2011届高三数学上册第三次月考调研考试试题6
长郡中学2011届高三第三次月考试卷(文科数学)

湖南省长郡中学2011届高三第三次月考试卷(文科数学)一、选择题:本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{1,2,3,4,5,6,7}U =,集合{1,3,5}A =,{2,5,7}B =,则()UA B ⋂=( ) A .{1,2,3,5,7} B .{2,7} C . {4,6} D .{6} 2. 设i 是虚数单位,则复数1i i-的虚部是( )A .2i B .12C .12- D .12-3. 在平行四边形ABCD 中,下列结论中不正确...的是( ) A. AB →=DC → B. AD →+AB →=AC → C. AD →+CB →=0 D. AB →-AD →=BD →4. 已知幂函数()f x x α=的图象经过点(2,12),则函数()f x 的定义域为( ).A .(,0)-∞B .(0,)+∞C .(,0)(0,)-∞+∞D .(,)-∞+∞5. 在A B C ∆中,已知:p 三内角A B C 、、成等差数列;:q 60B = .则p 是q 的( )A . 充分必要条件B .必要不充分条件C . 充分不必要条件D .既不充分也不必要条件6. 已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与b 的夹角是( )A . 2π B . 3π C . 4π D .6π7. 阅读如右图所示的程序框图,则输出的结果是( )A. -10B. 0C. 10D. 20 8. 已知函数1()2f x +为奇函数,设()()1g x f x =+, 则12342010()()()()()20112011201120112011g g g g g ++++⋅⋅⋅+=( )A. 1005B. 2010C. 2011D.4020二、填空题:本大题共7个小题,每小题5分,共35分,把答案填写在题中的横线上. 9. 若函数2()(1)f x x a x a a =+-+=为偶函数,则______.10. 设等差数列}{n a 的前n 项和为n S ,若819=S ,则=++852a a a .20n ≤s =0,n =1开始 n=n+1输出s结束NY(1)ns s n=+-11. 已知函数31() 0()2log 0xx f x x x ⎧≤⎪=⎨⎪>⎩,则1(())3f f = .12. 向量a =(cos 15°,sin 15°),b =(sin 15°,cos 15°),则|a -b |的值是 .13. 函数()ln f x x =在x n = ()n N *∈处的切线斜率为n a ,则12233420102011a a a a a a a a +++⋅⋅⋅+= .14. 设函数f (x )=|3x -1|的定义域是[a ,b ],值域是[2a ,2b ] (b >a ),则a +b = . 15. 给出下面的数表序列:222222122221 表3 表21表1其中表n (n =1,2,3 )有n 行,表中每一个数“两脚”的两数都是此数的2倍,记表n 中所有的数之和为n a ,例如25a =,317a =,449a =.则 (1)5a = .(2)数列{}n a 的通项n a =三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分)已知(2sin ,cos sin )a x x x ωωω=+ ,(cos ,cos sin )b x x x ωωω=-,(0)ω>,函数()f x a b =⋅,且函数()f x 的最小正周期为π.(I )求函数()f x 的解析式; (Ⅱ)求函数()f x 在[0,]2π上的单调区间.17.(本小题满分12分)已知公差不为零的等差数列{}n a 中,11a =,且1313,,a a a 成等比数列. (I )求数列}{n a 的通项公式;(II )设2na nb =,求数列{}n b 的前n 项和n S .18. (本小题满分12分)在A B C ∆中,角A B C 、、所对的边分别为a b c 、、.设向量(sin ,cos )m A B = ,(cos ,sin )n A B =(I )若//m n,求角C ; (Ⅱ)若m n ⊥,15B =,62a =+,求边c 的大小.19. (本小题满分13分) 已知0a ≠,函数23212()33f x a x ax =-+,()1g x ax =-+, x R ∈ .(I )求函数()f x 的单调递减区间;(Ⅱ)若在区间1(0,]2上至少存在一个实数0x ,使00()()f x g x >成立,试求正实数...a 的取值范围.20.(本小题满分13分)某鱼塘2009年初有鱼10(万条),每年年终将捕捞当年鱼总量的50%,在第二年年初又将有一部分新鱼放入鱼塘. 根据养鱼的科学技术知识,该鱼塘中鱼的总量不能超过19.5(万条)(不考虑鱼的自然繁殖和死亡等因素对鱼总量的影响),所以该鱼塘采取对放入鱼塘的新鱼数进行控制,该鱼塘每年只放入新鱼b (万条).(I )设第n 年年初该鱼塘的鱼总量为n a (年初已放入新鱼b (万条),2010年为第一年),求1a 及1n a +与n a 间的关系;(Ⅱ)当10b =时,试问能否有效控制鱼塘总量不超过19.5(万条)?若有效,说明理由;若无效,请指出哪一年初开始鱼塘中鱼的总量超过19.5(万条).21. 已知函数21()ln 2f x x ax bx =-+(0a >),且(1)0f '=.(Ⅰ)试用含有a 的式子表示b ,并求()f x 的极值;(Ⅱ)对于函数()f x 图象上的不同两点11(,)A x y ,22(,)B x y ,如果在函数图象上存在点00(,)M x y (其中012(,)x x x ∈),使得点M 处的切线//l A B ,则称A B 存在“伴随切线”. 特别地,当1202x x x +=时,又称A B 存在“中值伴随切线”. 试问:在函数()f x 的图象上是否存在两点A 、B 使得它存在“中值伴随切线”,若存在,求出A 、B 的坐标,若不存在,说明理由.参考答案一、选择题:本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 16. 设全集{1,2,3,4,5,6,7}U =,集合{1,3,5}A =,{2,5,7}B =,则()UA B ⋂=( B ) A .{1,2,3,5,7} B .{2,7} C . {4,6} D .{6} 17. 设i 是虚数单位,则复数1i i-的虚部是( B )A .2i B .12C .12- D .12-18. 在平行四边形ABCD 中,下列结论中不正确...的是( D ) A. AB →=DC → B. AD →+AB →=AC → C. AD →+CB →=0 D. AB →-AD →=BD →19. 已知幂函数()f x x α=的图象经过点(2,12),则函数()f x 的定义域为( C ).A .(,0)-∞B .(0,)+∞C .(,0)(0,)-∞+∞D .(,)-∞+∞【解析】 由已知得122α=,所以1α=-,11()f x xx-==,所以函数()f x 的定义域为(,0)(0,)-∞+∞ .20. 在A B C ∆中,已知:p 三内角A B C 、、成等差数列;:q 60B = .则p 是q 的( A )A . 