等差数列综合应用
数列与等差数列的综合运用(四)

数列与等差数列的综合运用(四)数列和等差数列是数学中常见的概念,其在不同领域中的运用广泛而深入。
本文将介绍数列与等差数列在金融、物理、计算机科学和生物学中的应用,通过这些实际问题的探讨,我们可以更好地理解和应用数列与等差数列的知识。
一、金融领域的应用在金融领域中,数列与等差数列经常被用于计算利息、投资回报以及指数增长等问题。
一个常见的例子是贷款利息的计算。
假设某人向银行借了一笔钱,银行规定每月按照固定的利率计算利息。
此时,借款人每月的还款金额可以看作是一个等差数列,等差为本金加上利息。
通过计算等差数列的和,我们可以得到借款人在还完所有款项之前需要支付的总利息。
另外,等差数列还可以用于计算投资回报。
假设某人每年向某基金公司投资一定金额,并且该基金有一个固定的年回报率。
如果我们用等差数列来表示每年的投资额,并根据年回报率得到等差数列的公差,那么通过计算数列的和,我们可以得到多年后投资的总回报。
二、物理领域的应用在物理学中,等差数列用于描述运动的速度、距离和时间之间的关系。
例如,当一个物体做匀速直线运动时,其速度是恒定的,可以用等差数列来表示。
等差数列的项数即为运动所经过的时间,公差表示单位时间内所运动的距离。
通过计算等差数列的和,我们可以得到物体在特定时间内所运动的总距离。
类似地,如果我们已知物体在一段时间内的总距离和总时间,可以应用等差数列公式来推算出物体的平均速度。
三、计算机科学领域的应用在计算机科学中,数列与等差数列的运用几乎无处不在。
比如,在编写代码时,我们常常需要利用等差数列和数列的知识来解决问题。
例如,假设我们需要编写一个程序,计算从1到n的所有整数的和。
我们可以使用等差数列的和公式来快速计算这个和,避免使用循环结构逐个相加的方法。
此外,在算法设计中,我们经常需要对数据进行排序。
其中一种常见的排序算法是冒泡排序,如果我们将排序的过程中的中间结果作为数列,那么这个数列就是一个等差数列。
通过分析等差数列的特点,我们可以更好地理解和优化排序算法。
2.3.2等差数列的综合应用

2.3.2 等差数列的综合应用一、选择题1.数列-1( )AC 2.已知数列{a n }的前n 项和n s 满足:n m n m s s s +=+,且1a =1.那么10a =( )A .1B .9C .10D .553.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项的值是( )A .42B .45C .48D .514.数列{n a }中,()n a nn 1-=,则=++1021a a a ( ). A . 10 B .﹣10 C .5 D .﹣55.数列{a n }(*N n ∈),若前n 项的和10=n S ,则项数n 为( )A .10B .11C .120D .1216.在数列a 1,a 2,…,a n ,…的每相邻两项中插入3个数,使它们与原数构成一个新数列,则新数列的第69项 ( )(A) 是原数列的第18项 (B) 是原数列的第13项(C) 是原数列的第19项 (D) 不是原数列中的项7.将棱长相等的正方体按如右图所示的形状摆放, 从上往下依次为第1层, 第2层, 第3层……. 则第2005层正方体的个数是(A) 4011 (B) 4009 (C) 2011015 (D) 20090108.已知数列{}n a 满足12n n a a n +-=()n N +∈,13a =,则(A )0 (B (C (D )3 二、填空题9.设f (n )=1n ∈N *),则f (k +1)-f (k )=________. 10.数列{}n a 的通项公式为2n a n n λ=+,对于任意自然数(1)n n ≥都是递增数列, 则实数λ的取值范围为 .11.已知数列{}n a 的前n 项和是21n S n n =++,则数列的通项n a = 。
12.数列}{n a 中,11=a 为 。
三、解答题13.等差数列{}n a 的前n 项和记为n S .已知50,302010==a a ,(1)求通项n a ;(2)若242=n S ,求n ;14. 某长江抗洪指挥部接到预报,24小时后有一洪峰到达.为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第二道防线.经计算,除现有的部队指战员和当地干部群众连续奋战外,还需用20台同型号的翻斗车,平均每辆车要工作24小时才能完成任务.但目前只有一辆车投入施工,其余的需从附近高速公路上抽调,每隔20分能有一辆车到达,且指挥部最多还可调集24辆车,那么在24时内能否构筑成第二道防线?15、在等差数列{}n a 中,50,302010==a a ,求数列n 项和.。
等差数列与等比数列的综合应用题

等差数列与等比数列的综合应用题下面是2000字的文章,涉及到等差数列和等比数列的综合应用题。
等差数列和等比数列的综合应用题数列是数学中一个重要的概念,有着广泛的应用。
其中等差数列和等比数列是最常见的两种数列,它们在实际问题中有着丰富的应用。
本文将探讨其中一些有趣的综合应用题。
一、等差数列的综合应用1. 现有一连续数列,首项为a,公差为d,共有n项。
若已知该等差数列的和为Sn,则求出该数列的最后一项。
解析:根据等差数列的性质,我们知道等差数列的前n项和可以表示为Sn = (2a + (n-1)d) * n / 2。
将该式子中的Sn替换为已知的值,整理后得到一个关于未知数的一元二次方程,通过解方程,我们可以求得该数列的最后一项。
