2.4.2何时获得最大利润上课课件
合集下载
《何时获得最大利润》教学课件

2.6 何时获得最大利润
复习提问
1. 二次函数y=a(x-h)2+k的图象是一条抛物线, 二次函数 的图象是一条 直线x=h ,顶点坐标是 (h,k) . 它的对称轴是 直线
b 直 x =− 线 它的对称轴是 2a,顶点坐是
4ac −4a ;当
2 . 二次函数 二次函数y=ax2+bx+c的图象是一条抛物线 , 的图象是一条 2
2.某旅行社组团去外地旅游,30人起组团, 某旅行社组团去外地旅游, 人起组团 人起组团, 某旅行社组团去外地旅游 每人单价800元。旅行社对超过30人的团 元 旅行社对超过 人的团 每人单价 给予优惠,即旅行团每增加一人, 给予优惠,即旅行团每增加一人,每人的 单价就降低10元 单价就降低 元。当一个旅行团的人数是 多少时,旅行社可以获得最大营业额? 多少时,旅行社可以获得最大营业额?
解:设一个旅行团有x人时,旅行社营业额为y元. 设一个旅行团有x人时,旅行社营业额为y 则 y=〔 800-10(30y=〔 800-10(30-x) 〕·x =-10x2+1100x =-10(x-55)2+30250 10(x∴当x=55时,y最大=30250 x=55时 答:一个旅行团有55人时,旅行社可 一个旅行团有55人时, 55人时 获最大利润30250 30250元 获最大利润30250元
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 某果园有100棵橙子树,每一棵树平均结600个橙子. 100棵橙子树 600个橙子 现准备多种一些橙子树以提高产量, 现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计,每多种一棵树, 会减少.根据经验估计,每多种一棵树,平均每棵树 就会少结5个橙子. 就会少结5个橙子. 如果增种x棵树 果园橙子的总产量为y 棵树, 如果增种 棵树,果园橙子的总产量为 那么y与 之间的关系式为 之间的关系式为: 个,那么 与x之间的关系式为: 那么 y=(600-5x)(100+x )=-5x²+100x+60000
复习提问
1. 二次函数y=a(x-h)2+k的图象是一条抛物线, 二次函数 的图象是一条 直线x=h ,顶点坐标是 (h,k) . 它的对称轴是 直线
b 直 x =− 线 它的对称轴是 2a,顶点坐是
4ac −4a ;当
2 . 二次函数 二次函数y=ax2+bx+c的图象是一条抛物线 , 的图象是一条 2
2.某旅行社组团去外地旅游,30人起组团, 某旅行社组团去外地旅游, 人起组团 人起组团, 某旅行社组团去外地旅游 每人单价800元。旅行社对超过30人的团 元 旅行社对超过 人的团 每人单价 给予优惠,即旅行团每增加一人, 给予优惠,即旅行团每增加一人,每人的 单价就降低10元 单价就降低 元。当一个旅行团的人数是 多少时,旅行社可以获得最大营业额? 多少时,旅行社可以获得最大营业额?
解:设一个旅行团有x人时,旅行社营业额为y元. 设一个旅行团有x人时,旅行社营业额为y 则 y=〔 800-10(30y=〔 800-10(30-x) 〕·x =-10x2+1100x =-10(x-55)2+30250 10(x∴当x=55时,y最大=30250 x=55时 答:一个旅行团有55人时,旅行社可 一个旅行团有55人时, 55人时 获最大利润30250 30250元 获最大利润30250元
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 某果园有100棵橙子树,每一棵树平均结600个橙子. 100棵橙子树 600个橙子 现准备多种一些橙子树以提高产量, 现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计,每多种一棵树, 会减少.根据经验估计,每多种一棵树,平均每棵树 就会少结5个橙子. 就会少结5个橙子. 如果增种x棵树 果园橙子的总产量为y 棵树, 如果增种 棵树,果园橙子的总产量为 那么y与 之间的关系式为 之间的关系式为: 个,那么 与x之间的关系式为: 那么 y=(600-5x)(100+x )=-5x²+100x+60000
《何时获得最大利润》公开课课件

3 2
自学检测(8分钟)
2.某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提高 单价会导致销售量的减少,即销售单价每提高1元,销售量 相应减少20件.售价提高多少元时,才能在半个月内获得最 大利润?
