圆锥曲线方程椭圆知识点归纳

合集下载

椭圆知识点总结及经典习题练习

椭圆知识点总结及经典习题练习

椭圆知识点总结及经典习题练习第二部分圆锥曲线---椭圆知识点一:1、平面内与两个定点F)的点的1,F2的距离之和等于常数对称性:对于椭圆标准方程221(ab0):说明:ab把x换成x、或把y换成y、或把x、y同时换成x、y、x2y2原方程都不变,所以椭圆221是以x轴、y轴为对称轴ab的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

范围:椭圆上所有的点都位于直线xa和yb所围成的矩形内,所以椭圆上点的坐标满足xa,yb。

顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

x2y2 ②椭圆221(ab0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为abA1(a,0),A2(a,0),B1(0,b),B2(0,b)③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,A1A22a,B1B22b。

a和b分别叫做椭圆的长半轴长和短半轴长。

离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作e2cc。

2aa②因为(ac0),所以e的取值范围是(0e1)。

e越接近1,则c就越接近a,从而因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,ba2c2越小。

这时椭圆就越接近于圆。

当且仅当ab时,c0,这时两个焦点重合,图形变为圆,方程为xya。

注意:22x2y2椭圆221的图像中线段的几何特征:ab(PF1(BF1A1F1PF22a);PF1PM1PF2PM2e;(PM1PM22a2);cBF2a);(OF1OF2c);A1BA2Ba2b2;A2F2ac;A1F2A2F1ac;acPF1ac;规律方法:1.如何确定椭圆的标准方程?任何椭圆都有一个对称中心,两条对称轴。