2. 小明上学迟到了,他每天比前一天迟到10分钟,第一天迟到15分钟,到第九天小明迟到多久?解析:这是一个等差数列的应用题,题目中已经给出了首项和公差,我们需要求出第九项。
根据等差数列的性质,我们知道第九项可以表示为a9 = a1 + (9-1)d。
将已知的值代入公式,计算得到小明第九天迟到了85分钟。
二、等比数列的综合应用1. 小明通过研究发现,他所在的城市每年的垃圾总量是前一年的1.5倍。
今年城市的垃圾总量为2000吨,请计算出5年后的城市垃圾总量是多少吨。
解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。
根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。
将已知的值代入公式,计算得到5年后的城市垃圾总量为3750吨。
2. 一颗植物的高度是前一天的2倍,已知第一天植物的高度为10厘米,请计算出第五天的植物高度。
解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。
根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。
《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
等差数列题目100道

等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差和等比数列的综合应用教案

教学过程一、复习预习师:这节课我们要运用等差、等比数列的概念、性质及有关公式,解决一些等差、数比数列的综合问题.(请学生叙述公式的内容并写在黑板上)生甲:等差、等比数列的通项公式分别是an=a1+(n-1)d,an=a1qn-1.生丙:等比数列的前n项和公式要分成q=1和q≠1两种情况来表示,即生丁:如果m,n,p,q都是自然数,当m+n=p+q时,那么在等差数列中有:am+an=ap+aq,在等比数列中有:am·an=ap·aq.师;在上述公式中,涉及到a1,n,d(q),an,Sn五个量,运用方程思想,已知其中三个量,就可以求另外两个量.二、知识讲解考点1:等差数列{an}的性质(1)am=ak+(m -k )d ,d=k m a a km --.(2)若数列{an}是公差为d 的等差数列,则数列{λan+b}(λ、b 为常数)是公差为λd的等差数列;若{bn}也是公差为d 的等差数列,则{λ1an+λ2bn}(λ1、λ2为常数)也是等差数列且公差为λ1d+λ2d.(3)下标成等差数列且公差为m 的项ak ,ak+m ,ak+2m ,…组成的数列仍为等差数列,公差为md.(4)若m 、n 、l 、k ∈N*,且m+n=k+l ,则am+an=ak+al ,反之不成立. (5)设A=a1+a2+a3+…+an ,B=an+1+an+2+an+3+…+a2n ,C=a2n+1+a2n+2+a2n+3+…+a3n ,则A 、B 、C 成等差数列.(6)若数列{an}的项数为2n (n ∈N*),则S 偶-S 奇=nd ,奇偶S S =n n aa 1+,S2n=n (an+an+1)(an 、an+1为中间两项);若数列{an}的项数为2n -1(n ∈N*),则S 奇-S 偶=an ,奇偶S S =n n 1-,S2n -1=(2n-1)an (an 为中间项).考点2:等比数列{an}的性质(1)am=ak·qm-k.(2)若数列{an}是等比数列,则数列{λ1an}(λ1为常数)是公比为q的等比数列;若{bn}也是公比为q2的等比数列,则{λ1an·λ2bn}(λ1、λ2为常数)也是等比数列,公比为q·q2.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,…组成的数列仍为等比数列,公比为qm.(4)若m、n、l、k∈N*,且m+n=k+l,则am·an=ak·al,反之不成立.(5)设A=a1+a2+a3+…+an,B=an+1+an+2+an+3+…+a2n,C=a2n+1+a2n+2+a2n+3+…+a3n,则A、B、C成等比数列,设M=a1·a2·…·an,N=an+1·an+2·…·a2n,P=a2n+1·a2n+2·…·a3n,则M、N、P也成等比数列.考点3:用函数的观点理解等差数列、等比数列1.对于等差数列,∵an=a1+(n-1)d=dn+(a1-d),当d≠0时,an是n的一次函数,对应的点(n,an)是位于直线上的若干个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为Sn,则Sn=pn2+qn(p、q∈R).当p=0时,{an}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:an=a1qn-1.可用指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等比数列{an}是递减数列.当q=1时,是一个常数列.当q<0时,无法判断数列的单调性,它是一个摆动数列.三、例题精析【例题1】.等比数列{an}的公比为q,则“q>1”是“对于任意自然数n,都有an+1>an”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】D【解析】当a1<0时,条件与结论均不能由一方推出另一方.【例题2】已知数列{a n}满足a n+2=-a n(n∈N*),且a1=1,a2=2,则该数列前2002项的和为A.0B.