7向量法-电路定律的相量形式
最新电工学电力学课程第八章《电路定律的相量形式》

由相量形式KVL有 : V V 1 V 2 600 8090 (V)
(2)相量图解法
60 j80 10053.1 (V) 故 : |V | 100(V)
相量法的三个基本公式
UR RIR
U L jL IL
1
UC
j
C
IC
以上公式是在电压、电流关联参考方向的条件
错误的写法
1 u
C i
1
C
U I
(2) 容抗的绝对值和频率成反比。
0, XC , 直流开路( 隔直作用) ;
XC
, XC 0, 高频短路(旁路作用);
(3) 由于容抗的存在使电流领先电压。
4、受控源 如果受控源(线性)的控制电压或电流是正弦量, 则受控源的电压或电流将是同一频率的正弦量。
i 超前u 90° I
0
所示,反映电压电流瞬时 值关系的波形图如图(b)所示。由此图可以看出电容电流超 前于电容电压90°,当电容电压由负值增加经过零点时,其 电流达到正最大值。
容抗
I= CU
U 1
I C
容抗的物理意义:
X
C
定义
1
C
(1) 表示限制电流的能力;
相量关系
+
U R R I
U R
-
有效值关系:UR = RI 相位关系:u , i 同相
I
R
U
相量图
相量模型
2. 电感
时域
频域
i(t)
i(t) 2I cost
+ u (t)
u(t) L di(t)
电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法第8章 相量法● 本章重点1、正弦量的两种表示形式;2、相量的概念;3、KVL 、KCL 及元件VCR 的相量形式。
● 本章难点1、 正确理解正弦量的两种表示形式的对应关系;2、 三种元件伏安关系的相量形式的正确理解。
● 教学方法本章是相量法的基础,对复数和正弦量两部分内容主要以自学为主,本章主要讲授相量法的概念、电路定律的相量形式以及元件V AR 的相量形式。
讲述中对重点内容不仅要讲把基本概念讲解透彻,而且要讲明正弦量的相量与正弦时间函数之间的对应关系;元件V AR 的相量形式与时域形式之间的对应关系,使学生加深对内容的理解并牢固掌握。
本章对元件的功率和能量这部分内容作了简单讲解,以便为下一章的学习打下基础。
本章共用4课时。
● 授课内容8.1复数1. 复数的三种表示bj a A += 直角坐标=θ∠r 极坐标 =θj re 指数形式θθθsin cos 22r b r a ab arctgb a r ==⇒=+=⇒直极极直θθsin cos jr r A += 三角表示形式欧拉公式:θθθsin cos j e j +=2. 复数的运算已知:11111θ∠=+=r jb a A ,22222θ∠=+=r jb a A求:212121,,A AA A A A ⋅±i()()212121b b j a a A A ±+±=±212121212121θθθθ+∠=+∠=⋅r r A A r r A A 8.2正弦量一、正弦量:随时间t 按照正弦规律变化的物理量,都称为正弦量,它们在某时刻的值称为该时刻的瞬时值,则正弦电压和电流分别用小写字母i 、u 表示。
周期量:时变电压和电流的波形周期性的重复出现。
周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。
教学课件PPT电路定律的向量形式

i u
eL i
N L i
或
N L i i
u
L为线圈的电感(或自感),它是线圈 的结构参数。 进而:
eL
L
di u e L L dt
7.5 正弦交流电路的三种基本元件
二、正弦交流电路中的电感元件(Inductance)
1、瞬时分析 2、相量分析 3、相量电路 4、相量图 5、瞬时功率
容对电流的阻力情况,描述电容电路中电压、电流 有效值之间的关系,且只对正弦量有效。
I U C IX C C
7.5 正弦交流电路的三种基本元件
2、相量分析
i 2 I cos( t i ) 2 CU cos( t u u 2U cos( t u )
7.4
电路定律的相量形式
相量形式KCL
瞬时形式KCL ∑i=0
I 0
U 0
瞬时形式KVL
∑u=0
相量形式KVL
欧姆定律
u=Ri
相量形式
U RI
7.5 正弦交流电路的三种基本元件
7.5 正弦交流电路的三种基本元件
一、 正弦交流电路中的电阻元件
二、 正弦交流电路中的电感元件
i
u
i
R
根据 欧姆定律
u iR
2 RI cos t i ) (
则
u Ri
比较两个电压表达式得:
7.5 正弦交流电路的三种基本元件
结论:(1)U=RI
欧姆定律的有效值形式 电阻上电压、电流同相
(2) i u
u,i
0
t
7.5 正弦交流电路的三种基本元件
二、相量分析
84 电路定律的相量形式