当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。

此时,椭圆焦点在坐标轴上。

确定一个椭圆的标准方程需要三个条件:两个定形条件a,b;一个定位条件焦点坐标,焦点坐标的形式确定标准方程的类型。

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常用结论

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常用结论

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常⽤结论圆锥曲线必背⼝诀(红字为⼝诀)-椭圆⼀、椭圆定义定点为焦点,定值为长轴.(定值=2a )椭圆.定点为焦点,定直线为准线,定值为离⼼率.(定值=e )定点为短轴顶点,定值为负值. (定值2k e 1=-)⼆、椭圆的性质定理长轴短轴与焦距,形似勾股弦定理①准线⽅程准焦距,a ⽅、b ⽅除以c ②通径等于 2 ep ,切线⽅程⽤代替③焦三⾓形计⾯积,半⾓正切连乘b ④注解:1长轴2a =,短轴2b =,焦距2c =,则:222a b c =+2准线⽅程:2a x c= (a ⽅除以c )3椭圆的通径d :过焦点垂直于长轴的直线与椭圆的两交点之间的距离称为椭圆的通径.(通径22c b 2b 2a c ad 2ep =??==)过椭圆上00x y (,)点的切线⽅程,⽤00x y (,)等效代替椭圆⽅程得到.等效代替后的是切线⽅程是:0022x x y y1a b+=4、焦三⾓形计⾯积,半⾓正切连乘b焦三⾓形:以椭圆的两个焦点12F F ,为顶点,另⼀个顶点P 在椭圆上的三⾓形称为焦三⾓形.半⾓是指12F PF θ=∠的⼀半.则焦三⾓形的⾯积为:2S b 2tanθ=证明:设1PF m =,2PF n =,则m n 2a +=由余弦定理:222m n 2mn 4c cos θ+-?=22224a 4b m n 4b ()=-=+-即:22mn 2mn 4b cos θ-?=-,即:22b 1mn (cos )θ=+.即:2122b mn PF PF 1||||cos θ==+故:12F PF 1S m n 2sin θ=??△2212b b 211sin sin cos cos θθθθ=?=++⼜:22221222sin cossin tan cos cosθθθθθθ==+ 所以:椭圆的焦点三⾓形的⾯积为122F PF S b 2tan θ=. 三、椭圆的相关公式切线平分焦周⾓,称为弦切⾓定理①1F2FOxyPmn切点连线求⽅程,极线定理须牢记②弦与中线斜率积,准线去除准焦距③细看中点弦⽅程,恰似弦中点轨迹④注解:1弦切⾓定理:切线平分椭圆焦周⾓的外⾓,平分双曲线的焦周⾓. 焦周⾓是焦点三⾓形中,焦距所对应的⾓.弦切⾓是指椭圆的弦与其切线相交于椭圆上时它们的夹⾓,当弦为焦点弦时(过焦点的弦),那么切线是两个焦点弦的⾓平分线.2若000P x y (,)在椭圆2222x y 1a b+=外,则过0P 作椭圆的两条切线,切点为12P P ,,则点0P 和切点弦12P P ,分别称为椭圆的极点和极线.切点弦12P P 的直线⽅程即极线⽅程是0022x xy y1a b+=(称为极线定理)3弦指椭圆内的⼀弦AB .中线指弦AB 的中点M 与原点O 的连线,即OAB ?得中线.这两条直线的斜率的乘积,等于准线距离2c a x c=-去除准焦距2bp c=,其结果是:2AB OM2c p b k k x a==- 4中点弦AB 的⽅程:在椭圆中,若弦AB 的中点为00M x y (,),弦AB 称为中点弦,则中点弦的⽅程就是2200002222x x y y x y a b a b+=+,是直线⽅程.弦中点M 的轨迹⽅程:在椭圆中,过椭圆内点000P x y (,)的弦AB ,其中点M 的⽅程就是22002222x x y y x y a b a b+=+,仍为椭圆.这两个⽅程有些相似,要擦亮眼睛,千万不要搞混了.圆锥曲线必背⼝诀(红字为⼝诀)-双曲线⼀、双曲线定义⼆、双曲线的性质定理基本同椭圆,有所区别:实轴虚轴与焦距,形似勾股弦定理①准线⽅程准焦距,a ⽅、b ⽅除以c ②通径等于 2 e p ,切线⽅程⽤代替③焦三⾓形计⾯积,半⾓余切连乘b ④注解:1实轴2a =,虚轴2b =,焦距2c =,则:222a b c +=2准线⽅程2a x c=± (a ⽅除以c )准焦距p :焦点到准线的距离:2b pc = (b ⽅除以c )3通径等于2 e p ,切线⽅程⽤代替双曲线的通径d :过焦点垂直于长轴的直线与双曲线的两交点之间的距离称为双曲线的通径.(通径22c b 2b 2a c ad 2ep =??==)过双曲线上000P x y (,)点的切线⽅程,⽤000P x y (,)等效代替双曲线⽅程得到,等效代替后的是切线⽅程是:0022x x y y1a b-=4焦三⾓形计⾯积,半⾓余切连乘b焦三⾓形:以双曲线的两个焦点12F F ,为顶点,另⼀个顶点P 在椭圆上的三⾓形称为焦三⾓形.半⾓是指12F PF γ=∠的⼀半.双曲线2222x y 1a b-=的左右焦点分别为12F F ,,点P 为双曲线上异于顶点任意⼀点12F PF γ∠=,则双曲线的焦点三⾓形满⾜:2122b PF PF 1cos γ=- 其⾯积为;122F PF S b co 2t γ=.证明:设21PF m PF n ,==,则m n 2a -=在12F PF ?中,由余弦定理得:222121212PF PF 2PF PF F F cos γ+-=,即:222m n 2mn 4c cos γ+-?