-3C.3D.1【答案】C【解析】由题意,我们发现:a1=1,a2=2,a3=-a1=-1,a4=-a2=-2,a5=-a3=1,a6=-a4=2,…,a2001=-a1999=1,a2002=-a2000=2,a1+a2+a3+a4=0.∴a1+a2+a3+…+a2002=a2001+a2002=a1+a2=1+2=3.四、课堂运用【基础】1.若关于x 的方程x 2-x +a =0和x 2-x +b =0(a ≠b )的四个根可组成首项为41的等差数列,则a +b 的值是 A.83B.2411C.2413D.7231【答案】D【解析】依题意设四根分别为a 1、a 2、a 3、a 4,公差为d ,其中a 1=41,即a 1+a 2+a 3+a 4=1+1=2.又a 1+a 4=a 2+a 3,所以a 1+a 4=a 2+a 3=1.由此求得a 4=43,d =61,于是a 2=125,a 3=127.故a +b =a 1a 4+a 2a 3=41×43+125×127=14462=7231.2.在等差数列{a n}中,当a r=a s(r≠s)时,数列{a n}必定是常数列,然而在等比数列{a n}中,对某些正整数r、s(r≠s),当a r=a s时,非常数列{a n}的一个例子是___________________.【答案】a,-a,a,-a…(a≠0)【解析】只需选取首项不为0,公比为-1的等比数列即可.【巩固】1.等差数列{a n}中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于___________________.【答案】4【解析】设a1,a3,a11成等比,公比为q,a3=a1·q=2q,a11=a1·q2=2q2.又{a n}是等差数列,∴a11=a1+5(a3-a1),∴q=4.2、已知{a n}是等比数列,a1=2,a3=18;{b n}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.(1)求数列{b n}的通项公式;(2)求数列{b n}的前n项和S n的公式;(3)设P n=b1+b4+b7+…+b3n-2,Q n=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较P n与Q n的大小,并证明你的结论.【答案】见解析【解析】(1)设{a n }的公比为q ,由a 3=a 1q 2得q 2=13a a =9,q =±3. 当q =-3时,a 1+a 2+a 3=2-6+18=14<20, 这与a 1+a 2+a 3>20矛盾,故舍去.当q =3时,a 1+a 2+a 3=2+6+18=26>20,故符合题意. 设数列{b n }的公差为d ,由b 1+b 2+b 3+b 4=26得4b 1+234⨯d =26. 又b 1=2,解得d =3,所以b n =3n -1. (2)S n =2)(1n b b n +=23n 2+21n .(3)b 1,b 4,b 7,…,b 3n -2组成以3d 为公差的等差数列, 所以P n =nb 1+2)1(-n n ·3d =29n 2-25n ; b 10,b 12,b 14,…,b 2n +8组成以2d 为公差的等差数列,b 10=29,所以Q n =nb 10+2)1(-n n ·2d =3n 2+26n . P n -Q n =(29n 2-25n )-(3n 2+26n )=23n (n -19).所以,对于正整数n ,当n ≥20时,P n >Q n ; 当n =19时,P n =Q n ; 当n ≤18时,P n <Q n .【拔高】1、已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对任意正整数n 均有11b c +22mb c +323b mc +…+nn nb mc 1 =(n+1)an+1成立,其中m 为不等于零的常数,求数列{cn}的前n 项和Sn.【答案】(1)a n =2n -1(n =1,2,3,…),b n =3n -1(n =1,2,3,…).(2)S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m m【解析】(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2.∵a 1=1,解得d =2(d =0不合题意舍去), ∴a n =2n -1(n =1,2,3,…).由b 2=a 2=3,b 3=a 5=9,易求得b n =3n -1(n =1,2,3,…). (2)当n =1时,c 1=6; 当n ≥2时,nn n b mc 1-=(n +1)a n +1-na n =4n +1,∴c n =(4n +1)m n -1b n =(4n +1)(3m )n -1.∴c n =⎩⎨⎧+-1)3)(14(6n m n .,4,3,2,1⋅⋅⋅==n n 当3m =1,即m =31时, S n =6+9+13+…+(4n +1)=6+2)149)(1(++-n n=6+(n -1)(2n +5)=2n 2+3n +1. 当3m ≠1,即m ≠31时, S n =c 1+c 2+…+c n ,即S n =6+9·(3m )+13·(3m )2+…+(4n -3)(3m )n -2+(4n +1)(3m )n -1.①3mS n =6·3m +9·(3m )2+13·(3m )3+…+(4n -3)(3m )n -1+(4n +1)(3m )n .