一环加成反应的定义
环加成反应简介

环加成反应摘要:环加成反应在有机合成中有非常重要的应用,其基础理论前线轨道理论也是有机化学中非常重要的理论。
本文主要简介环加成反应和前线轨道理论,并对前线轨道在环加成反应中的应用做简要介绍。
关键词:环加成反应前线轨道理论 Diels-Alder反应环加成反应(Cycloaddition Reaction)是两个共轭体系结合成环状分子的一种双分子反应, 它是由两个或多个不饱和化合物(或同一化合物的不同部分)结合生成环状加合物,并伴随有系统总键级数减少的化学反应。
这类反应是合成单环及多环化合物的一种重要方法。
有关环加成反应最早是德国化学家Diels与其学生Alder等在1928年通过环戊二烯与顺丁烯二酸酐发生[4+2]环加成实现的。
常见的环加成反应类型除[4+2]外,还包括[3+2], [2+2+2], [3+2+2], [4+2+2]等。
环加成反应的主要特点是可以将不饱和链状化合物直接转变成环状化合物,包括三元、四元到九元、十元环等,且原子利用率高。
在天然产物的全合成、药物化学等领域有着广泛的应用。
1、前线轨道理论简介前线轨道是由日本理论化学家福井谦一提出的,他指出化合物分子的许多性质主要出最高占据分子轨道相最低未占分子轨道所决定的。
凡是处于前线轨道的电子,可优先配对。
这对选择有机合成反应路线起决定性作用。
鉴于前线轨道理论对于有机化学发展的重要性,他获得了1981年的诺贝尔化学奖。
1.1 前线轨道的几个基本概念分子周围的电子云,根据能量的不同,可以分为不同的能级轨道,根据能量最低原理,电子优先排入能量低的轨道。
前线轨道理论中,将用HOMO表示;未占有电子的能量最低的轨道称之为最低占有轨道,用LUMO表示(如图1-1)。
有的共轭轨道中含有奇数个电子,它的最高已占有轨道只有一个电子,这种单电子占有的轨道称之为单占轨道,用SOMO表示。
在分子中,HOMO轨道对于电子的束缚最为薄弱,LUMO轨道对电子的吸引力最强,因而前线轨道认为,分子加发生化学反应,本质上就是HOMO轨道与LUMO轨道的相互作用,形成新的化学键的过程。
有机化学中的环状反应与环加成反应

有机化学中的环状反应与环加成反应有机化学是研究和描述碳元素及其化合物的科学领域。
其中,环状反应和环加成反应是有机化学中两个重要的反应类型。
本文将详细介绍这两种反应的定义、机理和应用。
一、环状反应环状反应是指在有机化合物中发生碳骨架内部原子间的键重组,形成一个稳定的环结构。
环状反应是有机化学中广泛研究的领域之一,可以应用于新型化合物的合成和现有化合物的转化。
1.1 环状反应的定义和示例:环状反应主要通过构建和打破碳-碳键来实现。
根据反应机理和所需的在环初始和末端上活化基团的类型,环状反应可以分为多种类型,如环合反应、环断裂反应、环转移反应等。
环合反应是最常见的环状反应之一,它通过两个或多个分子中的原子间形成新的碳-碳键和碳-异原子键,并形成一个稳定的环结构。
例如,迈克尔加成反应、多米诺反应等都属于环合反应。
这些反应可以合成具有复杂碳骨架的化合物,为药物合成和天然产物的合成提供了重要的方法。
1.2 环状反应的机理和应用:环状反应的机理多样,常见的有自由基机理、电子转移机理和质子转移机理等。
不同的机理涉及到不同的中间物和过渡态,通过控制反应条件和反应物的选择,可以实现不同类型的环状反应。
环状反应在有机化学中的应用广泛。
例如,它可以用于天然产物和药物的合成,如青霉素的合成就包括一系列的环状反应。
此外,环状反应还可以用于材料科学领域,如合成多孔材料、配位聚合物等。
