初中数学竞赛试题大全
初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
全国初中数学竞赛试题

全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。
【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。
在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。
求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。
【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。
求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。
【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。
【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。
随机抽取两个球,求两个球颜色相同的概率。
【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。
求不同的放法有多少种。
【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。
”- 乙说:“丙是说谎者。
”- 丙说:“甲和乙都是说谎者。
”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。
【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。
如果水池开始时是空的,求水池被填满的时间\( t \)。
【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。
初中数学竞赛题试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001……2. 已知a,b是实数,且a+b=0,则下列选项中错误的是()A. a和b互为相反数B. a和b都是0C. ab>0D. ab≤03. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是()A. 32cmB. 34cmC. 36cmD. 38cm4. 若x^2-4x+3=0,则x的值是()A. 1或3B. 2或3C. 1或2D. 2或45. 下列各式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a - 3b = 2(a - b)C. 2a + 3b = 2a + 3bD. 2a - 3b = 2a - 3b6. 已知函数f(x) = 2x - 1,则f(3)的值是()A. 5B. 6C. 7D. 87. 一个长方形的长是8cm,宽是5cm,则该长方形的对角线长是()A. 5cmB. 8cmC. 10cmD. 13cm8. 若a > b,且a + b = 0,则下列选项中正确的是()A. a < 0,b > 0B. a > 0,b < 0C. a = 0,b = 0D. 无法确定9. 下列各式中,分式有意义的条件是()A. 分子为0,分母为0B. 分子为0,分母不为0C. 分子不为0,分母为0D. 分子不为0,分母不为010. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 以上都是二、填空题(每题5分,共50分)11. 若a,b是实数,且a + b = 0,则ab的值是______。
12. 一个圆的半径是r,则该圆的周长是______。
13. 若x^2 - 4x + 3 = 0,则x^2 - 4x + 4的值是______。
14. 函数f(x) = 2x - 1的图象是一条______。
初中数学竞赛试题内容及答案

初中数学竞赛试题内容及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. ±4D. ±2答案:C3. 一个圆的半径是5厘米,那么它的直径是多少厘米?A. 10B. 15C. 20D. 25答案:A4. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C5. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是多少立方厘米?A. 24B. 12C. 6D. 8答案:B6. 如果一个角是直角的一半,那么这个角的度数是多少?A. 15°B. 30°C. 45°D. 60°答案:C7. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A8. 一个等腰三角形的底边长是10厘米,两腰相等,如果底角是45°,那么腰长是多少?A. 5B. 7.07C. 10D. 14.14答案:D9. 一个数的立方是-27,这个数是多少?A. -3B. 3C. -27D. 27答案:A10. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1D. 1/2答案:A二、填空题(每题2分,共20分)11. 一个数的平方加上8倍这个数再加上16等于0,这个数是______。
答案:-412. 如果一个三角形的三边长分别为3、4、5,那么这是一个______三角形。
答案:直角13. 一个数的立方根是2,那么这个数是______。
答案:814. 一个数的相反数是-5,这个数是______。
答案:515. 如果一个分数的分子是7,分母是14,化简后是______。
答案:1/216. 一个数的平方是25,那么这个数是______。
答案:±517. 一个数的绝对值是它本身,这个数是______。