② ①-②得(1-3m )S n =6+3·3m +4·(3m )2+4·(3m )3+…+4·(3m )n -1-(4n +1)(3m )n =6+9m +4[(3m )2+(3m )3+…+(3m )n -1]-(4n +1)(3m )n=6+9m +m m m n 31])3()3[(42---(4n +1)(3m )n .∴S n =m m n m n 31)3)(14(96-+-++22)31(])3()3[(4m m m n --.∴S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m mcb d a cba c bc a c b a cad a a cd cd d c c d cdd c cd d c >∴>>>>∴>>>>>∴>>>∴>-=-∴>>->∴>>,0d 21)2(,0,01,0)1(,0,0,011,011,01,0,0,0)得)(由(又又课程小结等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a1,d(q),充分运用方程、函数、转化等数学思想方法,合理调用相关知识,这样,任何问题都不能把我们难倒.课后作业【基础】1.在等比数列{a n }中,a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是A.abB.22abC.ab 2 D.2ab【答案】C【解析】 由等比数列的性质得三个和成等比数列,由等比中项公式可得选项为C. 【巩固】2.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21221)(b b a a ⋅+的取值范围是___________________.【答案】[4,+∞)或(-∞,0]【解析】在等差数列中,a 1+a 2=x +y ;在等比数列中,xy =b 1·b 2.∴21221)(b b a a ⋅+=y x y x ⋅+2)(=y x y xy x ⋅++222=y x +x y +2.当x ·y >0时,y x +x y≥2,故21221)(b b a a ⋅+≥4;当x ·y <0时,y x +x y≤-2,故21221)(b b a a ⋅+≤0.答案:[4,+∞)或(-∞,0]【拔高】3.已知数列{a n }中,a 1=65且对任意非零自然数n 都有a n +1=31a n +(21)n +1.数列{b n }对任意非零自然数n 都有b n =a n +1-21a n .(1)求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式.【答案】见解析【解析】(1)证明:b n =a n +1-21a n =[31a n +(21)n +1]-21a n =(21)n +1-61a n ,b n +1=(21)n +2-61a n +1=(21)n +2-61[31a n +(21)n +1]=21·(21)n +1-181a n -61·(21)n +1=31·(21)n +1-181a n =31·[(21)n +1-61a n ], ∴n n b b 1+=31(n =1,2,3,…). ∴{b n }是公比为31的等比数列. (2)解:∵b 1=(21)2-61a 1=41-61·65=91,∴b n =91·(31)n -1=(31)n +1.由b n =(21)n +1-61a n ,得(31)n +1=(21)n +1-61a n ,解得a n =6[(21)n +1-(31)n +1].5.设{a n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3,分别求出{a n }及{b n }的前10项的和S 10及T 10.解:设公差为d ,公比为q ,由题意知⎪⎩⎪⎨⎧=+=+,21,4242q d q d∴⎪⎪⎩⎪⎪⎨⎧=-=22,83q d 或⎪⎪⎩⎪⎪⎨⎧-=-=.22,83q d ∴S 10=10+2910⨯(-83)=-855. 当q =22时,T 10=32)22(31+;当q =-22时,T 10=32)22(31-.=a +b ab -2ab2a +b=ab a -b 2a +b>0,∴C >D ,∴A >B >C >D .。
等差数列和等比数列的综合应用

1等差数列和等比数列的综合应用1.等差数列的常用性质:⑴ m ,n ,p ,r ∈N *,若m +n =p +r ,则有 .⑵ {a n }是等差数列, 则{a kn } (k ∈N *,k 为常数)是 数列. ⑶ S n ,S 2n -S n ,S 3n -S 2n 构成 数列.2.在等差数列中,求S n 的最大(小)值,关键是找出某一项,使这一项及它前面的项皆取正(负)值或0,而它后面的各项皆取负(正)值.⑴ a 1> 0,d <0时,解不等式组 ⎩⎨⎧<≥+001n n a a 可解得S n 达到最 值时n 的值. ⑵ a 1<0,d>0时,解不等式组⎪⎩⎪⎨⎧可解得S n 达到最小值时n 的值.3.等比数列的常用性质:⑴ m ,n ,p ,r ∈N *,若m +n =p +r ,则有 . ⑵ {a n }是等比数列,则{a 2n }、{na 1}是 数列. ⑶ 若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 构成 数列. 4.求数列的前n 项和,一般有下列几种方法: (1).