=22224a 4b m n 4b ()=+=-+ 即:2222m n 2mn m n 4b cos ()γ+-?=-+即:22mn 2mn 4b cos γ-?=,即:22b mn 1(cos )γ=-即:22b mn 1cos γ=-,即:2122bPF PF 1cos γ=-那么,焦点三⾓形的⾯积为:12F PF 1S mn 2sin γ?=?212b 21sin cos γγ=?-2222b 22b 122sin cossin cos sinγγγγγ==?-2b 2cot γ= 故:122F PF S b 2cot γ= 同时:12F PF 12P P 1S F F y c y 2?=?=?,故:2p b y c 2cot γ=±? 双曲线的焦点三⾓形的⾯积为:122F PF S b co 2t γ=.三、双曲线的相关公式切线平分焦周⾓,称为弦切⾓定理①切点连线求⽅程,极线定理须牢记②弦与中线斜率积,准线去除准焦距③细看中点弦⽅程,恰似弦中点轨迹④注解:1弦切⾓定理:切线平分椭圆焦周⾓的外⾓,平分双曲线的焦周⾓.焦周⾓是焦点三⾓形中,焦距所对应的⾓. 弦切⾓是指双曲线的弦与其切线相交于双曲线上时它们的夹⾓,当弦为焦点弦时(过焦点的弦),那么切线是两个焦点弦的⾓平分线.如图,12F PF ?是焦点三⾓形,12F PF ∠为焦周⾓,PT 为双曲线的切线. 则PT 平分12F PF ∠.2若000P x y (,)在双曲线2222x y 1a b-=外,以包含焦点的区域为内,不包含焦点的区域为外,则过0P 作双曲选的两条切线,切点为1P 、2P ,则点0P 和切点弦12P P 分别称为双曲线的极点和极线,切点弦12P P 的直线⽅程即极线⽅程是0022x xy y1a b-=(称为极线定理)3弦指双曲线内的⼀弦AB .中线指弦AB 的中点M 与原点O 的连线,即OAB ?得中线.这两条直线的斜率的乘积,等于准线距离2c a x c =去除准焦距2b p c=,其结果是:2AB OM2c p b k k x a==4中点弦AB 的⽅程:在双曲线中,若弦AB 的中点为00M x y (,),称弦AB 为中点弦,则中点弦的⽅程就是:2200002222x x y y x y aba b-=-,它是直线⽅程. 弦中点M 的轨迹⽅程:在双曲线中,过双曲线外⼀点000P x y (,)的弦AB ,其AB 中点M 的⽅程就是22002222x x y y x y a b a b-=-,仍为双曲线.这两个⽅程有些相似,要擦亮眼睛,千万不要搞混了.圆锥曲线必背⼝诀(红字为⼝诀)-抛物线⼀、抛物线定义抛物线,有定义,定点定线等距离12⼆、抛物线性质焦点准线极点线①,两臂点乘积不变②焦弦切线成直⾓,切点就是两端点③端点投影在准线,连结焦点垂直线④焦弦垂直极焦线⑤,切线是⾓平分线⑥直⾓梯形对⾓线,交点就是本原点⑦焦弦三⾓计⾯积,半个p ⽅除正弦⑧注解:1抛物线的焦点和准线是⼀对极点和极线.抛物线⽅程:2y 2px =,焦点(,)p F 02,准线p p x 2=-(抛物线的顶点(,)O 00到定点(,)p F 02和定直线p p x 2=-距离相等) 焦弦:过焦点的直线与抛物线相交于两点A 和B ,则AB 称为焦弦.弦中点(,)M M M x y ,A B M x x x 2+=,A B M y yy 2+= 焦弦⽅程:()p y k x 2=-,k 为斜率. 2焦点三⾓形两边OA 和OB 的点乘积为定值,且夹⾓是钝⾓. 证明:焦弦AB 满⾜的条件()2y 2pxp y k x 2?=??=- ()22p k x 2px 2-=? ()22222k p k x k 2px 04-++=由韦达定理得:2A B px x 4=2A B py y 22p p 2==-=-?=-,即:2A B p x x 4=,2A B y y p =- ①且:2A A B B A B A B 3OA OB x y x y x x y y p 04(,)(,)?=?=+=-<. 故:焦点三⾓形两边之点乘积为定值.3即:焦弦两端点的切线互相垂直. 证明:如图,由抛物线⽅程:2y 2px =得到导数:yy p '=,即:py y'=故:AEA p k y =,BE Bp k y = 于是:2AE BEA B A Bp p p k k y y y y ?=?=将①式2A B y y p =-代⼊上式得:AE BE k k 1?=-即:AE BE ⊥,故焦弦端点在准线的投影点与焦点构成直⾓三⾓形. 4即:焦弦端点在准线的投影点与焦点构成直⾓三⾓形. 证明:坐标B p C y 2(,)-,A p D y 2(,)-则:B CF p y (,)=-,A DF p y (,)=- 于是:2A B CF DF p y y ?=+将①式2A B y y p =-代⼊上式得:CF DF 0?= 故:CF DF ⊥即:焦弦端点A B ,在准线的投影点D C ,,则CF DF ⊥,即:焦弦端点在准线的投影点与焦点构成直⾓三⾓形.5若焦弦AB 对应的极点E ,则EF 为极焦线,于是EF AB ⊥⽤向量⽅法可证.由于M 是AB 的中点,AEB ?为直⾓三⾓形,计算可得E 是DC 的中点,故:ED EF EC == 由向量法可证EF AB 0?=即:焦弦AB 与极焦线EF 互相垂直. 6即:切线平分焦弦的倾⾓(或倾⾓的外⾓) 如图:因为ADE ?和AFE ?都是直⾓三⾓形,且由定义知:AF AD =,AE AE =故ADE AFE ??≌,则对应⾓相等. 