2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是3. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π4. 以下哪个表达式的结果等于0?A. 3 - 3B. 2 × 0C. 5 ÷ 5D. 4 + 05. 如果一个角的补角是它的3倍,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°二、填空题(每题2分,共10分)6. 一个数的相反数是它本身的数是______。
7. 一个数的绝对值是它本身的数是非负数,那么这个数是______或______。
8. 一个三角形的内角和等于______度。
9. 如果一个数的平方根是它本身,那么这个数是______或______。
10. 一个数的立方等于它本身,这个数是______、______或______。
三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3 + 5) × (7 - 2)。
12. 计算下列表达式的值:(-2)³ - 3 × 2²。
13. 计算下列表达式的值:√(49) + √(16)。
14. 计算下列表达式的值:(-1)⁴ - 2²。
四、解答题(每题10分,共30分)15. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
16. 一个直角三角形的两条直角边分别是3厘米和4厘米,求它的斜边长度。
17. 一个数列的前三项是1,3,6,求这个数列的第四项。
五、证明题(每题25分,共25分)18. 证明:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,那么较小的锐角的度数是30°。
答案:一、选择题1. B2. D3. C4. A5. D二、填空题6. 07. 正数,08. 1809. 0,110. 0,1,-1三、计算题11. 6412. -813. 714. 3四、解答题15. 周长:(15 + 10) × 2 = 50厘米;面积:15 × 10 = 150平方厘米。
数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。
答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。
初中数学竞赛试题五份精选集合(含答案)

数学竞赛训练题一一.选择题(每小题6分,共36分) 1.如果100,0,log log 3x y x y y x >>+=, 144xy =,那么x y +的值是( ).203A .263B .243C .103D2. 设函数)10()(||≠>=-a a a x f x 且,f (-2)=9,则 ( ) A. f (-2)>f (-1) B. f (-1)>f (-2) C. f (1)>f (2) D. f (-2)>f (2)3.已知二次函数()f x 满足(1)(1),f x f x -=+4(1)1,f -≤≤-1(2)5,f -≤≤则(3)f 的取值范围是( )A.7(3)26f ≤≤ B. 4(3)15f -≤≤ C. 1(3)32f -≤≤ D.2825(3)33f -≤≤4.如图1,设P 为△ABC 内一点,且2155A P AB AC =+ ,则△ABP 的面积与△ABC 的面积之比为 ( ) A.15B.25C.14D.135. 设在x o y 平面上,20y x <≤,01x ≤≤所围成图形的面积为13,则集合{}{}2(,)|||||1,(,)|||1M x y y x N x y y x =-≤=≥+的交集M N ⋂所表示图形的面积是( ) A.31B. 23C. 1D. 436.方程20062007x y+=的正整数解(,)x y 的组数是( )A .1组 B. 2 组 C. 4组 D. 8组二.填空题(每小题9分,共54分)7.函数213()log (56)f x x x =-+的单调递增区间为 .8.已知02sin 2sin 5=α,则)1tan()1tan(0-+αα的值是_____________________.9.设{}n a 是一个等差数列,12119,3,a a ==记16n n n n A a a a ++=+++ ,则n A 的最小值为10.函数()f x 满足(1)1003f =,且对任意正整数n 都有2(1)(2)()()f f f n n f n +++= ,则(2006)f 的值为11..已知⎪⎩⎪⎨⎧≤+≥-≥03030y x y x y ,则x 2+y 2的最大值是12.对于实数x ,当且仅当n ≤x <n +1(n ∈N +)时,规定[x ]=n ,则不等式045][36][42<+-x x 的解集为三.解答题(每小题20分,共60分)13.设集合A =12log (3)2x x ⎧⎫⎪⎪-≥-⎨⎬⎪⎪⎩⎭,B =21ax x a ⎧⎫>⎨⎬-⎩⎭,若A ∩B ≠∅,求实数a 的取值范围.14.三角形ABC 的顶点C (,)x y 的坐标满足不等式2282,3x y y y +≤+≥.边AB 在横坐标轴上.如果已知点Q (0,1)与直线AV 和BC 的距离均为1,求三解形ABC 面积的的最大值.15.设函数()y f x =的定义域为R ,当0x <时,()1f x >,且对任意实数,x y ,有()()()f x y f x f y +=成立,数列{}n a 满足1(0)a f =且*11()().(2)n n f a n N f a +=∈--(1)求2008a 的值; (2)若不等式12111(1)(1)(1)21nk n a a a +++≥+ 对一切*n N ∈均成立,求k 的最大值.数学竞赛训练题一参考答案1.B 2.A 3.C 4.A 5.B 6.D 7. (,2)-∞- 8.23-.. 9.5710.1200711. 9 12. 82<≤x13. 解:a ∈(-1,0)∪(0,3)14.解:点C 在如图的弓形区域内.设1200(,0),(,0),(,)A a B a C x y ,由点Q 到直线AC ,BC 的距离等于1得2010********(2)20,(2)20.y a x a y y a x a y -+-=-+-=这说明12,a a 是方程2000(2)20y a x a y -+-=的2个根.所以220001212204[(2)]()4,(2)x y y AB a a a a y +-=+-=-这里0[3,4]y ∈.