解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
学习目标(1分钟)
1、经历探索T恤衫销售中最大利润等问题的过程, 体会二次函数是一类最优化问题的数学模型。 2、能够分析和表示实际问题中变量之间的二次函 数关系。 3、能运用二次函数的知识求出实际问题的最大 (小)值。
自学指导(1分钟)
自学课本P64 -65 , 1.回顾下列公式完成(1)(2),(3),(4)题
; 所获利润可表示为: x 2.5500 20013.5 x 元 当销售单价为 9.25元时,可以获得最大利润,最大利润 .5. Y=-200x2+3700x-8000 是 9112 元
=-200(x2-18.5x)-8000 =-200(x2-18.5x+9.252-9.252)-8000 =-200(x-9.25)2+200×9.252-8000 =-200(x-9.25)2+9112.5
60300
60200 60100
O
x 51
x 10 2 15
20
x/棵
点拨2:
( 1)
(2)
当. <-1 =-1 6
>-1
自学检测(8分钟)
2.某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提高 单价会导致销售量的减少,即销售单价每提高1元,销售量 相应减少20件.售价提高多少元时,才能在半个月内获得最 大利润?
解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
学习目标(1分钟)
1、经历探索T恤衫销售中最大利润等问题的过程, 体会二次函数是一类最优化问题的数学模型。 2、能够分析和表示实际问题中变量之间的二次函 数关系。 3、能运用二次函数的知识求出实际问题的最大 (小)值。
自学指导(1分钟)
自学课本P64 -65 , 1.回顾下列公式完成(1)(2),(3),(4)题
; 所获利润可表示为: x 2.5500 20013.5 x 元 当销售单价为 9.25元时,可以获得最大利润,最大利润 .5. Y=-200x2+3700x-8000 是 9112 元
=-200(x2-18.5x)-8000 =-200(x2-18.5x+9.252-9.252)-8000 =-200(x-9.25)2+200×9.252-8000 =-200(x-9.25)2+9112.5
60300
60200 60100
O
x 51
x 10 2 15
20
x/棵
点拨2:
( 1)
(2)
当. <-1 =-1 6
>-1
北师大版初中数学九年级下册《何时获得最大利润》精品课件共20页文档

若设每千克西瓜的售价降低x元,每天盈利y元。 则每千克西瓜利润为_(_3_-_x_-_2_)元 销售量可表示为_(__2_0_0_+_4_0_0_x_)_千克 每天的盈利y与x关系式为y_=_(_3_-_x_-_2_)_(_2_0_0_+_4_0_0_x_)_-_2_4_
收获与感悟
解关于二次函数最值的应用题的一般思路:
总利润为____(_4_0_-_x_-_2_0_)_(_2_0_0_+_2_0_x_)___元
设总利润为y元,你能写出y与x的关系式吗?
y =(40-x-20)(200+20x)
请你求出售价为多少时获总利最大?最大是多少?
解析问题
解:设每件降价x元,总利润为y元 y =(40-x-20)(200+20x)
=-20x2+200x+4000 -=-2ba2=0(-x-2-04050)=2+5 45004a4ca-b2=4500 ∴当x=5时,y 的最大值为4500
∴当销售单价为35元时,获利最大为4500元。
总结深化 何时获得最大利润
解题步骤: 1、审题:设出两个变量 2、分析变量之间的关系写出二 次函数关系式
解:设每件售价提高x元,半月所获利润为y元 y=(30+x-20)(400-20x) =(10+x)(400-20x) =-20x2+200x+4000 x=-200/-40=5
由x=5得y=(30+5-20)(400-20×5)=4500 答:当每件售价提高5元时,最大利润为4500元。
课堂寄语
何时橙子总产量最大
解: y=(600-5x)(100+x ) =-5x²+100x+60000 =-5(x-10)2+60500 ∵当x=10时,y最大=60500 ∴增种10棵树时, 总产量最大,是60500个
收获与感悟
解关于二次函数最值的应用题的一般思路:
总利润为____(_4_0_-_x_-_2_0_)_(_2_0_0_+_2_0_x_)___元
设总利润为y元,你能写出y与x的关系式吗?
y =(40-x-20)(200+20x)
请你求出售价为多少时获总利最大?最大是多少?