即:AE 是DAF ∠的⾓平分线同理,BE 是CBF ∠的⾓平分线 7即:直⾓梯形ABCD 对⾓线相交于原点即:A O C ,,三点共线;B O D ,,三点共线. ⽤向量法证明:OA CO //,OB DO //证明:坐标2A A y A y 2p (,),2B B y B y 2p (,),B p C y 2(,)-,A pD y 2(,)-向量:2A A y OA y 2p (,)=,B pCO y 2(,)=-各分量之⽐:2A2x A 2xy OA y 2p p p CO 2()()==,2y A AB A B y OA y y y y y CO ()()==--将①式2A B y y p =-代⼊上式得:22yA A2A By OA y y y y p CO ()()==- 故:y x xyOA OA OACO CO CO()()()()==,即:OA CO // 同理:OB DO //.直⾓梯形ABCD 对⾓线相交于原点. 8即:焦弦三⾓形的⾯积为:sin 2 AOBp S 2α= (α为焦弦的倾⾓)证明:AB AF BF =+A B A B p p x x x x p 22=+ ++=++M p2x 2()=+2EM = 如图:GF 2OF p == 则:2EF GF 1pEM sin sinsin sin αααα==?= E于是:22pAB sin α= 故:AOB1S OF AB 2sin α?=221p 2p p 222sin sin sin ααα==附:圆锥曲线必背----极坐标圆锥曲线的极坐标以准焦距p 和离⼼率e 来表⽰常量,以极径ρ和极⾓θ来表⽰变量.0ρ≥,[,)o 0360θ∈以焦点(,)F 0θ为极点(原点O ),以椭圆长轴、抛物线对称轴、双曲线的实轴为极轴的建⽴极坐标系.故准线是到极点距离为准焦距p 、且垂直于极轴的直线L . 极坐标系与直⾓坐标系的换算关系是:ρ=,arctan y xθ= 或者:cos x ρθ=,sin y ρθ= 特别注意:极坐标系中,以焦点为极点(原点),⽽直⾓坐标系中以对称点为原点得到标准⽅程. 如图,O 为极点,L 为准线,则依据定义,到定点(极点)和到定直线(准线)的距离之⽐为定值(定值e )的点的轨迹为圆锥曲线. 所以,对极坐标系,请记住:⑴极坐标系的极点O 是椭圆的左焦点、抛物线的焦点、双曲线的右焦点;⑵曲线上的点(,)Pρθ到焦点F的距离是ρ,到准线的距离是cospρθ+,根据定义:cosepρρθ=+即:cosep eρθρ+=,即:cosep eρρθ=-,即:1eρθ=-①这就是极坐标下,圆锥曲线的通式.⑶对应不同的e,呈现不同的曲线. 对双曲线,只是右边的⼀⽀;对抛物线,开⼝向右.将极轴旋转o180,α和θ分别对应变换前后的极⾓,即转⾓为o180θα=+,则极坐标⽅程变换前⽅程为:cosep1eρα=-变换后⽅程为:cosep1eρθ=+②此时的极坐标系下,此时有:⑵对应不同的e,呈现不同的曲线对双曲线,只是左边的⼀⽀;对抛物线,开⼝向左.⑴将极轴顺时针旋转o90,即:o 90θα=+,则情况如图.圆锥曲线的⽅程为:sin ep1e ρθ=- ③此时的极坐标系下:对应于直⾓坐标系下,焦点在y 轴的情况,且极点O 对应于椭圆下⽅的焦点,双曲线上⽅的焦点,抛物线的焦点.对双曲线,只是y 轴上边的⼀⽀;对抛物线,开⼝向上. ⑵如果将极轴逆时针旋转o 90,即:o 90θα=-,则情况如图. 圆锥曲线的⽅程为:sin ep1e ρα=+ ③此时的极坐标系下:对应于直⾓坐标系下,焦点在y 轴的情况,且对应于椭圆上⽅的焦点,双曲线下⽅的焦点,抛物线的焦点.对双曲线,只是y 轴下边的⼀⽀;对抛物线,开⼝向下.⑴在极坐标系中,圆锥曲线的通式为:=cos ep1e ρθ- ①即:cos e ep ρρθ-=,即:cos ep e ρρθ=+即:(cos )(cos )(cos )2222222ep e e p e 2e p ρρθρθρθ=+=++ ②将222x y ρ=+,cos x ρθ=代⼊②式得:2222222x y e p e x 2e px +=++即:()2222221e x 2e px y e p --+= ③当e 1≠时有:()[()]()()22222222222222--++=+---- 即:()()()22222 2222222e p e e p 1e x y e p 11e 1e 1e --+=+=--- 即:()()22222222222e px y 1e1e p e p1e 1e --+=-- ④⑴当e 1<时,令()22222e p a 1e =-,2222e p b 1e=-,22e p c 1e=-则:()222222222e p e p a b 1e 1e-=---[()]()()2222e p e p 11e 1e 1e =--=--⽽:()()2422222222e p e p c a b 1e 1e ===--- 代⼊④式得:()2222x c y 1ab-+= ⑤这是标准的椭圆⽅程. ⑵当e 1>时,令()222 22e p a e 1=-,2222e p b e 1=-,22e p c e 1=-则:()222222222e p e p a b e 1e 1+=+--[()]()()2242e p e p 1e 1e 1e 1=+-=-- ⽽:()()2422222222e p e p c a b e 1e 1===+-- 代⼊④式得:()2222x c y 1ab+-= ⑥这是标准的双曲线⽅程.⑶当e 1=时,由③式()2222221e x 2e px y e p --+=得:222px y p -+=即:()22p y 2px p 2p x 2=+=+ 即:()2p y 2p x 2=+ ⑦这是标准的抛物线⽅程.。