一. 基尔霍夫定律的相量形式 正弦电流电路中的各支路电流和支路电压都
是同频正弦量,所以可以用相量法将KCL和KVL转 换为相量形式。
•
i(t) 0 I 0
•
u(t) 0 U 0
注:但一般 I 0 , U 0
二、电阻、电感和电容元件的VCR相量形式
1. 电阻
相量模型
IL IC IR
jLIL
1
jC
IC
U S
RIR
1
jC
IC
相量形式代数方程
相量模型:电压、电流用相量;元件用复数阻抗或导纳。
例8-6:正弦电流源的电流,其有效值IS=5A,角频率 ω=103rad/s, R=3Ω,L=1H,C=1μF。求电压uad和ubd。
ai
b
c
iS
+ uR - + uL - +
i(t)
+ uR(t) -
已知 i(t) 2I cos(t ) 则 uR (t) Ri(t) 2RI cos(t )
R
相量形式:
I I
U R RI I
相量关系
U R R I
+
U R
-
有效值关系:UR = RI
相位关系:u , i 同相
I
R
U
相量图
相量模型
2. 电感
时域
频域
i(t)
i(t) 2I cost
= 15 /0 °V
•
•
U L jL I = 5000 / 90°V
•
UC j
1
•
I
= 5000 / - 90 °V
C
•
第20讲 电路定律的相量形式、阻抗与导纳

频域
&L = I L∠φi I
& UL
有效值关系 UL=ω L IL
UL = ωLIL π φu = φi + 2
& IL
& U
+ L
π φ + = ωL I L∠ i 2
相位关系 uL 超前 iL 90° °
& U
jω L
L
相量模型
相量图
& IL
感抗 U=ω L I XL= U/I =ω L= 2π f L, 单位 欧 π , 单位: 感抗的物理意义: 感抗的物理意义: (1) 表示限制电流的能力; 表示限制电流的能力; (2) 感抗和频率成正比。 感抗和频率成正比。 XL
& U
φ = U∠ u
π φ + & I = ω C U∠ u 2
有效值关系 I=ω C U
+
I&
U&
1 jω C
& I
& U
相位关系 i 超前 90° 超前u °
-
相量模型
相量图
容抗 I=ω CU
U 1 = I ωC 容抗的物理意义: 容抗的物理意义:
1 XC = ωC
def
错误的写法 1 u = ωC i
θ = φu - φi
θ
R 阻抗三角形
X
具体分析一下 R-L-C 串联电路 Z=R+j(ω L-1/ω C)=|Z|∠
ω L > 1/ω C ,X>0, >0,u领先 ,电路呈感性; 领先i, , , 领先 电路呈感性; ω L<1/ω C ,X<0, <0,u落后 ,电路呈容性; 落后i, , , 落后 电路呈容性; ω L=1/ω C ,X=0, =0,u与i同相,电路呈电阻性。 同相, , , 与 同相 电路呈电阻性。
电路基本定律的相量形式

i
L
u
U IX L di jX L 则 uL X L L dt jL u 2 IL sin(t 90 )
jX C
i 2 I sin t
UI
I
u领先 i 90°
U I jX L
0
I2XL
设
i
C
u
iC
du dt
1 j C 1 j C
?
?
单一参数正弦交流电路的分析计算小结
电路 电路图 基本 参数 (正方向) 关系
i 复数 阻抗 设 电压、电流关系 瞬时值 有效值 相量图 相量式 功率 有功功率 无功功率
u 2U sin t
I
U IR
U
R
u
u iR
R
则
U IR
UI
0
i 2 I sin t
设
u、 i 同相
图 KVL的相量形式
回路的电压方程: 其KVL相量表达式为:
u1 u 2 u 3 u 4 0
U1 U 2 U 3 U 4 0
小 结
电路参数
R L
基本关系 复阻抗
u iR
R
I
U
U
电路参数
基本关系
复阻抗
电路参数
jX L j L
di uL dt
项目十九 电路基本定律的相量形式
电压、电流瞬时值的关系符合欧姆定律、基尔霍 夫定律 。
i
R
u
L
uR uL
u uR uL di iR L dt
电流、电压相量符合相量形式的欧姆定律、 基尔霍夫定律。
I
电路基本定律的相量形式.