解析问题
解:设每件降价x元,总利润为y元 y =(40-x-20)(200+20x)
=-20x2+200x+4000 -=-2ba2=0(-x-2-04050)=2+5 45004a4ca-b2=4500 ∴当x=5时,y 的最大值为4500
∴当销售单价为35元时,获利最大为4500元。
总结深化 何时获得最大利润
解题步骤: 1、审题:设出两个变量 2、分析变量之间的关系写出二 次函数关系式
解:设每件售价提高x元,半月所获利润为y元 y=(30+x-20)(400-20x) =(10+x)(400-20x) =-20x2+200x+4000 x=-200/-40=5
由x=5得y=(30+5-20)(400-20×5)=4500 答:当每件售价提高5元时,最大利润为4500元。
课堂寄语
何时橙子总产量最大
解: y=(600-5x)(100+x ) =-5x²+100x+60000 =-5(x-10)2+60500 ∵当x=10时,y最大=60500 ∴增种10棵树时, 总产量最大,是60500个
何时获得最大利润的说课课件(ppt).pptx

所提出的问题由浅到难, 逐步深入,帮助学生自 主探索,明确最终的目
标。
(1)此题主要研究哪两 个变量之间的关系, 哪个是自变量,哪个 是因变量?
学生思考
分组讨论, 共同探究
(2)分析销售价与销 售量之间的关系,销 售量怎样表示(设销 售单价为X元)?
(5)获利最多是什 么意思?怎样转化为 数学方法解决?
四、教学过程设计
2、创设情景,揭示课题(2分钟)
某商店经营T恤衫,已 知成批购进时单价是2.5元. 根据市场调查,销售量与单 价满足如下关系:在一段时 间内,单价是13.5元时,销售 量是500件,而单价每降低1 元,就可以多售出200件.请 你帮助分析,销售单价是多 少时,可以获利最多?
创设销售中求最 大利润的情景, 揭示本节要探索
一、教材分析
2、教学目标 (过程与方法)
(1)通过教师的提问,引导学生自主探讨, 用观察法、归纳法、图像法,逐步分析二 次函数图象的顶点坐标与函数最值的关系, 让学生懂得利用二次函数知识解决实际问 题。
(2)通过课堂的训练,让学生懂得求解二 次函数的一般方法,再结合生活中例子, 引导学生抽象出二次函数的数学模型,让 学生体会函数的思想方法和数形结合的思 想。
教材分析
教法学法
学情分析
说
教学过程
板书设计
一、教材分析
一、教材分析
1、本节课在教材中的地位作用:
(1)章节地位:“何时获得最大利润”是北师大版九年级 下册第二章《二次函数》第六节的内容,选自中学数学中数 与代数这一大类。
(2)章节作用:在本章前,教材通过探索变量之间关系, 探究一次函数和反比例函数,已经逐渐让学生建立了函数的 基础知识,初步积累了研究函数性质的方法及用函数观点处 理实际问题的经验.这节课是学生在巩固二次函数的图象和 性质的基础上,进一步让学生利用二次函数知识解决实际问 题中(通常自变量取值受限制)的最大值。为学生在高中阶 段进一步学习二次函数、二次方程、二次不等式等知识奠定 基础。
何时获得最大的利润管理知识函数(ppt 30页)

顶点坐标(h,k) ①当a>0时,y有最小值=k ②当a<0时,y有最大值=k
1.某商店经营衬衫,已知所获利润y(元)与销售的单价X (元)之间满足关系式y=–x2+24x+2956,则获利最多 为__3_1_0_0_元. 2. 某旅行社要接团去外地旅游,经计算当年获利润y(元) 与旅行团人员x(人)满足关系式y=–2x2+80x+28400要 使所获营业额最大,则此旅行团有___2_0___人.