圆锥曲线——椭圆(基础知识)

圆锥曲线——椭圆(基础知识)

圆锥曲线——椭圆①基础知识:一、 第一定义:平面内 的轨迹叫椭圆。

其中 叫做椭圆的焦点(F 1 F 2)。

叫做椭圆的焦距(|F 1 F 2|)。

★思考:|PF 1|+|PF 2|=|F1F2|时的轨迹是什么?|PF 1|+|PF 2|<|F1F2|时呢?二、 第二定义:平面内 的轨迹叫椭圆。

其中定直线为: 定点为: 定值为: 范围:(0<e <1)。

三、标准方程。

椭圆的标准方程为: 或 (a>b>0)。

注意:标准方程说表示的椭圆及中心在坐标原点、长短轴在坐标轴上的椭圆。

如何判断焦点所在坐标轴:看分母、焦点在分母大的那一轴。

例如:x 24+y 23=1 ,两个分母分别为:4、3 。

∵4>3 又∵4是X 项的分母 ∴焦点在X 轴上。

四、参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数)四、椭圆的简单几何性质。

①、范围。

以焦点在X 轴的椭圆为例:∵ x 2a 2+y 2b 2=1(a >b >0) ∴x 2a 2≤1 y 2b2≤1 ∴|x|≤a |y|≤b 即:-a ≤x ≤a -b ≤y ≤b②、对称性。

关于X 、Y 轴成轴对称。

关于原点成中心对称。

③、顶点。

坐标轴和椭圆的四个交点:A 1 、A 2 、B 1 、B 2。

长轴:|A 1A 2| 短轴:|B 1B 2|连接B 、F 。

构成RT △OBF |OB|=b |OF|=c |BF|=a ∴ a 2=b 2+c 2(重要的性质) ④、离心率。

椭圆的离心率:e=ca(0<e <1) e 越大越扁 e 越小越近圆。

⑤、扩展。

通径:过焦点且垂直于长轴。

焦半径:椭圆上一点到椭圆焦点的连线。

焦半径公式:若M (x 0,y 0) |MF 1|=a+ex 0 |MF 2|=a-ex 0★规律及其解题方法提炼:1.椭圆中任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .2.过焦点弦的所有弦长中,垂直于长轴的弦是最短的弦,而且它的长为 把这个弦叫椭圆的通径.3.求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0<e <1).BOF4.从一焦点发出的光线,经过椭圆(面)的反射,反射光线必经过椭圆的另一焦点.5.过椭圆外一点求椭圆的切线,一般应用判别式Δ=0求斜率,也可设切点后求导数(斜率).6.求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:(1)中心是否在原点,(2)对称轴是否为坐标轴.★解题技巧①、求椭圆的标准方程。

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

简记为:左“+”右“-”。

由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。

22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。

有时为了运算方便,设),0(122n m m ny mx ≠>=+。

双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。

说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。

②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。

圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当01时为双曲线。

圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结第一篇:圆锥曲线基础知识圆锥曲线是一类重要的几何图形,它由一固定点(焦点)和一条直线(直母线)确定。