首先固定0y ,欲使AB 最大,需2209(1).x y =--因此当0[3,4]y ∈为某一定值时,点C 应位于弓形弧上.所以0000114262(3222ABC S AB y y y y ∆=⋅≤≤=-时取等号)115.(1)1,0,(1)(1)(0),(0) 1.(0)1x y f f f f a f =-=-=-=∴==∴∈∴1212212112112112112解:令得 当x>0时,-x<0,f(0)=f(x)f(-x)=1, 0<f(x)<1.设x ,x R,且x <x ,则x -x >0,f(x -x )<1,f(x )-f(x )=f(x )-f(x +x -x )=f(x )[1-f(x -x )]>0. f(x )>f(x ),函数y=111200812121()(2) 1.(12)(0),20.221,4015111(2)(1)(1)(1)21111(1)(1)(1)2111(1)(1n n n n n n n n nf a f a f an an f a a a a a n a k n a a a a a a n a +++--=∴+--=--=-=∴=-=+++≥++++≤+++n+1n f(x)在R 上是单调递减函数.1由f(a )=得f(-2-a )即由恒成立,知k 恒成立.设F(n)=212121)(1),21()0111(1)(1)(1)(1)23(1)2(1)1,(1)()()4(1)12()(1)33.nn a a n F n a a a F n n F n n F n F n F n n F n F +++>++++=+++=>+>+-∴≥=≤则且又即22所以,k 3,即k 的最大值为333数学竞赛训练题三一、选择题(本题满分36分,每小题6分)1.已知数列{a n }满足3a n +1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B CM (第2题图)中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛九年级预赛试题(本卷满分120分,考试时间120 分钟)一、选择题(本大题共6个小题,每小题5分,共30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分.1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )A .41 B .31 C .21 D .12.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( )A .38B .39C .40 D. 413.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则yx 的值等于( ) A .95B .59C .52011-D .92011- 4.已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )A .6B. 7 C .8D .95.设a ,b ,c 是△ABC 的三边长,二次函数22(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形 D6 照“先进后出”的原则,如图,堆栈(1)中的2 据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3 数据e ,d ,c ,取出数据的顺序是c ,d ,e ,现在要从这两个堆栈中取出5 个数据(每次取出1个数据),则不同顺序的取法的种数有( )A .5种B .6种C .10种D .12种(1) (第6题图)二、填空题(本大题共6个小题,每小题5分,共30分)7.若04122=---x x ,则满足该方程的所有根之和为 .8.(人教版考生做A ,在 ABCD 中,过A,B ,C 三点的圆交AD 于E ,且与CD 相切,若AB=4,BE =5,则DE 的长为 .8.(北师大版考生做)如图B ,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF= . 9.已知012=--aa ,且3222322324-=-++-axa a xa a ,则=x . 10.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有 件.11.如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC上,如果CD 与地面成o 45,∠A =o 60,CD =4m ,BC =)2264(-m ,则电线杆AB 的长为12.实数x 与y ,使得y x +,y x -,xy ,yx 四个数中的三个有相同的数值,则所有具有这样性质的数对),(y x 为 .3个小题,每小题20分,共60分)分) ))(())(()a x c x c x b x b ++++++是完全平方式.求证: c b a ==.14.(本题满分20分)如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M ,N 以每秒1个单位的速度分别从点A ,C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP .(1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ; (2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值?(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC面积的31?若存在,求出点T 的坐标;若不存在,请说明理由.(备用图)(第14题图)(第11题图)A B C D (第8题图A ) GF E CB A(第8题图B ) D15.(本题满分20分)对于给定的抛物线b ax x y ++=2,使实数p ,q 适合于)(2q b ap +=.(1)证明:抛物线q px x y ++=2通过定点;(2)证明:下列两个二次方程,02=++b ax x 与02=++q px x 中至少有一个方程有实数根.2013年全国初中数学竞赛试题考试时间 2013年3月17日 9:30-11:30 满分150分答题时注意:1.用圆珠笔或钢笔作答;2.2.解答书写时不要超过装订线;3.3草稿纸不上交。