等差数列的前n 项和公式: S n = = .(2).等比数列的前n 项和公式: ① 当q =1时,S n = . ② 当q≠1时,S n = .(3).倒序相加法:将一个数列倒过来排列与原数列相加.主要用于倒序相加后对应项之和有公因子可提的数列求和.(4).错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.例1. 数列{a n }的前n 项和S n ,且a 1=1,a n +1=31S n ,n =1,2,3…… 求:⑴ a 2、a 3、a 4的值及{a n }的通项公式;⑵ a 2+a 4+a 6+…+a 2n 的值.2解析:(1)由a 1=1,a n +1=31S n ,n =1,2,3,…得a 2=31S 1=31a 1=31,a 3=31S 2=31(a 1+a 2)=94,a 4=31S 3=31(a 1+a 2+a 3)=2716 由a n +1-a n =31(S n -S n -1)=31a n (n≥2),得a n +1=34a n (n≥2),又a 2=31,∴a n =31·(34)n -2(n≥2)∴ {a n }通项公式为a n =⎪⎩⎪⎨⎧≥⋅=-2)34(31112n n n(2) 由(1)可知a 2、a 4、…a 2n 是首项为31,公比为(34)2,项数为n 的等比数列.∴ a 2+a 4+a 6+…+a 2n =31×22)34(1)34(1--n =73[(34)2n -1] 变式训练1.设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,......3,2,1=n 求首项1a 与通项n a 。
数列的综合应用

数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。
数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。
本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。
一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。
数列是按照一定规律排列的一组数,其中每个数称为数列的项。
根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。
1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。
等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。
等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。
1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。
首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。
因此,这辆汽车在5个小时内共行驶了75公里。
2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。
首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。
因此,这名学生前10次数学考试的总分为875分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六课时 等差数列综合应用
【知识与技能】进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题,会利用等差数列通项公式和前n 项和公式研究S n 的最值,初步体验函数思想在解决数列问题中的应用;掌握裂项相消法求数列的和. 【重点难点】
重点:等差数列前n 项和公式的掌握与应用,裂项相消法求数列的和. 难点:灵活运用求和公式解决问题. 【教学过程】 一、要点梳理
1.等差数列通项公式:
*11(1)()n a a n d dn a d n N =+-=+-∈,首项:1a ,公差:d ,末项:n a
变形公式:d m n a a m n )(-+=;m
n a a d m
n --=;
2.等差数列的前n 项和公式:
1()2n n n a a S +=
1(1)2n n na d -=+211
()22
d n a d n =+-2An Bn =+ (其中A B 、是常数,当0d ≠时,n S 是二次项系数为d
2
,图象过原点的二次函数.)
3.等差数列的性质
(1)等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;
(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列;
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有
2m n p a a a +=;
(4)等差数列{a n }中,其前n 项和为S n ,则{a n }中连续的n 项和构成的数列S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…构成等差..
数列; (5)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和.