充分必要条件B .必要不充分条件C . 充分不必要条件D .既不充分也不必要条件21. 已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与b 的夹角是( B )A . 2π B . 3π C . 4π D .6π【解析】 ∵a ·(b -a )=a ·b -a 2=2,∴a ·b =2+a 2=3.∴cos 〈a ,b 〉=a ·b |a ||b |=31×6=12,∴a 与b 的夹角为π3.22. 阅读如图所示的程序框图,则输出的结果是( C )A. -10B. 0C. 10D. 20 【解析】由题意得,1234s =-+-+-192010-+= .20n ≤s =0,n =1开始 n=n+1输出s 结束NY(1)ns s n=+-23. 已知函数1()2f x +为奇函数,设()()1g x f x =+, 则12342010()()()()()20112011201120112011g g g g g ++++⋅⋅⋅+=( B )A. 1005B. 2010C. 2011D.4020二、填空题:本大题共7个小题,每小题5分,共35分,把答案填写在题中的横线上. 24. 若函数2()(1)f x x a x a a =+-+=为偶函数,则___1___.25. 设等差数列}{n a 的前n 项和为n S ,若819=S ,则=++852a a a 27 .26. 已知函数31() 0()2log 0xx f x x x ⎧≤⎪=⎨⎪>⎩,则1(())3f f = 2 .27. 向量a =(cos 15°,sin 15°),b =(sin 15°,cos 15°),则|a -b |的值是 1 .【解析】 由题设,|a |=1,|b |=1,a·b =sin(15°+15°)=12.∴|a -b |2=a 2+b 2-2a·b =1+1-2×12=1.∴|a -b |=1.28. 函数()ln f x x =在x n = ()n N *∈处的切线斜率为n a ,则12233420102011a a a a a a a a +++⋅⋅⋅+=20102011.29. 设函数f (x )=|3x -1|的定义域是[a ,b ],值域是[2a ,2b ] (b >a ),则a +b = 1 . 【解析】 因为f (x )=|3x -1|的值域为[2a ,2b ], 所以b >a ≥0,而函数f (x )=|3x -1|在[0,+∞)上是单调递增函数,因此应有|31|2|31|2a b a b ⎧-=⎨-=⎩,解得01,0a b =⎧⎨=⎩或或1∵0,.1a b a b =⎧>∴⎨=⎩ 所以有a +b =1.30. 给出下面的数表序列:222222122221 表3 表21表1其中表n (n =1,2,3 )有n 行,表中每一个数“两脚”的两数都是此数的2倍,记表n 中所有的数之和为n a ,例如25a =,317a =,449a =.则 (1)5a =129.(2)数列{}n a 的通项n a =(1)21n n -⨯+【解析】(1)5129a =, (2)依题意,23112232422n n a n -=+⨯+⨯+⨯+⋅⋅⋅+⨯ ① 由①⨯2得,2342122232422n n a n =⨯+⨯+⨯+⨯+⋅⋅⋅+⨯ ②将①-②得 23411222222n nn a n --=+++++⋅⋅⋅+-⨯1(12)212nn n -=-⨯-212n nn =--⨯所以 (1)21nn a n =-⨯+.三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分)已知(2sin ,cos sin )a x x x ωωω=+ ,(cos ,cos sin )b x x x ωωω=-,(0)ω>,函数()f x a b =⋅,且函数()f x 的最小正周期为π.(I )求函数()f x 的解析式; (Ⅱ)求函数()f x 在[0,]2π上的单调区间.【解析】(I )2()(2cos sin )(cos sin )(cos sin )f x a b x x x x x x ωωωωωω=⋅=++- ………………2分 sin 2cos 2x x ωω=+2sin(2)4x πω=+ ………………4分因为函数()f x 的最小正周期为π,所以212ππωω=⇒=.()2sin(2)4f x x π=+. (6)分 17.(本小题满分12分)已知公差不为零的等差数列{}n a 中,11a =,且成等比数列. (I )求数列}{n a 的通项公式;(II )设2na nb =,求数列{}n b 的前n 项和n S .【解析】(I )设等差数列,}{d a n 的公差为 (0)d ≠由1313,,a a a 成等比数列,得 23113a a a =⋅ ………………2分即2(12)112d d +=+得2d =或0d =(舍去). 故2d =,所以21n a n =- ……………… 6分 (II ) 2122n a n n b -==,所以数列{}n b 是以2为首项,4为公比的等比数列. ………………8分∴35212222n n S -=+++⋅⋅⋅+2(14)2(41)143nn-==-- ………………… 12分18. (本小题满分12分)在A B C ∆中,角A B C 、、所对的边分别为a b c 、、.设向量(sin ,cos )m A B = ,(cos ,sin )n A B =(I )若//m n,求角C ; (Ⅱ)若m n ⊥,15B =,62a =+,求边c 的大小.【解析】(I )由//m nsin sin cos cos 0A B A B ⇒-=cos()0A B ⇒+=,因为0180A B <+<,所以90A B +=,180()90C A B =-+=. ………………6分(Ⅱ)由m n ⊥sin cos sin cos 0A A B B ⇒+=sin 2sin 20A B ⇒+=,已知15B = ,所以sin 2sin 300A +=,1sin 22A =-,因为023602330A B <<-= ,所以2210A =,105A =.1801510560C =--=.根据正弦定理sin sin a c AC=62sin 105sin 60c +⇒=(62)sin 60sin 105c +⇒=.因为62sin 105sin(4560)4+=+=,所以3(62)223(62)4c +⨯==+. (12)分19. (本小题满分13分) 已知0a ≠,函数23212()33f x a x ax =-+,()1g x ax =-+, x R ∈ .(I )求函数()f x 的单调递减区间;(Ⅱ)若在区间1(0,]2上至少存在一个实数0x ,使00()()f x g x >成立,试求正实数...a 的取值范围.【解析】(I)由23212()33f x a x ax =-+求导得,22()2f x a x ax '=-. ……………………1分①当0a >时,由2222()2()0f x a x ax a x x a'=-=-<,解得20x a<<所以23212()33f x a x ax =-+在2(0,)a上递减. …………3分②当0a <时,由2222()2()0f x a x ax a x x a'=-=-<可得20x a<<所以23212()33f x a x ax =-+在2(,0)a上递减. …………………5分 综上:当0a >时,()f x 单调递减区间为2(0,)a;当0a <时,()f x 单调递减区间为2(,0)a…………………6分(Ⅱ)设23211()()()33F x f x g x a x ax ax =-=-+-1(0,]2x ∈. ……………………8分对()F x 求导,得2222()2(12)F x a x ax a a x a x '=-+=+-, ……………………9分因为1(0,]2x ∈,0a >,所以22()(12)0F x a x a x '=+->,()F x 在区间1(0,]2上为增函数,则m ax 1()()2F x F =.