很大的突破,与国外水平也较为接近。在国家863计划2005年第一批立项研究课题中,就分别有理工大学承担的EQ7200HEV混合动力轿车用镍氢

电动汽车动力电池的维护与检修

电动汽车动力电池的维护与检修 摘要:主要针对电动汽车动力电池运行检修管理,研究了电池接收检验、运行管理、日常维护、运行检测和安全管理等关键环节,结合电池运行的技术特点,对电池的日常检测、维护和检修等进行了分析,分析了电池受到电压,温度以及外界因数等典型故障的原因分析及维护方法,同时提出了提高动力电池运行与检修水平以及电动电池保养的措施。 关键词:电动汽车动力电池检测与维护 ABSTRACT:Mainly for electric vehicle power battery operation and maintenancemanagement, the key of the battery receiving inspection, operation management,daily maintenance, monitoring and security management, combined with the technical characteristics of battery operation,daily inspection, maintenance and repair of the battery were analyzed, analysis the reason of the typical fault of power battery voltage, insulation, the temperature and the appearance and maintenance method, and proposed to improve the power battery operation and maintenance level and measure electric battery maintenance. Key words:Electric car battery power detection and maintenance 目录: 摘要 1.动力电池的检修内容 (1)电压异常 (2)温度异常 (3)外观异常 (4)检测振动对电池的影响

电动汽车动力电池及管理系统试卷A

广东文理职业学院刘鹏2018-2019学年度第一学期 期末考试试题(A卷) (考试时间: 90 分钟) 考试科目动力电池及管理适用班级:新能源汽车一班 一、单项选择题(每小题2分,共计30分) (题目正文:宋体,五号,行距20磅) 1. 燃料电池采用的燃料是()。 A.汽油; B.柴油; C.乙醇; D.氢气 2.燃料电池汽车的效率能达到以上()。 A.30%; B.40%; C.50%; D. 60% 3.在最适合汽车使用的燃料电池()。 A.质子交换膜燃料电池; B.磷酸燃料电池; C.熔融碳酸盐燃料电池对; D.固态氧化物燃料电池。 4.世界上第一家实现商品化销售的燃料电池汽车生产厂家是()。 A.丰田; B.通用; C.奔驰; D.本田。 5.蓄电池组中,标称电压为12V的单体电池端电压压差应小于()mV。 A.100; B.120; C.150; D.200 6.在25°C下,蓄电池组由32节单体蓄电池组成(单体标称电压为12V),则其浮充电电压应约为() A. 384V; B. 432V; C. 450V; D. 472V 7.在蓄电池管理系统中,由()把整流电压变成交流电压。 A.整流器; B.逆变器; C.充电器 8.在蓄电池管理系统中,,由()把直流电压变成交流电压。 A.整流器; B.逆变器; C.充电器; D.交流调压器 9. 15.2020年中国电池制造的能量密度要达到()。 A. 300wh/kg;A. 400wh/kg;A. 500wh/kg 10.用电流表测量电流,应将电流表和被测电流的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 11.用电压表测量电压,应将电压表和被测电压的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 12.万用表使用完毕后,应将选择开关放在()。 A.电阻档; B.交流电压最高档; C.直流电流档。 13.三相桥式整流电路,在交流电的一个周期内,每个整流元件的导通角为()。 A. 180度; B. 120度; C. 60度 14.单相整流电路中,二极承受的反向电压的最大值出现在二极管()。 A.截止时; B.由截止转导通时; C.导通时; D.由导通转截止时 15.燃料电池汽车的效率能达到以上()。 A. 30%; B. 40%; C. 50%; D. 60%。 系 别 : 专 业 班 别 : 姓 名 : 学 号 : … … … … … … ○ … … … 密 … … … ○ … … … … 封 … … ○ … … … … 线 … … ○ … … … … … … ○ … …

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

动力电池能量管理系统

动力电池能量管理系统 检测时间:2016-05-23 09:39:53 摘要 近年来,由于日益严重的环境污染问题和日益增长的石油和能源消耗,新能源汽车的发展,越来越多的政府和世界主要汽车制造商的关注。三个电动汽车的发展。 本文介绍了电动汽车电池管理系统的主要功能和开发国内外介绍问题的根源,介绍了铅酸蓄电池工作原理和关键的操作特性,描述铅酸电池剩余量预测几个模型的设计和项目的特点,基于大量的电池充电和放电的实验数据,提出了这种设计方法来估计剩下的电池供电。 上述功能需求,设计提出使用主芯片单片机,分散的集合和集中控制的解决方案结合硬件、单片机的选择,电池参数收集,平衡和保护电路、功率转换电路和外部通信和其他主要模块硬件设计详细描述和基于C51单片机凯尔软件开发和设计环境软件解决方案设计的电池管理系统3主要流程:充电、放电和静态软件设计。最后,整个硬件和软件系统充电和放电的疲劳试验通过收集大量的实验数据,验证了硬件和软件设计的可行性和稳定性 关键词电动汽车; 电池管理系统;电池SOC估算;单片机;充电均衡控制

