电路基本定律相量形式

合集下载

最新电工学电力学课程第八章《电路定律的相量形式》

最新电工学电力学课程第八章《电路定律的相量形式》



由相量形式KVL有 : V V 1 V 2 600 8090 (V)
(2)相量图解法
60 j80 10053.1 (V) 故 : |V | 100(V)
相量法的三个基本公式


UR RIR


U L jL IL

1
UC

j
C
IC
以上公式是在电压、电流关联参考方向的条件
错误的写法
1 u
C i
1
C

U I
(2) 容抗的绝对值和频率成反比。
0, XC , 直流开路( 隔直作用) ;
XC
, XC 0, 高频短路(旁路作用);

(3) 由于容抗的存在使电流领先电压。
4、受控源 如果受控源(线性)的控制电压或电流是正弦量, 则受控源的电压或电流将是同一频率的正弦量。
i 超前u 90° I
0
所示,反映电压电流瞬时 值关系的波形图如图(b)所示。由此图可以看出电容电流超 前于电容电压90°,当电容电压由负值增加经过零点时,其 电流达到正最大值。
容抗
I= CU
U 1
I C
容抗的物理意义:
X
C
定义

1
C
(1) 表示限制电流的能力;
相量关系
+
U R R I
U R
-
有效值关系:UR = RI 相位关系:u , i 同相
I
R
U
相量图
相量模型
2. 电感
时域
频域
i(t)
i(t) 2I cost
+ u (t)
u(t) L di(t)

电工基础5.3 电路基本定律的相量形式

电工基础5.3 电路基本定律的相量形式

结论:①电容元件电压电流大小关系为:
U 1 I
C
②电容元件电压电流相量关系为:
i
u


2
或i
u


2
即电流I超前电压U π/2.
3、容抗与容纳
(1)容抗Xc:表示电容对正弦电流得

1 单位为欧【姆】()
2f C
① ω=0,Xc→∞ 电容元件相当于开路 ② ω →∞ ,Xc=0 电容元件相当于短路
3、KVL在相量图上体现为——封闭多 边形。 三、电阻元件电压电流关系的相量形式: 1、电阻元件 (1)电阻元件时域 形式的电压与电流 关系:
u = Ri
图4-18电阻元件电压电流瞬时值关系
(2)电阻元件的相量形式:


U RI
结论:①电阻元件的电压与电流关系
U=RI 或 I=GU(G=1/R)

电感相当于短路
② 0, X L 0 电感相当于开路
(2)感纳: 表示电, X感L 对正弦电流的导通能力。
单位西【门子】(S)
BL

1 XL
故又得:

U jX L I


I jBL U
例4-6:已知0.5H的电感两端电压为
uL 220 2 sin(314t 30)V ,求:XL、BL和IL, 并画出相量图。
2、电容元件的相量形式



I jCU
U
1
jC

或U
1

I j
1

I
jC
C
证:2I
sin(t
i )

d dt
[

电工技术第四章正弦交流电路习题解答

电工技术第四章正弦交流电路习题解答

tωAi /A222032πtAi /A 2032π6πA102i 1i 第四章 正弦交流电路[练习与思考]4—1-1 在某电路中,()A t i 60 314sin 2220-=⑴指出它的幅值、有效值、周期、频率、角频率及初相位,并画出波形图。

⑵如果i 的参考方向选的相反,写出它的三角函数式,画出波形图,并问⑴中各项有无改变? 解:⑴ 幅值 A I m 2220有效值 A I 220=频率 3145022f Hz ωππ===周期 10.02T s f==角频率 314/rad s ω=题解图4。

01初相位 s rad /3πψ-=波形图如题解图4.01所示 (2) 如果i 的参考方向选的相反, 则At i ⎪⎭⎫ ⎝⎛+=32 314sin 2220π,初相位改变了,s rad /32πψ=其他项不变。