二、环加成反应环加成反应是指在有机化合物中,一个或多个官能团与化学反应物中的另一个官能团发生加成反应,生成环状产物。
环加成反应在有机合成和天然产物的合成中具有重要的应用价值。
2.1 环加成反应的定义和示例:环加成反应主要通过不同官能团间的加成反应来实现。
常见的环加成反应有氧杂环的形成、环氮的形成等。
例如,环加成反应中的Diels-Alder反应是一种重要的环加成反应,通过共轭二烯与烯丙基等共轭化合物发生热力学控制的[4+2]加成反应,生成新的环状产物。
有机化学中的环加成反应

1: [2+2] 有机化学中的环加成反应1.基础:–两个烯烃(2p电子+2p电子)加成生成一个四元环–光照反应,加热不反应。
﹥因为两个分子反应生成一个新的化学键,这就需要填充轨道和未填充轨道间的相互作用。
对于热引发,烯烃分子的轨道如下:LUMOHOMO﹥因此就需要一个烯烃分子的HOMO轨道进入另一分子的LUMO轨道,而反键轨道的相互作用对于反应是不利的.+键和作用反键作用对加成反应不利﹥当用光源代替热源后,烯烃的电子结构发生变化,一个电子从HOMO轨道跃迁到LUMO 轨道:LUMOHOMO光(hv)新的HOMO单电子分子轨道(SOMO)激发态﹥含单电子的HOMO轨道可以和未激发烯烃的空的LUMO轨道相互作用(因为这种空轨道比激发态稳定所以有很多)+HOMO(激发的烯烃)LUMO(未激发烯烃)这种一个分子的两个轨道从同一面靠近与它反应的分子的反应叫做同侧加成。
[2+2]加成就是同面加成。
–为什么异测进攻不利?﹥反式进攻是一个分子的轨道加到与之相护作用的另一个分子的异侧。
顶部反式进攻﹥对于2+2加成反应反式进攻是最不可能的(如果这种反式进攻是可行的,那么对于热引发的[2+2]反应也是可行的。
但是由于垂直键不可能作用,这种跨环进攻是严重受阻的)2. 反应物和产物之间的结构关系–让我们看一下反-丁烯的二聚:“上”“上”“下”“下”–反-丁烯和顺-丁烯的反应:反式顺式“上”“下”“下”“下”–当有一个烯烃是环状时,顺式加成。
顺式 加成物3.例子!!!–第一个关于[2+2]环加成反应的报道G. Ciamician, P. Silber (1908):OO1年!香芹酮 香芹酮樟脑O –Paterno-Buchi反应。
有机化学中的环加成反应

1: [2+2] 有机化学中的环加成反应
1.
基础:
–两个烯烃(2p电子+2p电子)加成生成一个四元环
–光照反应,加热不反应。
﹥因为两个分子反应生成一个新的化学键,这就需要填充轨道和未填充轨道间的相互作用。
对于热引发,烯烃分子的轨道如下:
﹥因此就需要一个烯烃分子的HOMO轨道进入另一分子的LUMO轨道,而反键轨道的相
互作用对于反应是不利的.
﹥当用光源代替热源后,烯烃的电子结构发生变化,一个电子从HOMO轨道跃迁到LUMO轨道:
﹥含单电子的HOMO轨道可以和未激发烯烃的空的LUMO轨道相互作用(因为这种空轨道比激发态稳定所以有很多)
这种一个分子的两个轨道从同一面靠近与它反应的分子的反应叫做同侧加成。
[2+2]加成就
是同面加成。
Jeewoo Lim 1-2
–为什么异测进攻不利?
﹥反式进攻是一个分子的轨道加到与之相护作用的另一个分子的异侧。
﹥对于2+2加成反应反式进攻是最不可能的
(如果这种反式进攻是可行的,那么对于热引发的[2+2]反应也是可行的。
但是由于垂直键不可能作用,这种跨环进攻是严重受阻的)
2.反应物和产物之间的结构关系
–让我们看一下反-丁烯的二聚:
–反-丁烯和顺-丁烯的反应:
–当有一个烯烃是环状时,顺式加成。
顺式加成物
Jeewoo Lim 1-3
1.