……………………11分 依题意,只需max ()0F x >,即211111038423a a a ⨯-⨯+⨯->,即2680a a +->,解得317a >-+或317a <--(舍去). 所以正实数a 的取值范围是(317,)-++∞. ……………………13分20.(本小题满分13分)某鱼塘2009年初有鱼10(万条),每年年终将捕捞当年鱼总量的50%,在第二年年初又将有一部分新鱼放入鱼塘. 根据养鱼的科学技术知识,该鱼塘中鱼的总量不能超过19.5(万条)(不考虑鱼的自然繁殖和死亡等因素对鱼总量的影响),所以该鱼塘采取对放入鱼塘的新鱼数进行控制,该鱼塘每年只放入新鱼b (万条).(I )设第n 年年初该鱼塘的鱼总量为n a (年初已放入新鱼b (万条),2010年为第一年),求1a 及1n a +与n a 间的关系;(Ⅱ)当10b =时,试问能否有效控制鱼塘总量不超过19.5(万条)?若有效,说明理由;若无效,请指出哪一年初开始鱼塘中鱼的总量超过19.5(万条). 【解析】(I )依题意,1110(1)52a b b =⨯-+=+, (1)分*11()2n n a a b n N +=+∈ ……………………4分(Ⅱ)当10b =时,11102n n a a +=+,1120(20)2n n a a +⇒-=-,所以{20}n a -是首项为-5,公比为12的等比数列. (7)分 故11205()2n n a --=-⨯,得111205()2010()22n nn a -=-⨯=-⨯ ………………9分若第n 年初无效,则12010()19.52n -⨯>220n⇒>⇒5n ≥.所以5n ≥,则第5年初开始无效. (12)分即2014年初开始无效. …………………………………………13分21. 已知函数21()ln 2f x x ax bx =-+(0a >),且(1)0f '=. (Ⅰ)试用含有a 的式子表示b ,并求()f x 的极值;(Ⅱ)对于函数()f x 图象上的不同两点11(,)A x y ,22(,)B x y ,如果在函数图象上存在点00(,)M x y (其中012(,)x x x ∈),使得点M 处的切线//l A B ,则称A B 存在“伴随切线”. 特别地,当1202x x x +=时,又称A B 存在“中值伴随切线”. 试问:在函数()f x 的图象上是否存在两点A 、B 使得它存在“中值伴随切线”,若存在,求出A 、B 的坐标,若不存在,说明理由.【解析】(Ⅰ)()f x 的定义域为(0,)+∞,1()f x ax b x'=-+ ,(1)10f a b '=-+=,1b a ∴=-. ……………2分 代入1()f x ax b x'=-+,得1()f x ax x'=-(1)(1)1ax x a x+-+-=-.当()0f x '>时,(1)(1)0ax x x+-->,由0x >,得(1)(1)0ax x +-<,又0a >,01x ∴<<,即()f x 在(0,1)上单调递增; 当()0f x '<时,(1)(1)0ax x x+--<,由0x >,得(1)(1)0ax x +->, (4)分又0a >,1x ∴>,即()f x 在(1,)+∞上单调递减.()f x ∴在(0,1)上单调递增,在(1,)+∞上单调递减.所以,当1x =时,()f x 的极大值为1(1)ln 1122a f ab =-+=- ………………6分(Ⅱ)在函数()f x 的图象上不存在两点A 、B 使得它存在“中值伴随切线”. 假设存在两点11(,)A x y ,22(,)B x y ,不妨设120x x <<,则211111ln (1)2y x ax a x =-+-,222221ln (1)2y x ax a x =-+-,2121AB y y k x x -==-22212121211(ln ln )()(1)()2x x a x x a x x x x ---+---211221ln ln 1()12x x a x x a x x -=-++--,在函数图象1202x x x +=处的切线斜率120122()()2x x k f x f a x x +''===-⋅+12(1)2x x a ++-,由211221ln ln 1()12x x a x x a x x --++-=-12122(1)2x x a a x x +-⋅+-+化简得:212112ln ln 2x x x x x x -=-+,21lnx x =221122112(1)2()1x x x x x x x x --=++. 令21x t x =,则1t >,上式化为:2(1)ln 1t t t -==+421t -+,即4ln 21t t +=+,若令4()ln 1g t t t =++, 22214(1)()(1)(1)t g t tt t t -'=-=++,由1t ≥,()0g t '≥,()g t ∴在[1,)+∞在上单调递增,()(1)2g t g >=. 这表明在(1,)+∞内不存在t ,使得4ln 1t t ++=2.综上所述,在函数()f x 上不存在两点A 、B 使得它存在“中值伴随切线”. ……………13分。
湖南省长沙同升湖实验学校2022-2023学年高三上学期第三次月考数学试题

二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)
9.下列说法正确的是()
A. 的最小值为2B. 的最小值为1
C. 的最大值为2D. 最小值为
10.已知空间向量 , ,则下列结论正确的是()
14.已知函数 的导数为 ,函数 ,则 的单调递减区间是______.
15.已知对任意平面向量 ,把 绕其起点沿逆时针方向旋转 角得到向量 .如图所示,顶角 的等腰三角形PQR的顶点P、Q的坐标分别为 、 ,则顶点R的坐标为______.
16.函数 ,若关于 的方程 恰有四个不同的实数根,则实数 的取值范围为__________.
长沙市同升湖高级中学2023届高三第三次月考
数学试卷
考试时间:120分钟
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.命题“ , ” 否定是()
A. , B. ,
C. , D. ,
2.已知集合 , 则 ()
A. B. C. D.
3.已知 , ,则 ()
四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.已知等差数列 的前n项和为 ,且 , .
(1)求 通项公式;
(2)若 ,求数列 的前n项和 .
18.如图,在三棱锥 中, , , 为 的中点.
(1)证明: 平面 ;
(2)若点 在棱 上,且二面角 为 ,求 与平面 所成角的正弦值.
19.已知 的内角 , , 所对的边分别为 , , ,记 面积为 ,且满足 .