波形图如题解图 4.02所示。

题解图4。

024—1-2已知A)120314sin(101 -=t i ,A )30314sin(202+=t i⑴它们的相位差等于多少?⑵画出1i 和2i 的波形。

并在相位上比较1i 和2i 谁超前,谁滞后。

解:⑴ 二者频率相同,它们的相位差︒-=︒-︒-=-=1503012021i i ψψϕ+1+1(2)在相位上2i 超前,1i 滞后。

波形图如题解图4.03所示。

题解图4。

03 4—2—1 写出下列正弦电压的相量V )45(sin 2201 -=t u ω,)V 45314(sin 1002 +=t u 解:V U ︒-∠=•4521101 V U ︒∠=•4525024-2-2 已知正弦电流)A60(sin 81 +=t i ω和)A 30(sin 62 -=t i ω,试用复数计算电流21i i i +=,并画出相量图.解:由题目得到A j j j j I I I m m m ︒∠=+=-++=︒-︒+︒+︒=︒-∠+︒∠=+=•••1.231093.32.9)32.5()93.64()30sin 630cos 6()60sin 860cos 8(30660821 所以正弦电流为)A 1.23(sin 101 +=t i ω题解图4.04 相量图如题解图4.04所示。

基尔霍夫定律的相量形式.

基尔霍夫定律的相量形式.

电压相量,如图(c)所示,从相量图上容易看出各正弦电压
的相位关系。
值得注意的是回路中全部电压有效值之代数和并不一
定等于零,本题中 US=10U1+U2+U3=6+8+12=26
即一般说来
n
Uk 0
k 1Biblioteka 关于复数的几个公式1. 假设复数 c rθ a jb
则有 c a2 b2 θ arctan b a
uk (t) Re[U kme jt ] Re[ 2U k e jt ]
代入KVL方程中得到
n uk (t) n Re[Ukmejt ] 0
k 1
k 1
n
n
uk (t) Re[
2Uke jt ] 0
k 1
k 1
由于上式适用于任何时刻t,其相量关系也必须成立,
j ej180 cos180 jsin180 1 1 j2 ej180 1180
模型,图中各电流参考方向均与时域模型相同,仅将
时域模型中各电流符号 iS、i、i1、i2 用相应的相量符
号 IS、I、I1、I2 表示,并计算出电流相量 。
I1 1060 A
I2 5 90 A
列出图(b)相量模型中结点1的KCL方程,其相量形式

I I1 I2 0
§8-3 基尔霍夫定律的相量形式
一、基尔霍夫电流定律的相量形式
基尔霍夫电流定律(KCL)叙述为:对于任何集中参数 电路中的任一结点,在任何时刻,流出该结点的全部支路 电流的代数和等于零。其数学表达式为
n
ik (t) 0
k 1
假设电路中全部电流都是相同频率ω的正弦电流,则 可以将它们用振幅相量或有效值相量表示为以下形式

电路基础知识总结

电路基础知识总结

电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。

电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。

2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。

3.全电路欧姆定律:U=E-RI负载越小。

5.电路的断路与短路电路的断路处:I=0,U≠0 电路的短路处:U=0,I≠0 。

1.几个概念:支路:是电路的一个分支。

结点:三条(或三条以上)支路的联接点称为结点。

回路:由支路构成的闭合路径称为回路。

网孔:电路中无其他支路穿过的回路称为网孔。

(1)定义:任一时刻,流入一个结点的电流的代数和为零。

或者说:流入的电流等于流出的电流。

(2)表达式:i进总和=0 或:i进=i出(3)可以推广到一个闭合面。

3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。

或者说:在一个闭合的回路中,电压的代数和为零。

或者说:在一个闭合的回路中,电阻上的电位的概念(1)定义:某点的电位等于该点到电路参考点的电压。

(2)规定参考点的电位为零。

称为接地。

(3)电压用符号U表示,电位用符号V表示(4)两点间的电压等于两点的电位的差。

(5)注意电源的简化画法。

四.理想电压源与理想电流源1.理想电压源(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。

理想电压源的输出功率可达无穷大。

(2)理想电压源不允许短路。

2.理想电流源(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。

理想电流源的输出功率可达无穷大。

(2)理想电流源不允许开路。

3.理想电压源与理想电流源的串并联(1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。

(2)理想电压源与理想电流源并联时,电源两端的电压等于电压源的电压,电压源起作用。

4.理想电源与电阻的串并联(1)理想电压源与电阻并联,可将电阻去掉(断开),不影响对其它电路的分析。

5.3基本元件和定律的相量表示法

5.3基本元件和定律的相量表示法

(b)
电路分析基础
青岛黄海学院
例 2: 已知:I1= 4A,I2 = 3A,求I = ?
解法一: 设参考相量 U U0V
1 U I 1 U 0 I 10 40 R R
I
U
I1
I2 1 j C
R
I 2 j CU j CU jI 2 j3V
R
uR
u
uL uC
i 4Ω 2.4H 0.025F (a)
UR I UL
U L j LI j12 2 I j 24V
UC 1 j I j8 2 I j16V C
U