6 何时获得最大利润
1.经历探索T恤衫销售过程中最大利润等问题的过程,体 会二次函数是一类最优化问题的数学模型,感受数学的应 用价值. 2.掌握实际问题中变量之间的二次函数关系,并运用二 次函数的知识求出实际问题的最大值、最小值.
二次函数的最值求法
①当a>0时,y有最小值= ②当a<0时,y有最大值=
达式为:y=-(x-1)2+2.25.
当y=0时,得点C(2.5,0);同理,点D(-2.5,0).
根据对称性,那么水池的半径至少要2.5m,
才能使喷出的水流不致落到池外.
1.(2010·兰州中考) 如图,小明的父亲在相距2米的
两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴
绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线
【解析】选A. 抛物线的顶点坐标为(2,4),所以水x喷(米) 出
的最大高度是4米.
2.(2010 ·德州中考)为迎接第四届世界太阳城大会, 德州市把主要路段路灯更换为太阳能路灯.已知太阳 能路灯售价为5000元/个,目前两个商家有此产品.甲 商家用如下方法促销:若购买路灯不超过100个,按原 价付款;若一次性购买100个以上,则购买的个数每增 加一个,其价格减少10元,但太阳能路灯的售价不得 低于3500元/个.乙店一律按原价的80℅销售.现购买 太阳能路灯x个,如果全部在甲商家购买,则所需金额 为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳 能路灯?
时何时获得最大利润课件

VS
应收账款管理
通过制定合理的信用政策、定期对账、及 时催收等手段,降低应收账款的风险和成 本。
05
实际案例分析
案例一:通过提高销售收入获得最大利润
总结词
在销售收入方面,企业可以通过扩大销售量或提高产品单价来增加销售收入,从而获得更大的利润。
详细描述
某小型茶叶公司通过推出新型保健茶,在市场上受到消费者欢迎,销售量迅速增长。为了满足市场需 求,公司决定扩大生产规模。通过投入更多的广告宣传,增加销售渠道,提高产品知名度等措施,该 公司成功地扩大了销售量,并获得了更多的利润。
产生的净收入或净支出。
利润的衡量指标
毛利率
指企业销售收入中毛利润所占 的比例。
净利率
指企业净利润占销售收入的比例。
投资回报率
指企业投资收益与投资总额的 比例。
总资产收益率
指企业净利润与总资产平均余 额的比例。
03
何时获得最大利润
边际贡献与利润的关系
边际贡 献
边际贡献是指销售收入减去变动成本 后的余高效率和降低成本,以实现最
大利润。
对未来的展望
随着市场竞争的加剧和市场变化 的加速,企业需要不断创新和进 步,以适应未来的市场变化和消
费者需求。
企业需要关注新技术和新模式的 发展,积极探索和创新经营模式 和商业模式,以提高企业的竞争
力和盈利能力。
企业需要加强人才培养和管理创 新,提高员工素质和管理水平,
案例四
总结词
在库存与应收账款方面,企业应合理安排库存结构、加强应收账款管理,提高资金使用效率,从而获得更大的利 润。
详细描述
某大型电子产品制造商通过对其库存结构进行调整,减少了库存积压和滞销的情况。同时,加强对应收账款的管 理,缩短回款周期。这些措施使该企业在保持销售收入不变的情况下,减少了资金占用和坏账风险,提高了资金 使用效率,从而获得了更大的利润。
《何时获得最大利润》课件

何时获得最大利润
在这个PPT课件中,我们将讨论何时获得最大利润的关键信息。探讨利润的定 义,追求最大利润的重要性以及其实践和理论部分。
介绍
1 什么是利润
解释利润的概念和含义,理解利润对企业发展的重要性。
2 为什么要追求最大利润
探讨最大利润对企业的竞争力、可持续性和增长的积极影响。
3 여기다1
理论部分
1
边际成本与边际收益
阐述如何理解边际成本和边际收益的概念。
2
边际成本=边际收益时的利润最大化
解释何时利润最大化,以及如何通过边际成本等因素进行决策。
3
边际成本<边际收益时如何进行决策
探讨边际成本小于边际收益时的决策策略和方法。
4
边际成本>边际收益时如何进行决策
解释边际成本大于边际收益时的决策策略和方法。
2 展望未来如何进一步提高利润
对未来如何持续提高利润进行展望,并提供 一些建议和策略。
实践部分
利用边际成本/边际 收益理论进行决策制 定
介绍如何应用边际成本/边际收
益理论来制定决策。
通过实例演示如何获 得最大利润
通过真实案例演示如何在实际 情况中获得最大利润。
ห้องสมุดไป่ตู้
利润最大化的实际案 例
分享一些成功实践中实现利润 最大化的案例。
结论与展望
1 总结得出最大利润获得条件和实现
方法
总结影响最大利润获得的关键条件和实际运 作方法。
在这个PPT课件中,我们将讨论何时获得最大利润的关键信息。探讨利润的定 义,追求最大利润的重要性以及其实践和理论部分。
介绍
1 什么是利润
解释利润的概念和含义,理解利润对企业发展的重要性。
2 为什么要追求最大利润
探讨最大利润对企业的竞争力、可持续性和增长的积极影响。
3 여기다1
理论部分
1
边际成本与边际收益
阐述如何理解边际成本和边际收益的概念。