所以电压表V的读数为
I I 0 U 1 50 0V (与电流同相) U 2 5090V(超前电流 90°)
50 2V
选定i、u1、u2 、u3的参考方向如图(b)所示, 则
U1 50 0V U 2 50 90V U 3 50 90V
基尔霍夫电压定律(KVL定律) 在正弦交流电路中, 在任一瞬间,从回路中任一点出发, 任一回路的各支路电压的 沿回路循行一周,则在这个方向上 相量的代数和为零,即 电位升之和等于电位降之和。 0 在任一瞬间,沿任一回路循行方向, U 回路中各段电压的代数和恒等于零。
即: U = 0
正弦交流电路中,一 个回路的各支路电压的相 量组成一个闭合多边形。 例如图所示,回路的电压 方程为:
U U U 0 U 1 2 3 4
5.2.4.2 习题练习
例1
如图(a)、 (b)所示电路中, 已知电流表A1、A2、A3都是 10 A, 求电路中电流表A的读数。
+ i
A i1 R i2 L
+ i
A i1 R i2 L i3 C
u A1 - A2
u A1 - A2
A3
(a )
(b )
解 设端电压
U U0V
(1) 选定电流的参考方向如图(a)所示, 则
I 1 10 0° A
(与电压同相)
I 2 10 90° A (滞后于电压90°)
10 90 10 2 45° I I 1 I 2 10 0° A
电流表A的读数为 10 2 A 注意: 这与直流电路是不同的, 总电流并不是20A。
7向量法-电路定律的相量形式