jωL
1 j C
UC
由KVL: U U R U L U C 8 j 24 j16 8 j8 8 245V u(t) = 16cos(5t + 45°) V
3.解方程
电路分析基础
青岛黄海学院
pC

iC O
电路分析基础
u
瞬时功率以2交变,有正有
2
t
负,一周期内刚好互相抵消。
青岛黄海学院
归纳: VAR相量形式
相量模型

相量图
I
UR
电阻
U R RI
+

UR
R

I
u= i
UL
I
+

U L j LI 1 电感 I UL j L
I I 1 I 2 4 j3 536.9 A
∴I = 5 A 解法二:画相量图
I I1 I 2

基本元件的相量形式(3)

基本元件的相量形式(3)

电流与电压同相
电工基础
三、电感元件的相量形式: 电感元件的相量形式:
i
L
Z L = ωL∠90 = jωL = j 2πfL
ɺ I
ZL
相量图
+
u

ɺ U
ϕi
ɺ I
+
ɺ U

i (t ) = I m sin(ωt + ϕi ) A u (t ) = U m sin(ωt + ϕ u )V
u(t ) = L ⋅
Q=
ωt
t
2 UC
XC
电 源
i 电

(var) : 电容元件 电
u
电工基础
例:求电流及电容元件的电压和无功功率,并画相量图。 求电流及电容元件的电压和无功功率,并画相量图。 ɺ ZC C = 10µF i C I
+
u
解: X C =
− u (t ) = 100 2 sin(1000t + 30 )V
ɺ UC
电工基础
u (t ) = U m sin(ωt + ϕ u )V
ϕ
ɺ I +1
电流与电压同相
ɺ I = I∠ϕi (A) ɺ U = U∠ϕ u (V )
ɺ U Z= ɺ = Z ∠ϕ z I
u(t ) = R ⋅ i(t )
= R ⋅ I m sin(ωt + ϕ i )
大小关系: 大小关系: m = R ⋅ I m U
ϕ z = ϕu − ϕi
电工基础
电感元件的功率: 电感元件的功率:
1)瞬时功率: 瞬时功率:
p ( t ) = u ( t )i ( t )

84 电路定律的相量形式

84 电路定律的相量形式
§8.4 电路定律的相量形式
一. 基尔霍夫定律的相量形式 正弦电流电路中的各支路电流和支路电压都
是同频正弦量,所以可以用相量法将KCL和KVL转 换为相量形式。

i(t) 0 I 0

u(t) 0 U 0
注:但一般 I 0 , U 0
二、电阻、电感和电容元件的VCR相量形式
1. 电阻
相量模型
IL IC IR
jLIL
1
jC
IC
U S
RIR
1
jC
IC
相量形式代数方程
相量模型:电压、电流用相量;元件用复数阻抗或导纳。
例8-6:正弦电流源的电流,其有效值IS=5A,角频率 ω=103rad/s, R=3Ω,L=1H,C=1μF。求电压uad和ubd。
ai
b
c
iS
+ uR - + uL - +
i(t)
+ uR(t) -
已知 i(t) 2I cos(t ) 则 uR (t) Ri(t) 2RI cos(t )
R
相量形式:
I I
U R RI I
相量关系
U R R I
+
U R
-
有效值关系:UR = RI
相位关系:u , i 同相
I
R
U
相量图
相量模型
2. 电感
时域
频域
i(t)
i(t) 2I cost
= 15 /0 °V