函数的概念与性质

函数的概念与性质题组一一、选择题1.(安徽省百校论坛2011届高三第三次联合考试理)设()f x 是定义在R 上的偶函数,对任意x R ∈,都有(2)(2),f x f x -=+且当[2,0]x ∈-时,1()()1,(2,6]2x f x =--若在区间内关于x 的方程()log (2)0(1)a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( )A .(1,2)B .(2,)+∞C .D .答案 D.2.(山东省莱阳市2011届高三上学期期末数学模拟理)函数()(3)xf x x e =-的单调递增区间是( )A.(,2)-∞B.(0,3)C.(1,4)D.(2,)+∞答案:D.3.(河南省辉县市第一高级中学2011届高三12月月考理)下列命题中是假命题...的是 A .,)1()(,342是幂函数使+-⋅-=∈∃m m xm x f m R ),0(+∞且在上递减B .有零点函数a x x x f a -+=>∀ln ln )(,02C .βαβαβαsin cos )cos(,,+=+∈∃使R ;D .,()sin(2)f x x ϕϕ∀∈=+R 函数都不是偶函数答案 D.4.(河南省焦作市部分学校2011届高三上学期期终调研测试理)已知函数,下面结论错误..的是 A .函数的最小正周期为 B .函数是奇函数C .函数的图象关于直线对称D .函数在区间上是减函数答案 D.5.(河南省鹿邑县五校2011届高三12月联考理)已知函数(),()f x x g x =是定义在R 上的偶函数,当0x >时,()ln g x x =,则函数()()y f x g x = 的大致图像为( )答案 A.6、(黑龙江省佳木斯大学附属中学2011届高三上学期期末考试理)函数xe x xf )3()(-=的单调增区间是 ( )A .)2,(-∞B . )3,0(C . )4,1(D . ),2(+∞ 答案 D.7.(重庆市南开中学高2011级高三1月月考文)把函数sin ()y x x =∈R 的图象上所有的点向左平称移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin(2),3y x x π=-∈R B .sin(),26x y x π=+∈RC .sin(2),3y x x π=+∈RD .答案 C.8. (江西省吉安一中2011届高三第一次周考)将函数()sin(f x x ωϕ=+)的图象向左平移2π个单位,若所得图象与原图象重合,则ω的值不可能等于A .4B .6C .8D .12答案 B.9.(浙江省诸暨中学2011届高三12月月考试题文)已知函数),0(cos sin )(R x a b a x b x a x f ∈≠-=为常数,、在4π=x 处取得最小值,则函数)43(x f y -=π是 A .偶函数且其图象关于点()0,π对称B .偶函数且其图象关于点)0,23(π对称C .奇函数且其图象关于点)0,23(π对称2 s in (), 23x y x π =+∈ RD .奇函数且其图象关于点()0,π对称 答案 D.10.(山东省济宁一中2011届高三第三次质检理)设a R ∈,函数()xxf x e a e -=+⋅的导函数'()y f x =是奇函数,若曲线()y f x =的一条切线斜率为32,则切点的横坐标为( )A .ln 22B .ln 22-C .ln 2D .ln 2-答案 C.11.(山东省莱阳市2011届高三上学期期末数学模拟理)设奇函数()f x 定义在(,0)(0,)-∞+∞ 上,()f x 在(0,)+∞上为增函数,且(1)0f =,则不等式3()2()5f x f x x --<的解集为( )A.(1,0)(1,)-+∞B.(,1)(0,1)-∞-C.(,1)(1,)-∞-+∞D.(1,0)(0,1)- 答案:D.12.(浙江省诸暨中学2011届高三12月月考试题文)已知函数),0(cos sin )(R x a b a x b x a x f ∈≠-=为常数,、在4π=x 处取得最小值,则函数)43(x f y -=π是 A .偶函数且其图象关于点()0,π对称B .偶函数且其图象关于点)0,23(π对称C .奇函数且其图象关于点)0,23(π对称D .奇函数且其图象关于点()0,π对称 答案 D.13.(山东省聊城市2011届高三年级12月月考理)函数sin(2)3y x π=+的图象( )A .关于点(,0)3π对称 B .关于直线4x π=对称C .关于点(,0)4π对称 D .关于直线3x π=对称答案 A. 二、填空题14. (四川广安二中2011届高三数学一诊复习题综合测试题三)在ABC ∆中,已知,,a b c 是角,,A B C 的对应边,①若,a b >则()(sin sin )f x A B x =-⋅在R上是增函数;②若222(cos cos )a b a B b A -=+,则ABC ∆是Rt ∆;③cos sin CC +的最小值为;④若cos B ,则A=B;⑤若(1t a n )(1t a n )A B ++=,则34A B π+=,其中正确命题的序号是 。
江西省南昌三中2011届高三第六次月考数学(理)试题

江西省南昌三中2011届高三第六次月考数学(理)试题一、选择题(共有10个小题,每小题5分,共50分)1、设为虚数单位,则=+++++10321i i i i ( ) A . B . i - C .i 2 D .i 2-2、若集合P ={|0}y y ≥,P Q Q = ,则集合Q 不可能...是( ) 2A.{|,}y y x x =∈RB.{|2,}xy y x =∈RC.{||lg |,y y x x =>}0 3D.{|,0}y y x x -=≠3、把边长为1的正方形ABC D 沿对角线BD 折起形成三棱锥C A B D -的主视图与俯视图如图所示,则左视图的面积为( )A .14B.12C.16 D.184、在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1,ABCS b ∆=则,3等于 ( )A .2B .3C .23 D .25、已知双曲线22221x y ab-=的一个焦点与抛物线24y x =的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( ) A .224515x y -= B.22154xy-= C.22154yx-= D.225514x y -=6、若把函数sin y x x =-的图象向右平移(>0)个单位长度后,所得到的图象关于轴对称,则的最小值是( ) A .π3B .2π3C .π6D .5π67、若实数,x y 满足不等式组20,10,20,x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩目标函数2t x y =-的最大值为2,则实数的值是( )A .-2B .0C .1D .28、22,,10,,A B C x y OA OB λμ+=⋅= 是圆上不同的三个点,且存在实数,且O C =O A O B λμ+则实数,λμ的关系为( )A .221λμ+=B .111λμ+= C .1λμ⋅= D .1λμ+=9、设,a b 均为大于1的正数,且100ab a b +--=,若a b +的最小值为,则满足2232x y m +≤的整点(,)x y 的个数为( )A .5B .7C .9D .11 10、已知)(x f 是定义域为R 的奇函数,1)4(-=-f ,)(x f 的导函数)('x f 的图象如图所示。
2011届高三数学月考、联考、模拟试题汇编 直线和圆