若当项数为偶数n 2时,
()11=n n n n S S na na n a a nd ++-=-=-偶奇,11
n n n n S na a S na a ++==奇偶 若当项数为奇数12+n 时,
21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨
-==⎪⎪⎩⎩
n+1n+1
奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为21n +的等差数列的中间项);
(6){}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n A f n B =,则()2121
=21n n n n a A
f n b B --=-;
(7)若m S n =()n S m m p =≠,则m n S += ;
(8)若(),m p m p S S m p S +=≠=则 . 4.求n S 的最值
法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*
n N ∈。
法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和。
即当
,
,001<>d a 由⎩⎨⎧≤≥+0
1n n a a 可得n S 达到最大值时的n 值.(2)“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
即 当,,001><d a 由⎩⎨⎧≥≤+00
1
n n a a 可得n S 达到最小
值时的n 值.或求{}n a 中正负分界项。
法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n
取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。
若p q S S = 则其对称轴为
2
p q
n +=。
5.等差数列的判定方法
(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*
∈N n )⇔ {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
二、合作探究
类型1 等差数列前n 项和的性质
【例1】(1)在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20=________. (2)有一个共有100项的等差数列,其奇数项与偶数项之和分别为100和200,则公差d =________.
【练习1】等差数列{a n }的前m 项和为30,前2m 项和为100,求它的前3m 项的和.
【练习2】若n S 表示等差数列的前n 项和,481
3S S =,则816
S S = .
【练习3】在等差数列{}n a 中,10100100,10,S S ==则110S = .
【练习4】在等差数列{}n a 中,10100,S S =则110S = .
【练习5】已知两个等差数列{}n a 和{}n b 的前n 项和分别为,n n A B ,且
745
3
n n A n B n +=
+,则
使得n
n
a b 为整数的正整数n 的个数为 .
【练习6】设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95
S
S = . 类型2 等差数列前n 项和的最值问题 【例2】数列{a n }是等差数列,a 1=50,d =-0.6. (1)从第几项开始有a n <0; (2)求此数列的前n 项和的最大值.
【练习】等差数列{a n }中,a 1<0,S 9=S 12,该数列前多少项和最小?
类型3 裂项相消法求数列的和
【例3】等差数列{a n }中,a 1=3,公差d =2,S n 为前n 项和,求1S 1+1S 2+…+1
S n .
小结:1.若数列{a n }是等差数列,公差为d (d ≠0),则和式T n =1a 1a 2+1a 2a 3+1a 3a 4+…+
1
a n -1a n 可用裂项法求和,具体过程如下:∵1a n -1·a n =1d (1a n -1-1a n ),∴T n =1d [(1a 1-1a 2)+(1a 2-1
a 3)+…+
(1a n -1-1a n )]=1d (1a 1-1a n )=n -1a 1a n ;2.常用到的裂项公式有如下形式:(1)1n (n +k )=1k (1n -1
n +k );
(2)
1n +k +n =1
k
(n +k -n ).
【练习】本例中若把条件改为“a 1=1,d =1”,其他都不变,试求解之.
类型4 等差数列的综合应用
【例4】在数列{a n }中,a 1=2,a n =2a n -1+2n +
1(n ≥2,n ∈N *).
(1)若b n =a n
2
n ,求证:{b n }是等差数列;
(2)在(1)的条件下,设C n =1
b n b n +1,求{C n }的前n 项和T n .
三、课时小结与作业
1.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )
A .8
B .7
C .6
D .5
2.(2013·西安高二检测)已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,S 17<0,则当S n 最大时n 的值为( )
A .8
B .9
C .10
D .16 3.(2013·郑州高二检测)已知等差数列{a n }中,|a 5|=|a 9|,公差d >0,则使得前n 项和S n 取得最小值时的正整数n 的值是( )
A .4和5
B .5和6
C .6和7
D .7和 8 4.已知数列{a n }是通项a n 和公差都不为零的等差数列,设S n =1a 1a 2+1
a 2a 3+…+
1
a n a n +1,则S n 等于( ) A.
n a 1a n +1 B.n
a 1a n C.n -1a 1a n
D.n -1a 1a n +15.已知一个等差数列{a n }的前12项的和为354,前12项中偶数项的和S 偶与前12项中奇数项的和S 奇之比为32
27,求此数列的公差d . 6.已知等差数列{a n }中,a 1=9,a 4+a 7=0. (1)求数列{a n }的通项公式;
(2)当n 为何值时,数列{a n }的前n 项和取得最大值? 7.设数列{a n }满足a 1=0,且11-a n +1-1
1-a n
=1.
(1)求{a n }的通项公式; (2)设b n =
1-a n +1
n
,记S n =b 1+b 2+b 3+…+b n . 证明:S n <1.。