2
边际成本=边际收益时的利润最大化
解释何时利润最大化,以及如何通过边际成本等因素进行决策。
3
边际成本<边际收益时如何进行决策
探讨边际成本小于边际收益时的决策策略和方法。
4
边际成本>边际收益时如何进行决策
解释边际成本大于边际收益时的决策策略和方法。
2 展望未来如何进一步提高利润
对未来如何持续提高利润进行展望,并提供 一些建议和策略。
实践部分
利用边际成本/边际 收益理论进行决策制 定
介绍如何应用边际成本/边际收
益理论来制定决策。
通过实例演示如何获 得最大利润
通过真实案例演示如何在实际 情况中获得最大利润。
ห้องสมุดไป่ตู้
利润最大化的实际案 例
分享一些成功实践中实现利润 最大化的案例。
结论与展望
1 总结得出最大利润获得条件和实现
方法
总结影响最大利润获得的关键条件和实际运 作方法。
《何时获得最大利润》二次函数PPT课件(上课用)2

•
19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。
•
20、没有收拾残局的能力,就别放纵善变的情绪。
销售量可表示为 : 500 20013.5 x 件;
销售额可表示为: x500 20013.5 x 元; 所获利润可表示为: x 2.5500 20013.5 x元 ;
当销售单价为 9.25 元时,可以获得最大利润,最大利 润是 9112.5元.
() () ()× ()
某果园有棵橙子树,每一棵树平均结个橙子.现准备多种一些橙 子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树 所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵 树就会少结个橙子.
•
9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。
•
10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。
•
11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。
•
12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。
•
13、时间,抓住了就是黄金,虚度了就是流水。理想,努力了才叫梦想,放弃了那只是妄想。努力,虽然未必会收获,但放弃,就一定一无所获。
•
14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。
•
15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。
学习目标(分钟)
、经历探索恤衫销售中最大利润等问题的过程, 体会二次函数是一类最优化问题的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
假设销售单价为x(x≥30)元,销售利润为y元,则 y= -20(x-35)2+4500
y 4500 4420
若规定销售单价不得高于 33元,则如何提高售价,可 在半月内获得最大利润?
0
33
35
X
拓展
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如 果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可 多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 分析:调整价格包括涨价和降价两种情况,我们先来看涨价的情况. (1)设每件涨价x元,则每星期卖出(300-10x)件,单件商品的利 润为(60+x - 40)元 y = (60+x)(300-10x) -40 (300-10x) 怎样确定x的 取值范围? 即
议一议
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙 子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接 受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结 5个橙子.问增种多少棵橙子树,可以使橙子的总产量最多? 等量关系:橙子的总产量=每棵橙子树的产量×橙子树的数量
3. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 ,顶点 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值,是 -1 。 4.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小 值,是 1 。
探究
服装厂生产某种品牌的T恤成本是每件10元。根据市场调 查,以单价13元批发给经销商,经销商愿意经销5000件, 并且表示单价每降低0.1元,愿意多经销500件。请你帮助 分析,厂家批发单价是多少时可以获利最多?