直线和圆题组一一、选择题1.(北京龙门育才学校2011届高三上学期第三次月考)直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A .相切 B .直线过圆心 C .直线不过圆心但与圆相交 D .相离 答案 B.2.(北京五中2011届高三上学期期中考试试题理)若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( ))(A 50<<k )(B 05<<-k )(C 130<<k )(D 50<<k答案 A.3、(福建省三明一中2011届高三上学期第三次月考理)两圆042222=-+++a ax y x 和0414222=+--+b by y x 恰有三条公切线,若R b R a ∈∈,,且0≠ab ,则2211b a +的最小值为 ( )A .91B .94C .1D .3答案 C.3.(福建省厦门双十中学2011届高三12月月考题理)已知点P 是曲线C:321y x x =++上的一点,过点P 与此曲线相切的直线l 平行于直线23y x =-,则切线l 的方程是( ) A .12+=x y B .y=121+-xC .2y x =D .21y x =+或2y x =答案 A.4. (福建省厦门双十中学2011届高三12月月考题理)设斜率为1的直线l 与椭圆124:22=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( ) A .4条 B .5条 C .6条 D .7条 答案 C.5.(福建省厦门外国语学校2011届高三11月月考理) 已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p = ( ▲ )A 、1B 、2C 、3D 、4答案 B.6.(甘肃省天水一中2011届高三上学期第三次月考试题理)过点M(1,5)-作圆22(1)(2)4x y -+-=的切线,则切线方程为( ) A .1x =-B .512550x y +-=C .1512550x x y =-+-=或D .15550x x y =-+-=或12答案 C.7.(甘肃省天水一中2011届高三上学期第三次月考试题理)已知圆222410x y x y ++-+=关于直线220ax by -+=41(0,0),a b a b>>+对称则的最小值是( )A .4B .6C .8D .9答案 D.8.(广东省惠州三中2011届高三上学期第三次考试理)已知直线x y a +=与圆224x y +=交于A 、B 两点,O 是坐标原点,向量OA 、OB满足||||OA OB OA OB +=-,则实数a 的值是( )(A )2 (B )2- (C 或 (D )2或2- 答案 D.9. (广东省清远市清城区2011届高三第一次模拟考试理)曲线321y x x x =-=-在处的切线方程为( A .20x y -+= B .20x y +-= C . 20x y ++= D .20x y --=答案 C.10.(贵州省遵义四中2011届高三第四次月考理)若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-8邪恶少女漫画/wuyiniao/ 奀莒哂答案 A.11.(黑龙江大庆实验中学2011届高三上学期期中考试理) 若直线y x =是曲线322y x x ax =-+的切线,则a =( ).1A .2B .1C - .1D 或2 答案 D.邪恶少女漫画/wuyiniao/ 奀莒哂12.(黑龙江哈九中2011届高三12月月考理)“3=a ”是“直线012=--y ax ”与“直线046=+-c y x 平行”的 ( )A .充分不必要条件 C .必要不充分条件D .充要条件D .既不充分也不必要条件答案 B.13.(湖北省南漳县一中2010年高三第四次月考文)已知α∥β,a ⊂α,B ∈β,则在β内过点B 的所有直线中A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一一条与a 平行的直线 答案 D.14.(重庆市南开中学2011届高三12月月考文)已知圆C 与直线040x y x y -=--=及都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-=B .22(1)(1)2x y -++=C .22(1)(1)2x y -+-=D .22(1)(1)2x y +++=答案 B. 二、填空题14.(湖北省南漳县一中2010年高三第四次月考文)已知两点(4,9)(2,3)P Q --,,则直线PQ 与y 轴的交点分有向线段PQ的比为 .答案 2.15. (福建省厦门外国语学校2011届高三11月月考理)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+与共线,求椭圆的离心率▲▲.答案 36=e . 16.(甘肃省天水一中2011届高三上学期第三次月考试题理)设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为a = 答案 0.17. (广东省中山市桂山中学2011届高三第二次模拟考试文) 在极坐标中,圆4cos ρθ=的圆心C 到直线sin()4πρθ+=的距离为 .18.(河南省郑州市四十七中2011届高三第三次月考文)如下图,直线PC 与圆O 相切于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E , 4PC =,8PB =,则CE = .答案12519.(黑龙江省哈尔滨市第162中学2011届高三第三次模拟理)已知函数()x f 的图象关于直线2=x 和4=x 都对称,且当10≤≤x 时,()x x f =.求()5.19f =_____________。
河北省重点中学2024年高三第6次月考数学试题

河北省重点中学2024年高三第6次月考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等差数列{}n a 的前n 项和为n S ,若495,81a S ==,则10a =( ) A .23B .25C .28D .292.已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,O 为坐标原点,P 为双曲线在第一象限上的点,直线PO ,2PF 分别交双曲线C 的左,右支于另一点12,,3M N PF PF =若,且260MF N ∠=,则双曲线的离心率为( ) A .52B .3C .2D .723. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A .75B .65C .55D .454.将函数()32cos 2f x x x =-向左平移6π个单位,得到()g x 的图象,则()g x 满足( )A .图象关于点,012π⎛⎫⎪⎝⎭对称,在区间0,4π⎛⎫ ⎪⎝⎭上为增函数 B .函数最大值为2,图象关于点,03π⎛⎫⎪⎝⎭对称C .图象关于直线6x π=对称,在,123ππ⎡⎤⎢⎥⎣⎦上的最小值为1 D .最小正周期为π,()1g x =在0,4⎡⎤⎢⎥⎣⎦π有两个根 5.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆6.函数cos 1ln(),1,(),1x x x f x xex π⎧->⎪=⎨⎪≤⎩的图象大致是( ) A . B .C .D .7.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( ) A .16B .14C .13D .128.若函数()2xf x e mx =-有且只有4个不同的零点,则实数m 的取值范围是( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎫+∞ ⎪⎝⎭C .2,4e ⎛⎫-∞ ⎪⎝⎭D .2,4e ⎛⎤-∞ ⎥⎝⎦9.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( )A .2-B .2C .12-D .1210.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,1,03A ⎛⎫ ⎪⎝⎭为()f x 图象的对称中心,若图象上相邻两个极值点1x ,2x 满足121x x -=,则下列区间中存在极值点的是( ) A .,06π⎛⎫-⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,3π⎛⎫⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭12.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1(,0)F c -,2(,0)F c ,以线段12F F 为直径的圆与双曲线在第二象限的交点为P ,若直线2PF 与圆222:216⎛⎫-+= ⎪⎝⎭c b E x y 相切,则双曲线的渐近线方程是( )A .y x =±B .2y x =±C . 3y x =±D .2y x =±二、填空题:本题共4小题,每小题5分,共20分。
重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题(含解析)