例子!!!
–第一个关于[2+2]环加成反应的报道
香芹酮香芹酮樟脑
–Paterno-Buchi反应。
有机化学中的环状结构与环化反应机理的研究

有机化学中的环状结构与环化反应机理的研究有机化学是研究有机物的结构、性质和反应的学科。
在有机化学中,环状结构和环化反应机理是非常重要的研究领域。
本文将探讨有机化学中环状结构的形成以及环化反应的机理。
一、环状结构的形成在有机化学中,环状结构是由碳原子通过共价键连接而成的。
一般来说,环状结构的形成可以通过两种方式实现:环加成反应和环化反应。
环加成反应是指两个或多个分子中的原子通过共价键连接而形成一个环状结构。
常见的环加成反应有Diels-Alder反应和烯烃的环加成反应。
Diels-Alder反应是一种典型的环加成反应,它可以将一个烯烃与一个烯丙基化合物反应,形成一个六元环的产物。
这种反应具有高度的立体选择性和化学选择性,因此被广泛应用于有机合成中。
环化反应是指一个分子内部的原子通过重新排列和重新连接而形成一个环状结构。
常见的环化反应有环丙烷的环化反应和环己烷的环化反应。
环丙烷的环化反应是一种典型的环化反应,它可以将一个直链烷烃转化为一个环状结构。
这种反应通常需要催化剂的存在,催化剂可以加速反应速率并提高产率。
二、环化反应的机理环化反应的机理是指在环化过程中发生的化学变化和反应步骤。
环化反应的机理可以分为两类:分子内反应和分子间反应。
分子内反应是指环化反应发生在一个分子内部。
在分子内反应中,分子内的原子通过重新排列和重新连接而形成一个环状结构。
分子内反应的机理通常涉及中间体的形成和消除。
中间体是指在反应过程中暂时生成的化合物,它可以通过一系列的步骤转化为最终的产物。
分子内反应的机理通常受到环的大小、原子间的距离和电子密度的影响。
分子间反应是指环化反应发生在两个或多个分子之间。
在分子间反应中,两个或多个分子中的原子通过共价键连接而形成一个环状结构。
分子间反应的机理通常涉及中间体的形成和断裂。
中间体是指在反应过程中暂时生成的化合物,它可以通过一系列的步骤转化为最终的产物。
分子间反应的机理通常受到反应物的浓度、反应温度和反应物之间的相互作用力的影响。
周环反应理论解释

1
3 3,3-σ-迁移
1ˊ
3ˊ
2ˊ
2
1
3
1ˊ
3
2ˊ ˊ
周环反应的特征:
(1) 多中心的一步反应,不经过中间体如C+、C-、C•、:C 等,反应进行时
键的断裂和生成是同时进行的(协同的)。
CHO +
CHO
CH
(2) 反应的动力是加热(热能)或光照(光能),不受溶剂极性影响,不被 酸碱所催化,不受任何引发剂的引发。
分子轨道对称性守恒原理的表述:
协同反应的途径是由分子轨道对称性性质决定的—— 反应物与产物的轨道对称性相合时,反应易于发生(对称 性允许 ) ;不相合时,反应就难发生(对称性禁阻) 。
化学反应是分子轨道进行重新组合的过程,在一个协同反应 中,分子轨道的对称性是守恒的,即由原料到产物轨道的对 称性始终不变。
(3) 反应有显著的立体选择性,生成空间定向产物。
R hv
R
R
R
R
R = - COOCH3
R
(一) 分子轨道对称性守恒原理(Conservation of orbital symmetry)
1. 原理的提出:
1965年伍德沃德和霍夫曼(R . B . Woodward , R . Hoffmann)在 系统研究大量协同反应的试验事实的基础上从 量 子 化 学 的 分 子 轨 道 理 论 出 发提出了分子轨道对称性守恒原理。 1971年福井谦一 提出了完整的前线轨道(ontier orbital)理论。