某商店购进一批单价为20元的日用品,如果以单价30元销售, 那么半个月内可以售出400件.根据销售经验,提高单价会导 致销售量的减少,即销售单价每提高1元,销售量相应减少20 件.如何提高售价,才能在半个月内获得最大利润?
解:
假设销售单价为x(x≥30)元,销售利润为y元,则 y = (x-20) [400-20(x-30)] = -20x2+140x-20000 若规定销售单价不得高于 = -20(x-35)2+4500 33元,则如何提高售价,可 在半月内获得最大利润? ∴当x=35时,y有最大值为4500. 35-30=5(元)
=5000(x2 -24x+140) = -5000(x-12)2 +20000
总结 :
运用函数来决策定价的问题:
构建二次函数模型:将问题转化为二次函数的一个具体的表达式. 求二次函数的最大(或最小值)
活动探究2
还记得本章一开始涉及的“种多少棵橙子树”的 问题吗?
我们还曾经利用列表的方法得到一个数据,现在请 你验证一下你的猜测(增种多少棵橙子树时,总产量最 大?)是否正确. 与同伴进行交流你是怎么做的.
◆如果设批发单价为x元,获得的利润为y元
13- x 13- x ) ÷0.1件 】 销售量可以表示 5000+ _ _ 500【 ( __________________
每件降价____________ 元 每件利润__________元
x -10
( 获得的总利润y=__
x -10 ) [5000+5000( 13- x )] _______________________
y=(100+x)(600-5x) = - 5x2+100x+60000 =-5(x-10)2+60500
∵a<0 ∴ y有最大值
b 4ac b2 4 (5) 60000 1002 当x 10时,y 60500 最大值 2a 4a 4 (5)
挑战新高
答:当销售单价提高5元,即单价为35元时, 可以在半月内获得最大利润4500元.
某商店购进一批单价为20元的日用品,如果以单价30元销售, 那么半个月内可以售出400件.根据销售经验,提高单价会导 致销售量的减少,即销售单价每提高1元,销售量相应减少20 件.如何提高售价,才能在半个月内获得最大利润?
y = -10x2+100x+6000 其中,0≤x≤30.
b x 5时,y最大值 10 52 100 5 6000 6250 2a
. 当a>0时,抛
4ac b 2 物线开口向 上 ,有最 低 点,函数有最 小 值,是 4a ;当
a<0时,抛物线开口向 下 ,有最 高 点,函数有最 大 值,
4ac b 2 是 4a 。
回味无穷
2. 二次函数y=2(x-3)2+5的对称轴是 直线x=3 ,顶点 坐标是 (3 ,5) 。当x= 3 时,y的最 小 值是 5 。
北师大版
九年级数学Leabharlann 册 第二章§2.6 何时获得最大利润
回味无穷
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它的对 称轴是 直线x=h ,顶点坐标是 (h,k) . 2 . 二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
b b 4ac b 2 直线x , 2a ,顶点坐标是 2a 轴是 4a
2. 利用函数图象描述橙子的总产量y与增种橙子树的棵数x之间 的关系. y/个
当x<10时,橙子的总产量随 60500 增种棵树的增加而增加; 当x>10时,橙子的总产量随 60400 增种棵树的增加而减少. 60300 当x=10时,橙子的总产量最大. 6、7、8、9、10、 增种 增种多少棵橙子树 , 60100 11 、12、13或14棵橙子 可以使橙子的总产量 树,都可以使橙子的总产 60000 在 60400个以上? 量在60400个以上.
60200
60600
x2 O 5 10 15 20 x1=10-2 5 , x2=10+2 5
x1
x/棵
归纳小结:
运用二次函数的性质求实际问题的最大值和最小值 的一般步骤 : 求出函数解析式和自变量的取值范围 配方变形,或利用公式求它的最大值或最小值。 检查求得的最大值或最小值对应的自变量的值必 须在自变量的取值范围内 。