一、选择题(共5个小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.设非零实数a 、b 、c 满足⎩⎨⎧=++=++0432032c b a c b a ,则222c b a cabc ab ++++的值为( ) (A) -21 ( B) 0 (C) 21(D) 12.已知a 、b 、c 是实常数,关于x 的一元二次方程02=++c bx ax 有两个非零实根,则下列关于x 的一元二次方程02=++c bx ax 中,以211x ,221x 为两个实根的是( ) (A) 0)2(2222=+-+a x ac b x c ( B) 0)2(2222=+--a x ac b x cO(C)0)2(2222=--+a x ac b x c (D) 0)2(2222=+--a x ac b x c 3,如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB,垂足为D ,DE ⊥OC,垂足为E ,若AD ,DB ,CD 的长度都是有理理数的为数,则线段OD 、OE 、DE ,AC 的长度中,不一定...是有( )(A) OD ( B) OE (C) DE (D) AC4、如图,已知△ABC 的面积为24,点D 在线段AC BC 上,且BC=4AF ,DCFE 是平行四边形,则图阴影部分(△的面积为( )。
(A) 3 ( B) 4 (C) 6 (D) 85.对于任意实数x ,y ,z ,定义运算“*”60)1()1(4533*333223-++++++=y x xy y x x y x ,且z y x z y x *)*(**=,则2013*2012*……*3*2的值为( ) (A)967607 ( B) 9671821 (C) 9675463 (D) 96716389二、填空题(共5小题,每小题7分,共35分)6.设33=a ,b 是2a 的小数部分,则3)2(+b 的值为7.如图,点D 、E 分别是△ABC 的边AC 、AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5则四边形AEFD 的面积是 。
8.已知正整数a 、b 、c 满足0222=--+c b a ,0832=+-c b a ,则a b c 的最大值为 。
9.实数a ,b ,c ,d 满足:一元二次方程02=++d cx x 的两根为a ,b ,一元二次方程02=++b ax x 的两根为c ,d ,则所有满足条件的数组(a ,b ,c ,d )为 。
10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元。
开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔。
三、解答题(共4题,每题20分,共80分)抛物线11.如图,抛物线32-+=bx ax y ,顶点为E ,该直线x 与轴交于A ,B 两点,与y 轴交于点C ,且OB=OC=3OA 。
131+-=x y 与y 轴交于点D ,求∠DBC-∠CBE.12.、设△ABC 的外心,垂心分别为O ,H ,若B ,C ,H ,O共圆,对于所有的△ABC ,求 ∠BAC 所有可能的度数。
13.设a ,b ,c 是素数,记a c b x -+=,b a c y -+=,c b a z -+=,当y z =2,2=-y x 时,a ,b ,c 能否构成三角形的三边长?证明你的结论。
14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数),求正整数n 的最小值,使得存在互不相同的正整数n a a a ,21 ⋯,满足任意一个正整数m ,在n a a a ,21⋯中都至少有一个为的m 魔术数。
2013年全国初中数学联赛江西预赛试题时间:2013年3月10日上午9:00-11:30 一、选择题(每小题7分,共6题,计42分)1、若n m n m nn m 、且,532-=同号,则222232654nmn m n mn m +-+-的值是( ) A 、7 B 、6 C 、5 D 、42、若△ABC 中,AB =26-,BC=2, △ABC 的面积是1,若∠B 是锐角,则∠ACB 的度数是( ) A 、30° B 、45° C 、60° D 、75°3、若097,09722=++=++b b a a ,ab ≠1, 则baa b-的值为( )ABCDEOA 、313B 、313- C 、313± D 、0 4、一块木板上钉有9枚铁钉,钉尖向上如图,用橡皮盘套住往其中4枚铁钉,构成一个平行四边形,共有套法( )A 、82B 、40C 、22D 、215一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,在正整数列中,从1开始数起,问第1990个“智慧数”是( ) A 、2663 B 、2664 C 、2665 D 、26266、能使方程mx 2 +2(2m-1)x+4(m-3)=0至少有一个整数解的正整数a 的值的个数有( ) A 、3 B 、4 C 、5 D 、6二、填空题(每题7分,共4小题,计28分) 7、如图:在△ABC 中,AB =9,BC=4,Q 为AC 的中点,P 为AB 边上一点,且∠APQ=90°+21∠B ,则BP 的长为______ 8、为了迎接2016年世界杯足球赛的到来,某足球协会举办胜一场 平一场负一场 积分 3 1 0 奖金(元/人)1500700500元,设A 队其中一名参赛队员所得的奖金与出场费的和为W 元,则W 的最大值是_________ 9、已知a 、b 、c 、d 是四个不同的实数,且(a+c )(a+d)=-2013,(b+c)(b+d)=-2013, 则(a+d)(b+d)=--_______10、已知⊙O 的半径为6,四边形ABCD 是圆内接四边形,对角线AC 与BD 交于点E,CE =1.2,若AC 是直径,且AD=BD ,则四边形ABCD 的周长是_______三、解答题(70分) 11、(满分20分)已知方程x 2+ax+2a+2=0有两个整数解,求a 的值。