前线轨道 (FMO)理论认为,在双分子光反应中,两 组分均为具有两个成单电子的激发态分子,单电子占据 的MO又称为SOMO,。故光照下的环加成方式为: 两组分能量较高的两个SOMO组合形成一个σ单键; 两组分能量较低的两个SOMO组合形成另一个σ单键。 两组分相互组合的SOMO必须具有相同的对称性且能量相 近才能重叠。若对称性不同则不能发生环加成反应
有机化学基础知识点整理加成反应与消除反应

有机化学基础知识点整理加成反应与消除反应有机化学基础知识点整理——加成反应与消除反应有机化学是研究有机化合物结构、性质和反应的科学领域。
在有机化学的学习过程中,了解并掌握基础知识点是非常重要的。
本文将从加成反应和消除反应这两个重要的知识点展开,分别介绍它们的定义、机理和应用。
一、加成反应1. 定义加成反应是指一个或多个原子、离子或分子与有机化合物中的共价键发生断裂,并与该有机化合物中的一个或多个原子、离子或分子发生加成生成一个或多个新的共价键的反应。
通常,加成反应中发生加成的原子、离子或分子会与有机化合物中的双键或三键发生反应。
2. 机理加成反应的机理可以分为电子云互相重叠和离域复合两种情况。
(1)电子云互相重叠在电子云互相重叠的机理下,加成反应通过共轭体系、非共轭体系或芳香体系的双键进行。
双键中的π电子与加成试剂之间形成新的σ键,从而形成新的化学键。
(2)离域复合在离域复合的机理下,加成试剂作为电子云的“捐赠者”,将其电子云提供给具有空轨道的有机化合物中,形成新的共价键。
3. 应用加成反应广泛应用于合成有机化合物和功能化合物领域。
例如,饱和烃的合成可以通过烯烃与氢气发生加成反应得到。
此外,加成反应还可以用于制备药物、功能材料和农药等化合物。
二、消除反应1. 定义消除反应是指有机化合物中的一个或多个原子、离子或分子与有机化合物中的一个或多个原子、离子或分子发生反应,并使得有机化合物中的共价键发生断裂,最终生成一个或多个新的共价键的反应。
2. 机理消除反应的机理可以分为分子内消除和分子间消除两种情况。
(1)分子内消除在分子内消除的机理下,反应中发生消除的两个反应物是同一个有机化合物中的不同官能团。
消除反应通常发生在具有位阻的碳原子上,形成双键或三键。
(2)分子间消除在分子间消除的机理下,反应中发生消除的两个反应物分别是不同的有机化合物。
其中,负电荷离子、阴离子或质子是中间体,从一个有机化合物转移到另一个有机化合物上,最终形成双键或三键。
有机化学反应类型概念

有机化学反应类型概念有机化学反应类型概念在有机化学中,各种不同类型的反应对于合成和转化有机分子非常重要。
以下是几种常见的有机化学反应类型和它们的相关概念:1. 加成反应•概念:加成反应是指两个或多个单体分子在一起形成一个大分子的反应。
•例子:醇的加成反应,如醇与酸的酯化反应。
2. 消除反应•概念:消除反应是指一个分子裂解成两个或更多小分子的反应。
•例子:脱水反应,如醇的脱水反应生成烯烃。
3. 取代反应•概念:取代反应是指一个原子或基团被另一个原子或基团取代的反应。
•例子:卤代烷的取代反应,如溴代烷与氯化钠反应生成氯代烷。
4. 缩合反应•概念:缩合反应是指两个或多个分子反应生成一个大分子的反应。
•例子:酰胺的缩合反应,如羧酸与胺反应生成酰胺。
5. 氧化还原反应•概念:氧化还原反应是指电荷转移的过程,涉及原子或离子的电子失去或获得。
•例子:醇的氧化反应,如醇与氧气反应生成醛或酮。
6. 环化反应•概念:环化反应是指分子内部的反应,使分子中的两个官能团形成一个环。
•例子:醇的酯化反应中的缩酮反应。
7. 开环反应•概念:开环反应是指分子内部的环被打开,生成线性结构的反应。