注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题符合题目要求的.1. 已知集合{}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭则A B = ( )A. ()4,3-B. ()0,3C. ()3,0-D. ()4,0-【答案】B 【解析】【分析】先分别求出集合A B ,,再进行集合的交集运算【详解】由12816x <<解得43x -<<,∴{}43A x x =-<<,由250x x +>解得0x >或5x <-,所以{0B x =>或5}x <-,所以A B = (0,3)故选:B.2. 已知点()()()1,2,1,4,,1A B C x -,若A ,B ,C 三点共线,则x 的值是( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】利用向量共线的坐标表示即可得解.【详解】因为()()()1,2,1,4,,1A B C x -,所以()()2,2,1,1AB AC x =-=--,因为A ,B ,C 三点共线,则,AB AC共线,则()212(1)x -⨯-=⨯-,解得2x =.故选:B.3. “1x >”是“11x-<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】将11x -<化简,再根据充分必要条件关系判断.【详解】()1110101x x x x x x+-<⇔>⇔+>⇔<-或0x >,由1x >成立可以推出1x <-或0x >,但1x <-或0x >成立不能推出1x >,所以1x >是11x-<的充分不必要条件.故选:A.4. 若0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭,则a ,b ,c 的大小关系为( )A. a c b << B. c a b<< C. b c a<< D. c b a<<【答案】D 【解析】【分析】首先化解,a b ,再根据中间值1,以及幂函数的单调性比较大小,即可判断.【详解】00.1.11331a -⎛⎫= ⎪=⎭>⎝,01.10.51225b -⎛⎫=> ⎪⎝⎭⎛⎫= ⎪⎝⎭,()35log 0,12c =∈,0.1y x =在()0,∞+上单调递增,532>,所以a b >,所以a b c >>.故选:D5. 设m ,n 是不同的直线,,αβ为不同的平面,下列命题正确的是( )A. 若,,n m n αβαβ⊥⋂=⊥,则m α⊥.B. 若,//,//n m n m αβα= ,则//m β.C. 若,,//,//m n m n ααββÌÌ,则//αβ.D. 若//,,m n m n αβ⊥⊥,则//αβ.【答案】D 【解析】【分析】根据空间直线、平面间的位置关系判断.【详解】对于A ,直线m 与平面α可能平行、相交或直线m 在平面α内,故错误;对于B ,//m β或m β⊂,故错误;对于C ,平面α与平面β平行或相交,故错误;对于D ,//,,m n m α⊥则n α⊥,又n β⊥,所以//αβ,D 正确;故选:D .6. 若曲线1()ln f x x x=+在2x =处的切线的倾斜角为α,则()sin cos cos 1sin2αααα-=-( )A. 1712-B. 56-C. 175-D. 【答案】A 【解析】【分析】根据导数的几何意义先求出函数()f x 在2x =处的导数值,即可得到在2x =处切线的斜率,进而得到倾斜角α的正切值,再根据tan α求出题中式子的值.【详解】由题意得,211()f x x x'=-,所以411(2)241f '=-=,于是()f x 在2x =处切线的斜率为14,即1tan 4α=.又()22sin cos sin cos cos 1sin2cos (sin 2sin cos cos )ααααααααααα--=--+2sin cos 1cos (sin cos )cos (sin cos )αααααααα-==--222sin cos sin cos cos ααααα+=-,将原式分子分母同时除以2cos α得,2222sin cos tan 1sin cos cos tan 1ααααααα++=--,代入1tan 4α=可得最终答案为1712-.故选:A.7. 已知数列{}n a 的首项12025a =,前n 项和n S ,满足2n n S n a =,则2024a =( )A.12025B.12024C.11012D.11013【答案】C 【解析】【分析】根据2n n S n a =得到211(1)n n S n a --=-,两式相减得到221(1)n n n a n a n a -=--,求出n a 即可求解.【详解】因为2n n S n a =,所以211(1)(2)n n S n a n --=-≥,两式相减得221(1)n n n a n a n a -=--,所以11(2)1n n a n n a n --=≥+,所以1321221123121213121(1)n n n n a a a n n a a a n a n a n n -------⋅⋅⋅⋅=⋅⋅⋅⋅=++++L L ,所以12(2)(1)n a n a n n =≥+,所以4050(2)(1)n a n n n =≥+,所以202411012a =.故选:C.8. 已知1x 是函数()()2ln 1f x x x =---的零点,2x 是函数()2266g x x ax a =+--的零点,且满足1234x x -<,则实数a 的取值范围是( )A. )3,-+∞B. 253,8⎫-⎪⎭C. 7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ D. 7125,568⎫⎛-⎪⎝⎭【答案】B 【解析】【分析】利用导数研究函数的单调性可证明函数()f x 存在唯一零点,即12x =,可得()g x 在511,44⎛⎫ ⎪⎝⎭有零点,利用参变分离可求解.【详解】由()()2ln 1f x x x =---,1x >,可得()12111x x f x x --=-'-=,当12x <<时,()0f x '<,此时()f x 在()1,2单调递减;当2x >时,()0f x '>,此时()f x 在()2,+∞单调递增;又因为()20f =,所以函数()f x 存在唯一的零点,即12x =.因为122324x x x -=-<,解得2511,44x ⎛⎫∈ ⎪⎝⎭.即()2266g x x ax a =+--在511,44⎛⎫⎪⎝⎭上有零点,故方程2623x a x -=-在511,44⎛⎫⎪⎝⎭上有解,而263336(3)333x x x x x x -⎡⎤=---=-+-+⎢⎥---⎣⎦,因为511,44x ⎛⎫∈⎪⎝⎭,故713,44x ⎛⎫-∈ ⎪⎝⎭,故349(3)34x x ≤-+<-,所以25624a ≤<2538a -≤<故选:B.【点睛】方法点睛:对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间(),m n 上的题型,一般采取列不等式组(主要考虑判别式、对称轴、()(),f m f n 的符号)的方法解答.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 在下列函数中,最小正周期为π且在π0,2⎛⎫⎪⎝⎭为减函数的是( )A. ()cos f x x= B. ()1πsin 23f x x ⎛⎫=-⎪⎝⎭C. ()22cos sin f x x x=- D. ()πtan 4f x x ⎫⎛=-⎪⎝⎭【答案】ACD【解析】【分析】根据三角函数图象与性质,以及复合函数的单调性判断方法逐项判断即可.【详解】对于A ,()cos f x x =的最小正周期为π,当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()cos cos f x x x ==,根据余弦函数的单调性可知,此时函数单调递减,故A 正确;对于B ,()1πsin 23f x x ⎛⎫=- ⎪⎝⎭的最小正周期2πT=4π12=,故B 不正确;对于C ,()22cos sin f x x x =-cos 2x =,所以最小正周期2πT=π2=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()20,πx ∈,根据余弦函数的单调性可知,此时函数单调递减,故C 正确;对于D ,最小正周期πT=π1=-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,πππ,444x ⎛⎫-∈- ⎪⎝⎭,由复合函数单调性判断方法可知,此时()πtan 4f x x ⎛⎫=- ⎪⎝⎭单调递减,故D 正确.故选:ACD.10. ABC V中,BC =BC 边上的中线2AD =,则下列说法正确的有( )A. 4AB AC +=B. AB AC ⋅为定值C. 2220AC AB +=D.BAD ∠的最大值为45︒【答案】ABD 【解析】【分析】由中线的性质结合向量的线性运算判断A 选项;由中线的性质和向量数量积的运算有22AB AC AD DB ⋅=- ,求值判断B 选项;C 选项,由πADB ADC ∠+∠=,结合余弦定理求22AC AB +的值;D 选项,ABD △中,余弦定理得22cos 4AB BAD AB+∠= ,结合均值不等式求解.