ABSTRACT In recent years, due to the increasingly serious problem of environmental pollution and the increasing consumption of oil and energy, new energy vehicles

Development, more and more governments and the world's major carmakers attention. Develop three electric vehicles The key technology is the motor drive system consists of three parts, the vehicle control system and power management systems, steam current Automotive battery life is short-range, low battery life, high maintenance costs and popular, therefore, Power management technology for energy management and vehicle power battery protection control is becoming increasingly important. This article describes the electric vehicle battery management system The main function of the system and the development of domestic and foreign presentation Root of the problem, and introduces the principle of lead-acid batteries and key operating characteristics described Lead-acid battery remaining amount prediction model design and features of several projects, based on a lot of battery Charging and discharging of the experimental data, this design method is proposed to estimate the remaining battery power. The above functional requirements, the design proposed to use the main chip microcontroller, decentralized collection And centralized control solutions combine hardware, MCU selection,

动力电池总成维修手册

动力电池总成维修手册 【最新资料,WORD文档,可编辑】 江苏金坛绿能新能源科技有限公司 动力电池总成维修手册 版本与更改记载 版本号编制(修订)日期更改单号编制审核批准A/0 2015-08-07 /

目录 1.EV电池系统 1.1警告和注意事项 (3) 1.2维修工具 (3) 1.3规格和参数 (4) 1.4部件位置图 (5) 1.5系统概述 (5) 1.6工作原理 (6) 1.7一般检查 (8) 2.动力电池总成内部部件拆装分解图 2.1H-BMU主板及支架的拆装 (12) 2.2LECU从板及支架的拆装 (14) 2.3HVU粘连板及支架的拆装 (15) 2.4维修开关总成的拆装 (16) 2.5单体电池模组及加热片的拆装 (17) 2.6高压盒的拆装 (20) 3.常见故障排除方法 3.1车辆无法充电 (21) 3.2绝缘故障 (22) 3.3仪表数据显示异常 (22) 3.4车辆无法启动行驶 (23) 1、EV电池系统 1.1警告和注意事项 ?检修高压系统前,确保车辆充电接口已和外部高压电源连接断开。 ?在检修高压系统前,务必先断开12V蓄电池负极电缆,再拔下维修开关以断开高压动力电池电源。

?明确高压系统维修工作人员,维修时防止其他无关工作人员触摸车辆。 ?若高压系统维修不能在短时间内完成,不维修时需在高压系统部件上粘贴“高压危险”标签。 ?如果车辆严重受损,如动力电池变形、破损或裂开,未穿戴绝缘防护装备不能触碰车辆。 ?检修高压系统前,必须穿戴由绝缘防护设备组成的手套、鞋、护目镜等。 ?高压电线束和插头的颜色都是“橙色”。车辆维修工作时,不能随意触碰这些橙色部件。 ?断开高压部件后,立即用电工胶带或堵盖封堵线束连接器端口和高压部件端口。 ?保持动力电池箱的清洁和干燥。 ?处理蓄电池或蓄电池组时,保持不同电化学体系的电池单体、模块或系统相互隔离。 ?确认动力电池箱所有的高低压接插件连接状态无误后,才允许插上手动维修开关。 ?严禁在高压继电器闭合的情况下,检查维修动力电池箱,防止人员触电。 ?如果电池着火或者冒烟,立即使用干粉灭火器灭火。 ?务必按照正确的步骤拆卸动力电池箱,拆卸动力电池箱后须在专用区域妥善保管。 ?拆卸已损坏的动力电池箱(破损、漏电、变形)时,必须必须穿戴耐绝缘、酸碱腐蚀的手套、鞋、护目镜、工作服等。 ?保持动力电池箱存放区域通风、干燥,周围没有可燃物。同时周边应存放灭火设备、干沙等。 1.2维修工具 推荐工具 序号工具名称外形图说明 1 快速扳手及长短 接杆 拆装螺栓及螺母 2 绝缘安全鞋拆卸和安装高压部件 3 绝缘手套拆卸和安装高压部件

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力蓄电池包和系统测 试规程 电动汽车用锂离子动力电池包和系统测试规程 1范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008电工电子产品环境试验第2部分:试验方法试验Db交变湿热(12h+ 12h循环)(IEC 60068-2- 30:2005,IDT )

GB/T 2423.43-2008电工电子产品环境试验第2 部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006电工电子产品环境试验第2 部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001电动汽车安全要求第1部分: 车载储能装置(ISO/DIS 6469-1:2000,EQV ) GB/T 18384.3-2001电动汽车安全要求第3部分: 人员触电防护(ISO/DIS 6469-3:2000,EQV ) GB/T 19596-2004 电动汽车术语 (ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 1: Gen eral,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 3: Mecha ni cal loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

相关文档
最新文档