7电路定律的相量形式1. 电阻元件 VCR 的相量形式设图8.13(a)中流过电阻的电流为则电阻电压为:其相量形式:图8.13(a)以上式子说明:(1)电阻的电压相量和电流相量满足复数形式的欧姆定律:,图8.13(b)为电阻的相量模型图。
图 8.13( b )(2)电阻电压和电流的有效值也满足欧姆定律:U R = RI(3)电阻的电压和电流同相位,即:ψu = ψi电阻电压和电流的波形图及相量图如图8.14(a)和(b)所示。
图 8.14(a)(b)电阻的瞬时功率为:即瞬时功率以2ω交变,且始终大于零,如图8.14(a)所示,表明电阻始终吸收功率。
2. 电感元件 VCR 的相量形式设图 8.15(a)中流过电感的电流为则对应的相量形式分别为:图 8.15 ( a )( b )以上式子说明:(1)电感的电压相量和电流相量满足关系:,其中X L=ωL=2πfL ,称为感抗,单位为Ω(欧姆),图8.16(b)为电感的相量模型图。
(2)电感电压和电流的有效值满足关系:,表示电感的电压有效值等于电流有效值与感抗的乘积。
(3)电感电压超前电流相位,即:电感电压和电流的波形图及相量图如图8.16(a)和(b)所示。
注意:(1)感抗表示限制电流的能力;(2)感抗和频率成正比如图8.16(c)所示,当;电感电压和电流的波形图及相量图如图8.16(a)和(b)所示。
图 8.16 (a)(b)(c)电感的瞬时功率为:即电感的瞬时功率以 2ω交变,有正有负,如图8.16(a)所示。
电感在一个周期内吸收的平均功率为零。
3. 电容元件 VCR 的相量形式图 8.17 ( a )( b )设图8.17(a)中电容的电压为:则对应的相量形式分别为:以上式子说明:(1)电容的电压相量和电流相量满足关系:其中X C =1/ωC ,称为容抗,单位为Ω(欧姆),图8.17(b)为电容的相量模型图。
(2)电容电压和电流的有效值满足关系:,表示电容的电压有效值等于电流有效值与容抗的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7电路定律的相量形式
1. 电阻元件 VCR 的相量形式
设图8.13(a)中流过电阻的电流为
则电阻电压为:
其相量形式:
图8.13(a)
以上式子说明:
(1)电阻的电压相量和电流相量满足复数形式的欧姆定律:,图8.13(b)为电阻的相量模型图。
图 8.13( b )
(2)电阻电压和电流的有效值也满足欧姆定律:U R = RI
(3)电阻的电压和电流同相位,即:ψu = ψi
电阻电压和电流的波形图及相量图如图8.14(a)和(b)所示。
图 8.14(a)(b)
电阻的瞬时功率为:
即瞬时功率以2ω交变,且始终大于零,如图8.14(a)所示,表明电阻始终吸收功率。
2. 电感元件 VCR 的相量形式
设图 8.15(a)中流过电感的电流为
则
对应的相量形式分别为:
图 8.15 ( a )( b )
以上式子说明:
(1)电感的电压相量和电流相量满足关系:,其中X L=ωL =2πfL ,称为感抗,单位为Ω(欧姆),图8.16(b)为电感的相量模型图。
(2)电感电压和电流的有效值满足关系:,表示电感的电压有效值等于电流有效值与感抗的乘积。
(3)电感电压超前电流相位,即:
电感电压和电流的波形图及相量图如图8.16(a)和(b)所示。
注意:
(1)感抗表示限制电流的能力;
(2)感抗和频率成正比如图8.16(c)所示,当;电感电压和电流的波形图及相量图如图8.16(a)和(b)所示。
图 8.16 (a)(b)(c)电感的瞬时功率为:
即电感的瞬时功率以 2ω交变,有正有负,如图8.16(a)所示。
电感在一个周期内吸收
的平均功率为零。
3. 电容元件 VCR 的相量形式
图 8.17 ( a )( b )
设图8.17(a)中电容的电压为:
则对应的相量形式分别为:
以上式子说明:
(1)电容的电压相量和电流相量满足关系:
其中X C =1/ωC ,称为容抗,单位为Ω(欧姆),图8.17(b)为电容的相量模型图。
(2)电容电压和电流的有效值满足关系:,表示电容的电压有效值等于电流有效值与容抗的乘积。
(3)电容电压滞后电流相位,即:
电容电压和电流的波形图及相量图如图8.18(a)和(b)所示。
注意: 容抗和频率成反比如图8.18(c)所示,当,说明电容有隔断直流的作用,而高频时电容相当于短路。
图 8.18 ( a )( b )( c )电容的瞬时功率为:
即电容的瞬时功率以 2ω交变,有正有负,如图8.18(a)所示。
电感在一个周期内吸收的平均功率为零。
4. 基尔霍夫定律的相量形式
同频率的正弦量加减可以用对应的相量形式来进行计算。
因此,在正弦稳态电路中,KCL 和KVL可用相应的相量形式表示。
对电路中任一结点,根据KCL有,由于
得 KCL 的相量形式为:
同理对电路中任一回路,根据 KVL 有,
对应的相量形式为:
上式表明:流入某一节点的所有正弦电流用相量表示时仍满足 KCL ;而任一回路所有支路正弦电压用相量表示时仍满足 KVL 。
例8-7 图(a)所示电路中电流表的读数为:A1=8A ,A2=6A ,试求:
(1)若,则电流表 A0的读数为多少?
(2)若为何参数,电流表 A0的读数最大?I0max = ?
(3)若为何参数,电流表 A0的读数最小?I0min = ?
(4)若为何参数,可以使电流表A0=A1读数最小,此时表A2=?
例 8 — 7 图(a)(b)
解:(1)设元件两端的电压相量为参考相量,根据元件电压和电流相量的关系画相量图如图(b)所示,则:
(2)因为是电阻,所以当也是电阻时,总电流的有效值为两个分支路电流有效值之和,达到最大值:
(3)因为是电感元件,所以当是电容元件时,总电流的有效值为两个分支路电流有效值之差,达到最小值:
(4)是电感元件,所以当是电容元件时,满足
例8-8 电路如图(a)所示,已知电源电压,求电源电流i(t)
例 8 — 8 图(a)(b)
解:电压源电压的相量为:
计算得感抗和容抗值为:
电路的相量模型如图(b)所示。
根据 KCL 和元件的 VCR 的相量表示式得:
所以
例8-11 图(a)所示电路I1=I2=5A,U=50V,总电压与总电流同相位,求I、R、X C、X L。
例 8 — 11 图(a)(b)解:,根据元件电压和电流之间的相量关系得:
所以
因为:
令上面等式两边实部等于实部,虚部等于虚部得:
也可以通过画图(b)所示的相量图计算。