圆锥曲线包括椭圆、双曲线、抛物线和圆。

1. 椭圆椭圆是所有圆锥曲线中最简单的一种。

当一个圆锥截面与其直母线平行时,得到的图形就是一个椭圆。

椭圆具有如下性质:(1) 椭圆中心:椭圆的中心是其两个焦点的中垂线的交点。

(2) 焦点:椭圆上有两个焦点,它们在椭圆的长轴上,且到椭圆中心的距离相等。

(3) 长轴和短轴:椭圆上的两个焦点和中心共线,中心到焦点的距离称为焦距,长轴是椭圆上离焦点最远的两个点之间的距离,短轴是椭圆上离焦点最近的两个点之间的距离,长轴和短轴的长度之间的比值称为离心率。

(4) 方程:椭圆的标准方程为(x/a)^2+(y/b)^2=1, 其中a和b分别为长轴和短轴的一半。

(5) 旋转:如果椭圆不是以坐标轴为轴旋转的,则称其为斜椭圆,斜椭圆可以通过平移和旋转把它转变为标准方程的椭圆。

2. 双曲线双曲线是圆锥曲线中另一个重要的图形,当一个圆锥截面与其直母线的夹角小于圆锥的母线夹角时,得到的图形就是双曲线。

双曲线具有如下性质:(1) 中心:双曲线的中心是对称轴与渐近线的交点。

(2) 焦点:双曲线有两个焦点,它们位于对称轴上,且到中心的距离相等。

(3) 渐近线:一条直线是双曲线的渐近线,当直线与双曲线的距离接近于零时,该直线就称为双曲线的渐近线。

(4) 方程:双曲线的标准方程为(x/a)^2-(y/b)^2=1,其中a和b分别为双曲线上的两个焦点之间的距离的一半和中心到直线y=0的距离。

(5) 分类:双曲线可以分为右开口和左开口的两种,短轴在x轴的正半轴上的为右开口,反之为左开口。

3. 抛物线抛物线是圆锥曲线中另一种重要的图形,当一个圆锥截面与其直母线垂直时,得到的图形就是抛物线。

抛物线具有如下性质:(1) 焦点和直线:抛物线有一个焦点F和一条直线L,直线L称为准线。

对于抛物线上的任意一点P,它到焦点F的距离等于它到准线L的距离。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15 10
15 10
知识点三 根据方程研究几何性质
求椭圆 25x2+16y2=400 的长轴、短轴、离心率、焦点坐标和顶点坐标. y2 x2
解 将方程变形为 + =1,得 a=5,b=4,所以 c=3.故椭圆的长轴和短轴的长分别 25 16 c3
为 2a=10,2b=8,离心率 e= = ,焦点坐标为(0,-3),(0,3),顶点坐标为(0,-5),(0,5), a5
11
45
x2 y2
练习:过点(-3,2)且与椭圆 + =1 有相同焦点的椭圆的标准方程是________. 94
x2 y2
94
解析:因为 c2=9-4=5,所以设所求椭圆的标准方程为a2+a2-5=1.由点(-3,2)在椭圆上知a2+a2-5=
x2 y2
x2 y2
1,所以 a2=15.所以所求椭圆的标准方程为 + =1.答案: + =1
F2 (c,0),M 点的坐标为(c, 3 b),则△MF1F2 为直角三角形.在 Rt△M F1F2 中:
|F1F2|2+|MF2|2=|MF1|2,
4 即 4c2+ 9 b2=|MF1|2.
而|MF1|+| MF2|=
4c2 4 b2 2 b 2a, 93
整理得 3c2=3a2 2 ab. 又 c2=a2 b2,所以 3b=2a.
∴c=b=3,∴a2=b2+c2=18,故所求椭圆的方程为 x2 y2 1, 18 9
知识点五 求椭圆的离心率
2
如图所示,F1,F2 分别为椭圆的左、右焦点,椭圆上点 M 的横坐标等于右焦 2
点的横坐标,其纵坐标等于短半轴长的 ,求椭圆的离心率. 3
解 方法一 设椭圆的长半轴、短半轴、半焦距长分别为 a,b,c.则焦点为 F1 ( c,0), 2
Δ=(32m)2-4×25×(16m2-144)=-576m2+14 400.
当 Δ=0 时,得 m=±5,直线 l 与椭圆相切.
Δ>0 时,得-5<m<5,直线 l 与椭圆相交.
当 Δ<0 时,得 m<-5,或 m>5,直线 l 与椭圆相离.
知识点七 中点弦问题
x2 y2 已知点 P(4,2)是直线 l 被椭圆 + =1 所截得的线段的中点,求 l 的方程.
x2 y2
1
1.(江西高考)设椭圆a2+b2=1(a>b>0)的离心率为
e= ,右焦点为 2
F(c,0),方程
ax2+bx
-c=0 的两个实根分别为 x1 和 x2,则点 P(x1,x2)( ) A.必在圆 x2+y2=2 内
y2 x2 所以方程为 + =1.
11
45 y2 x2
综上知,所求椭圆的标准方程为: + =1. 11
45 方法二 设所求椭圆的方程为 mx2+ny2=1(m>0,n>0,m≠n),
1
依题意有Error! 解得Error!所以所求椭圆的方程为 5x2+4y2=1,
y2 x2 即其标准方程为 + =1.
x2 y2 b2=25-16=9,所以椭圆的标准方程为 + =1.
25 9 x2 y2
(2)方法一 ①当椭圆焦点在 x 轴上时,设标准方程为 + =1(a>b>0), a2 b2
依题意有Error!
解得Error!又因为 a>b,所以该方程组无解.
y2 x2 ②当椭圆焦点在 y 轴上时,设标准方程为a2+b2=1(a>b>0). 依题意有Error!解得Error!椭圆Fra bibliotek典例剖析
知识点一 椭圆定义的应用
x2
y2
方程