【详解】A .24AB AC AD +==,故A 正确;的B .22()()()()422AB AC AD DB AD DC AD DB AD DB AD DB ⋅=+⋅+=+⋅-=-=-= ,故B 正确;C .πADB ADC ∠+∠= ,cos cos 0ADB ADC ∴∠+∠=,由余弦定理知,222222022AD BD AB AD CD AC AD BD AD CD+-+-+=⋅⋅0=,化简得2212AC AB +=,故C 错误;D .22cos 4AB BAD AB +∠==≥=AB =时等号成立,由于090BAD <∠< ,所以BAD ∠的最大值为45 ,故D 正确;故选:ABD .11. 在正方体1111ABCD A B C D -中,6AB =,,P Q 分别为11C D 和1DD 的中点,M 为线段1B C 上一动点,N 为空间中任意一点,则下列结论正确的有( )A. 直线1BD ⊥平面11AC DB. 异面直线AM 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C. 过点,,B P Q的截面周长为+D. 当AN BN ⊥时,三棱锥A NBC -体积最大时其外接球的体积为【答案】ACD 【解析】【分析】利用线面垂直的判定定理,结合正方体的性质可判断A 正确;由11A D B C 转化异面直线所成的角,在等边1AB C △中分析可知选项B 错误;找出截面图形,利用几何特征计算周长可得选项C 正确;确定三棱锥体积最大时点N 的位置,利用公式可求外接球的半径和体积,得到选项D 正确.【详解】A.∵11111111111,,AC B D AC B B B D B B B ⊥⊥= ,11B D ⊂平面11BDD B ,1BB ⊂平面11BDD B ,∴11A C ⊥平面11BDD B ,∵1BD ⊂平面11BDD B ,∴111A C BD ⊥,同理可证,11DC BD ⊥,∵1111A C DC C ⋂=,11AC ⊂平面11AC D ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,选项A 正确.B. 如图,连接1,AB AC ,由题意得,11A D B C ,11AB AC B C ===直线AM 与1A D 所成的角等于直线AM 与1B C 所成的角,在等边1AB C △中,当点M 与1,B C 两点重合时,直线AM 与1B C 所成的角为3π,当点M 与1B C 中点重合时,1AM BC ⊥,此时直线AM 与1B C 所成的角为2π,故直线AM 与1A D 所成角的取值范围是[,]32ππ,选项B 错误.C. 如图,作直线PQ 分别与直线1,CC CD 交于点,S T ,连接BS 与11B C 交于点E ,连接BT 与AD 交于点F ,则五边形BEPQF 即是截面.由题意得,1SPC △为等腰直角三角形,113PC SC ==,由1BB CS ∥得,1112BB B EC S CE==,∴114,2B E C E ==,∴BE =PE =,同理可得,BF QF ==,∵,P Q 分别为11C D 和1DD 的中点,∴PQ =,∴截面周长为+C 正确.D.当AN BN ⊥时,点N 的轨迹为以AB 为直径的球,球心为AB 中点,半径为3,三棱锥A NBC -的体积即为三棱锥N ABC -的体积,点N 到平面ABC 距离的最大值为球的半径,此时点N 在正方形11ABB A 的中心处,三棱锥A NBC -体积有最大值.由题意得,平面NAB ^平面ABC ,NAB △,ABC V 均为等腰直角三角形,NAB △的外接圆半径为132AB r ==,ABC V 的外接圆半径为22ACr ==,∴三棱锥A NBC -的外接球半径R ==,∴外接球体积为3344ππ33R =´=,选项D 正确.故选:ACD.【点睛】方法点睛:本题为立体几何综合问题,求三棱锥外接球半径方法为:(1)在三棱锥A BCD -中若有AB ⊥平面BCD ,设三棱锥外接球半径为R ,则2224h R r =+,其中r为底面BCD △的外接圆半径,h 为三棱锥的高即AB 的长.(2)在三棱锥A BCD -中若有平面ABC ⊥平面BCD ,设三棱锥外接球半径为R ,则2222124l R r r =+-,其中12,r r 分别为,ABC BCD 的外接圆半径,l 为,ABC BCD 公共边BC 的长.三、填空题:本题共3小题,每小题5分,共15分.12. 复数221iz =--(i 是虚数单位),则复数z 的模为________.【解析】【分析】利用复数除法运算化简,再由复数模的计算公式求解.【详解】()()()()21i 22221i 1i 1i 1i 1i z +=-=-=-+=---+,z ∴==.13. 在数列{a n }中,111,34n n a a a +==+,若对于任意的()*,235n n k a n ∈+≥-N 恒成立,则实数k 的最小值为______.【答案】427【解析】【分析】利用构造法分析得数列{}2n a +是等比数列,进而求得2n a +,从而将问题转化为353nn k -≥恒成立,令()()*253nn f n n -=∈N ,分析数列(){}f n 的最值,从而得解.【详解】由134n n a a +=+,得()1232n n a a ++=+,又12123a +=+=,故数列{}2n a +为首项为3,公比为3的等比数列,所以12333n n n a -+=⨯=,则不等式()235n k a n +≥-可化为353nn k -≥,令()()*353n n f n n -=∈N ,当1n =时,()0f n <;当2n ≥时,()0f n >;又()()1132351361333n n n n n nf n f n ++---+-=-=,则当2n =时,()()32f f >,当3n ≥时,()()1f n f n +<,所以()()333543327f n f ⨯-≤==,则427k ≥,即实数k的最小值为427.故答案为:427.14. 若定义在()0,+∞的函数()f x 满足()()()6f x y f x f y xy +=++,且有()3f n n ≥对n *∈N 恒成立,则81()i f i =∑的最小值为________.【答案】612【解析】【分析】由条件等式变形为()()()()222333f x y x y f x x f y y +-+=-+-,再构造函数()()23g x f x x =-,得到()()()g x y g x g y +=+,并迭代得到()()13g n n f =-⎡⎤⎣⎦,由此得到()()23133f n n f n n =+-≥⎡⎤⎣⎦,,并求和,利用放缩法,即可求解最小值.【详解】因为()()()6f x y f x f y xy +=++,所以()()()()222333f x y x y f x x f y y +-+=-+-,设()()23g x f x x =-,则()()()g x y g x g y +=+,因此()()()()()()()()11211221g n g n g g n g g g n g =-+=-++=-+()()()()()211321g n g ng n f ==+-==-⎡⎤⎣⎦ ,所以()()23133f n n f n n =+-≥⎡⎤⎣⎦,取1n =,得()13f ≥,所以()8111188822()3133612i i i i f i ii i f =====+-≥=⎡⎤⎣⎦∑∑∑∑,所以81()i f i =∑的最小值为612.故答案:612.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 平面四边形ABCD中,已知4,120,AB BC ABC AC =∠=︒=(1)求ABC V 的面积;(2)若150,BCD AD ∠=︒=ADC ∠的大小.【答案】(1(2)60︒【解析】【分析】(1)由已知,设BC x =,则4AB x =,由余弦定理,可得1x =,利用三角形的面积公式即可求得ABC V 的面积;(2)在ABC V中,由正弦定理,可求得sin ACB ∠=,进而求得cos ACB ∠=,进而求得sin ACD ∠=ACD中,由正弦定理,求得sin ADC ∠=ADC ∠的大小.【小问1详解】由已知,设BC x =,则4AB x =,在ABC V 中,由余弦定理,2222cos AC AB BC AB BC ABC =+-⋅∠,为因为120,ABC AC ∠=︒=,所以22222116421x x x x =++=,解得1x =,所以1BC =,4AB =,所以11sin 4122ABC S AB BC ABC =⋅∠=⨯⨯= .