U L jL I = 5000 / 90°V

UC j
1

I
= 5000 / - 90 °V
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当 C一定时,电容的容抗与频率f 成反比。频率越高, 感抗越小,在直流电路中容抗为无限大,可视为开路。
2. 电压电流的相位关系
uUms iω nt
iImsiω nt (90 )
U mUm00 ImIm900
i uC
i 超前u
2
3. 电压电流的相量关系
ui u
i
UImm
p
(1)瞬时功率
p u U i( 1 c I2 o t)s
(2)平均功率
(有功功率)
0
PT 10 TpdtU IU R 2I2R
t
P=U I
t
四、电感元件的电压电流关系的相量式
设在电感元件的交流电路中
,电压、电流参考方向如图示。
+
1.电压电流的数值关系
ui L
瞬时值 设: iImsi nt
2. 电压电流的相位关系
iImsi nt ImIm00U mUm900 u+
u L I m co t U m s sit n 9 )( 0
u 超前i
eu 2 e滞后i
ui
u
i

e
i
e
L
2
3. 电压电流的相量关系
0
t

U Im mUIm m 09000U Im m900jXL

Um00 Im900
jXC
I
0
2

UjIXC
U
CHale Waihona Puke ItU• 相量图
3、功率
设:uU m sin t
iu
iIm si n t(90 ) 0
t
其波形图如右:
p
(1)瞬时功率
p u U i sI 2 i n t
+
+
(2)平均功率 P0
0

– t
电容不消耗功率, 是储能元件。
2
U•
U jIXL
+
U I

E
L 相量图

I E•
4. 功率
设:iIm sin t
ui
uU m si n t9 ()0
其波形图如右:
0
t
(1)瞬时功率
p
p u iU sI i2 n t +
+
(2)平均功率
P0
0

– t
(3Q)无U功I功X率LI2U XL 2

则 u L di
U 最 u m U 大 值 L Im I、 I m L 有L c 效II值m X o t L X L dU tm s s X感L抗it ( n L )9 )( 0 电最姆电流大定感有值律的效满形电值足式压、欧。与
感感抗抗当的越L大倒一,数定在称时直,为线流感圈电的纳路感中,抗感即与抗:频为B L率零f,X成1可L 正单视比为位。短:频路率西。越[门高子,]
因此,相量形式的KVL为:
对任一闭合回路满足

U 0
正弦电流用相量表示后,KCL仍然适用。
三、电阻元件电压电流关系的相量形式
设在电阻元件的交流电路中 ,电压、电流参考方向如图示。
1.电压电流的数值关系
+
ui R

则瞬值u 时 R 设 :R im i s ImsI i t i n U n tm sImi t In m00
电感不消耗功率, 是储能元件。
电感与电源之间能量交换的规模称为无功功
率。其值为瞬时功率的最大值,单位为(var) 乏。
五、电容元件的电压电流关系的相量形式
设在电容元件的交流电路中 ,电压、电流参考方向如图示。
1.电压电流的数值关系
i uC
瞬时值 设:uUms iω nt
则 i C du U 最m i大 值C Im ω 、CU 1有ωm 效c 值Im ω o XtC dt I s m s X容C抗ω i(t n 1C)9 ) (电最姆0 电流大定容有值律的效满形电值足式压、欧。与
第三节 电路基本定律的相量形式
一、KCL的相量形式
时域内KCL为 i 0
在正弦交流电路中,上式各项电流均为同频 率的正弦量。
因此,相量形式的KCL为: 对任一节点满足

I 0
正弦电流用相量表示后,KCL仍然适用。
二、KVL的相量形式
时域内的KVL为: u0
在正弦交流电路中,上式各项电压均为同频 率的正弦量。
电阻的电压 与电流瞬时
最大值、有效值 UmRIm 或
Um

U

U mUm00
R
值、有效值 、最大值都
Im I
满足欧姆定
2. 电压电流的相位关系
u 、i 同相
3. 电压电流的相量关系
律。
ui
u i
+
U I

R
U m I m

R

I 0 U
相量图
t
3、功率
u
i
+
u
R
0

i
u i U Im m ssi i n tn t
(3)无功功率
Q U IX C I2
电容与电源之间能量交换的规模称为无功功 率。其值为瞬时功率的最大值,单位为(var) 乏。
相关文档
最新文档