•例子:环醚的酸性开环反应,如环醚与酸反应生成醇。
8. 异构化反应•概念:异构化反应是指分子结构发生变化,但原子连接方式不变的反应。
•例子:己烯的异构化反应,如己烯的转位反应。
以上只是有机化学反应类型的一小部分例子,实际上有机化学领域中还有许多其他类型的反应。
通过深入理解这些反应的概念和原理,有机化学家可以设计和控制分子的合成和转化,为各种应用提供关键的有机化合物。
9. 氢化反应•概念:氢化反应是指分子中的不饱和键与氢气反应生成饱和键的反应。
•例子:烯烃的氢化反应,如乙烯与氢气反应生成乙烷。
10. 氨基化反应•概念:氨基化反应是指分子中的官能团与胺反应生成氨基化产物的反应。
•例子:羧酸的氨基化反应,如羧酸与胺反应生成酰胺。
11. 重排反应•概念:重排反应是指分子结构的重新排列,形成新的同分异构体的反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 周环反应和分子轨道 对称守恒原理
第二节 电环化反应 第三节 环加成反应 第四节 σ-迁移反应
第一节 周环反应和分子轨道对称守恒原理
一 周环反应概况简解 二 分子轨道对称守恒原理简解 三 前线轨道理论的概念和中心思想 四 直链共轭多烯π分子轨道的一些特点
一 周环反应概况简解
1. 定义
不受自由基引发剂和抑制剂的影响; 3. 反应条件一般只需要加热或光照,而且在加热条件下
得到的产物和在光照条件下得到的产物具有不同的立 体选择性,是高度空间定向反应。
3. 周环反应的主要反应类别:
电环化反应 环加成反应 σ-迁移反应
二 分子轨道对称守恒原理简解
分子轨道对称守恒原理的中心内容及内函:
四 前线轨道理论对电环化反应选择规则的证明
前线轨道理论认为: 一个共轭多烯分子在发生电环合反应时,必须掌握二项原则:
(1)电环化反应中,起决定作用的分子轨道是共轭多烯的 HOMO,反应的立体选择规则 主要取决于HOMO的 对称性。
(2)当共轭多烯两端的碳原子的P轨道旋转关环生成σ键 时,必须发生同位相的重叠(因为发生同位相重叠使 能量降低)。
1. 前线轨道和前线电子
已占有电子的能级最高的轨道称为最高占有轨道,用 HOMO表示。未占有电子的能级最低的轨道称为最低未 占有轨道,用LUMO表示。HOMO、LUMO统称为前线 轨道,处在前线轨道上的电子称为前线电子。
有的共轭体系中含有奇数个电子,它的已占有电子 的能级最高的轨道中只有一个电子,这样的轨道称为单 占轨道,用SOMO表示,单占轨道既是HOMO,又是 LUMO。
+
H +
Br
H
H
Br +
H
H2O -H+
OH Br
+
Cl 7 Br
21 3 H6
4 5H
外向对旋
H + Cl
H
第三节 环加成反应
一 环加成反应的定义、分类和表示方法 二 环加成反应的选择规则 三 前线轨道理论对环加成反应选择规则的
证明 四 环加成反应选择规则的应用实例 五 1,3-偶极环加成反应
一 环加成反应的定义、分类和表示
实例六 完成反应式并对反应情况作出解释
Ph
H
H
NN
+
-N2
Ph
+
H H
-N2
CH3O -
H
+
CH2
C CH Ph
H
CH2OCH3
Ph
H
CH3O -
+
H
CH2
Ph
H
H +
Ph
CH2 H
实例七 完成反应式并对反应情况作出解释
H + Br
H
Cl 7 Br
内向对旋 2 1
H2O
3 H6
4 5H
OH Br
1 定义 两个或多个带有双键、共轭双键或孤对
电子的分子相互作用,形成一个稳定的环状 化合物的反应称为环加成反应。
环加成反应的逆反应为环消除反应。