=1 表示焦点在 y 轴上的椭圆,则 m 的取值范围是________.
25-m 16+m
9 解析:因为焦点在 y 轴上,所以 16+m>25-m,即 m> ,又因为 b2=25-m>0,故 m<25,所以 m 的取
2
9
9
值范围为2<m<25.答案:2<m<25
(-4,0),(4,0).
知识点四 根据几何性质求方程
求适合下列条件的椭圆的标准方程:
2 (1)长轴长是 6,离心率是 .
3 (2)在 x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为 6.
解 (1)设椭圆的方程为
x2 y2
y2 x2
+ =1(a>b>0)或 + =1(a>b>0).
a2 b2
知识点二 求椭圆的标准方程
求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-4,0)和(4,0),且椭圆经过点(5,0).
11
1
(2)经过点 A( , ),B(0,- ).
33
2
(1)解 方法一 椭圆的焦点在 x 轴上,
x2 y2 设其标准方程为a2+b2=1(a>b>0). 由椭圆定义知:2a= (5+4)2+ (5-4)2=10,
36 9 解 设 l 与椭圆的交点为 A(x1,y1),B(x2,y2),
则有Error!
y1-y2 两式相减,得 kAB=x1-x2
9(x1+x2) =-
36(y1+y2)
2×4
1
=-
=- .
4×2×2 2
1 ∴l 的方程为:y-2=- (x-4),即 x+2y-8=0.
2
3
考题赏析
b2
所以
4

a2 9
所以 e2 c2 a2 b2 1 b2 5 , 所以 e= 5
a2
a2
a2 9
3
知识点六 直线与椭圆的位置关系问题
当 m 取何值时,直线 l:y=x+m 与椭圆 9x2+16y2=144 相切、相交、相离. 解 由题意,得Error!
①代入②,得 9x2+16(x+m)2=144, 化简,整理,得 25x2+32mx+16m2-144=0,
a2 b2
c2 由已知得 2a=6,a=3.e= = ,∴c=2.
a3
∴b2=a2-c2=9-4=5.
x2 y2
x2 y2
∴椭圆方程为 + =1 或 + =1.
95
59
x2 (2)设椭圆方程为 a2
y2 b2
1
(a>b>0).
如图所示,△A1FA2为一等腰直角三角形,OF 为斜边 A1A2 的中线(高),且|OF|=c,|A1A2|=2b,
所以 a=5.
又 c=4,所以 b2=a2-c2=25-16=9.
x2 y2 故椭圆标准方程为 + =1.
25 9 x2 y2
方法二 设椭圆的标准方程为 + =1(a>b>0), a2 b2
25 0 因为 c=4,所以 a2-b2=c2=16.又椭圆经过点(5,0),所以a2+b2=1,所以 a2=25,所以
相关文档
最新文档