2. 分类和表示
根据每一个反应物分子所提供的反应电子数来分类
为奇数时,(n-1)/2为成键轨道,(n-1)/2为反键轨道,1个为 非键轨道。
第二节 电环化反应
一 电环化反应的定义 二 电环化反应描述立体化学过程的方法 三 电环化反应的选择规则 四 前线轨道理论对电环化反应选择规则的证明 五 电环化反应选择规则的应用实例
一 电环化反应定义
共轭多烯烃末端两个碳原子的π电子环合成一个σ键, 从而形成比原来分子少一个双键的环烯的反应及其逆反 应统称为电环化反应。
CH3 H
H CH3
h
CH3
H H CH3
H H
CH3 CH3
二 电环化反应描述立体化学过程的方法
R
R
R
R
R 顺时针顺旋
R 反时针顺旋
R 内向对旋
R 外向对旋
三 电环化反应的选择规则
共轭体系电子数
顺旋 对旋
4n+2
h
禁阻 允许
h
允许 禁阻
4n
h
允许 禁阻
h
禁阻 允许
共轭体系电子数是指链型共轭烯烃的电子数。 允许是指对称性允许,其含义是反应按协同机理进行时活化能较低。 禁阻是指对称性禁阻,其含义是反应按协同机理进行时活化能很高。
2. 前线轨道理论的中心思想
前线轨道理论认为:分子中有类似于单个原子的 “价电子”的电子存在,分子的价电子就是前线电子, 因此在分子之间的化学反应过程中,最先作用的分子 轨道是前线轨道,起关键作用的电子是前线电子。
这是因为分子的HOMO对其电子的束缚较为松弛, 具有电子给予体的性质,而LUMO则对电子的亲和力 较强,具有电子接受体的性质,这两种轨道最易互相 作用,在化学反应过程中起着极其重要作用。
化学反应是分子轨道重新组合的过程,分 子轨道的对称性控制化学反应的进程,在一 个协同反应中,分子轨道对称性守恒。(即 在一个协同反应中,由原料到产物,轨道的 对称性始终保持不变)。因为只有这样,才 能用最低的能量形成反应中的过渡态。
包括两种理论:前线轨道理论,能级相关理论
三 前线轨道理论的概念和中心思想
H
H
m=4
(7Z,顺)-二环[4.2.0]辛-7-烯
实例四:如何实现下列转换
CH3
H
?
CH3
H
CH3 H H CH3
CH3
H h
CH3 对
H
H
H3C CH3
顺
H
CH3 H H CH3
实例五:完成反应式并对反应情况作出解释
H
h
H
H热 H
顺
H H 不能存在
h
杜瓦苯
O
h
O
O
H H Pb(OAc)2 O OO
五 电环化反应选择规则的应用实例
实例一:完成下列反应式
CH3 H3C H
H
实例二:完成下列反应式
175oC
CH3 H CH3 H
CH3 H
H H3C
CH3
H
H+
CH3
主要产物
H CH3 CH3 H
实例三:完成反应式
H H
(CH2)m
E Z (Z,E)-1,3-环辛二烯
H
(CH2)m
H
m > 6 对正反应有利 m < 6 对逆反应有利
周环反应 在化学反应过程中,能形成环状过ቤተ መጻሕፍቲ ባይዱ态的协同反应。
协同反应 协同反应是指在反应过程中有两个或两个以上的化学 键破裂和形成时,它们都相互协调地在同一步骤中完成。
+
环状过渡态
2. 周环反应的特点:
1. 反应过程中没有自由基或离子这一类活性中间体产生; 2. 反应速率极少受溶剂极性和酸,碱催化剂的影响,也
四 直链共轭多烯的π分子轨道的一些特点
1. π分子轨道的数目与参与共轭体系的碳原子数是一致的。 2. 对镜面( δv)按对称--反对称--对称交替变化。对二重对
称轴(C2)按反对称--对称--反对称交替变化。 3. 结(节)面数由0→1→2…逐渐增多。 4 轨道数目n为偶数时,n /2为成键轨道,n /2为反键轨道。n