【小问2详解】在ABC V 中,由正弦定理,sin sin ACB ABCAB AC ∠∠=,因为120,ABC AC ∠=︒=,4AB =,所以sin sin 4ABC ACB AB AC ∠∠=⋅==,又在ABC V 中,120ABC ∠=︒,则060ACB ︒<∠<︒,所以cos ACB ∠==,因为150BCD ∠=︒,所以()sin sin 150ACD ACB ∠=︒-∠sin150cos cos150sin ACB ACB=︒∠-︒∠12⎛== ⎝,在ACD 中,由正弦定理,sin sin ADC ACDAC AD∠∠=,又AD ==解得sin ADC ∠=>,所以60ACD ∠>︒,因为0180ADC ︒<∠<︒,则60ADC ∠=︒.16. 如图,在直三棱柱111ABC A B C -中,1,3,4,,,AB AC AC AB AA M N P ⊥===分别为11,,AB BC A B 的中点.(1)求证://BP 平面1C MN ;(2)求二面角1P MC N --的余弦值.【答案】(1)证明见解析(2).【解析】【分析】(1)先证明1,,,M N C A 四点共面,再证明1MA BP ,由线面平行的判定定理可证;(2)以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,结合空间向量的坐标运算以及二面角公式,带入求解即可.【小问1详解】证明:连接1A M ,因为,M N 分别为,AB BC 的中点,则MN AC ∥,在三棱柱111ABC A B C -中,11ACA C ,则11MN A C ∥,则11,,,M N A C 四点共面,11AB A B = ,且11AB AB ∥,,M P 分别为11,AB A B 的中点,则1BM PA 且1BM PA =,则四边形1BMA P 为平行四边形,则1MA BP ,BP ⊄ 平面1C MN ,1MA ⊂平面1C MN ,则//BP 平面1C MN .【小问2详解】在直棱柱111ABC A B C -中,11,,AA AB AA AC AB AC ⊥⊥⊥,则以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系:则有13(0,0,0),(4,0,0),(0,3,0),(2,0,0),(2,,0),(2,0,4),(0,3,4)2A B C M N P C ,13(2,3,4),(0,,0),(0,0,4)2MC MN MP =-== ,设平面1MPC 的一个法向量为(,,)m x y z = ,平面1MNC 的一个法向量为(,,)n a b c =,则1234040m MC x y z m MP z ⎧⋅=-++=⎪⎨⋅==⎪⎩及12340302n MC a b c n MN b ⎧⋅=-++=⎪⎨⋅==⎪⎩,令3,1x c ==,则有(3,2,0),(2,0,1)m n ==,则cos ,m n m n m n ⋅===,因为二面角1P MC N --为钝角,则所求二面角的余弦值为.17. 已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,点()4,3P 在双曲线C 上.(1)求双曲线C 的方程.(2)设过点()10-,的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.【答案】(1)22143x y -=; (2)存在,29(,0)8Q -,58564.【解析】【分析】(1)根据题意由双曲线的渐近线方程得到ba的值,再根据(4,3)P 在双曲线上,将坐标代入双曲线方程即可解得,a b 的值.(2)设出直线l 方程与M ,N 点坐标1122(,),(,)x y x y ,联立直线与双曲线方程,结合韦达定理可表示出12x x +、21x x 、12y y +、12y y ,再设出Q 坐标(,0)t ,则可以表示出,QM QN 坐标,即可用坐标表示出QM QN⋅的值,再结合具体代数式分析当QM QN ⋅为常数时t 的值.【小问1详解】由题意得,因为双曲线渐近线方程为y x =,所以b b a =⇒=,又点(4,3)P 在双曲线上,所以将坐标代入双曲线标准方程得:221691a b-=,联立两式解得21612a a -=⇒=,b =,所以双曲线的标准方程为:22143x y -=.【小问2详解】如图所示,点(1,0)E -,直线l 与双曲线交于,M N 两点,由题意得,设直线l 的方程为1x my =-,Q 点坐标为(,0)t ,联立221431x y x my ⎧-=⎪⎨⎪=-⎩得,22(34)690m y my ---=,设11(,)M x y ,22(,)N x y ,则122634m y y m +=-,122934y y m -=-,21212122268(1)(1)()223434m x x my my m y y m m +=-+-=+-=-=--,22121212122124(1)(1)()134m x x my my m y y m y y m --=--=-++=-,11)(,t y QM x =- ,22,)(Q x t y N =-,所以21212121212()()()Q t x t y y x x t x x t y M N y Q x +⋅--=-++=+2222212489343434m t t m m m ---=-⋅++---222222121384(34)8293434m t m t t tm m -------=+=+--22829434t t m +=--+-,所以若要使得上式为常数,则8290t +=,即298t =-,此时58564QM QN ⋅= ,所以存在定点29(,0)8Q -,使得QM QN ⋅ 为常数58564.【点睛】关键点点睛:本题(2)问解题关键首先在用适当的形式设出直线l 的方程,当已知直线过x 轴上的定点(,0)n 时,可设直线方程为x my n =+,这样可简化运算,其次在于化简QM QN ⋅时计算要仔细,最后判断何时为常数时要抓住“消掉m ”这个关键,即最后的代数式中没有我们设出的m.18. 已知函数()2sin cos f x x x x x =--.(1)求()f x 在πx =处的切线方程;(2)证明:()f x 在()0,2π上有且仅有一个零点;(3)若()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,求a 的取值范围.【答案】(1)220x y π+-= (2)证明见解析 (3)1πa <-【解析】分析】(1)根据解析式求出切点,再根据导函数求出斜率,点斜式可得到切线方程;(2)先分析函数的单调性,需要二次求导,再结合函数值的情况进行判断;(3)对于函数图象的位置关系问题,可先特值探路求出参数的取值范围,再证明在该条件不等式恒成立即可.【小问1详解】()2sin cos f x x x x x =--,当πx =时,()π2sin ππcos ππ0f =--=,所以切点为()π,0,因为()2cos cos sin 1cos sin 1f x x x x x x x x =-+-=+-',【所以斜线方程的斜率()πcos ππsin π12k f ==+-=-',根据点斜式可得()02πy x -=--可得220x y π+-=,所以()f x 在πx =处的切线方程为220x y π+-=;【小问2详解】由(1)可得()cos sin 1f x x x x =+-',令()()cos sin 1g x f x x x x ==+-',所以()sin sin cos cos g x x x x x x x '=-++=,当π0,2x ⎛⎫∈ ⎪⎝⎭和3π,2π2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()0g x '>,()g x 单调递增;当π3π,22x ⎛⎫∈⎪⎝⎭时,cos 0x <,()0g x '<,()g x 单调递减;()πππππ0cos00sin010,cos sin 11022222g g ⎛⎫=+⨯-==+⨯-=-> ⎪⎝⎭,()πcos ππsin π1=2<0g =+--,3π3π3π3π3πcos cos 11022222g ⎛⎫=+-=--< ⎪⎝⎭,()2πcos 2π2πsin 2π10g =+-=,存在0π,π2x ⎛⎫∈⎪⎝⎭使得g (x 0)=0,所以()f x 在()00,x 上单调递增,在()0,2πx 单调递减,又()()02sin 00cos 00,π2sin ππcos ππ0f f =-⨯==-⨯-=,()2π2sin 2π2πcos 2π2π=4πf =---,所以()f x 在()0,2π上有且仅有一个零点;【小问3详解】因为()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,即2sin x ax x >+恒成立,等价于2sin x xa x -<恒成立,当πx =时,有2sin 1ππa ππ-<=-,下证:2sin 1πx x x -≥-即证21sin πx x x -≥-,()0,x ∞∈+恒成立,令()21sin πs x x x x =-+,当2πx ≥时,2sin 2π4π>01sin πx x x x --++>,当()0,2πx ∈时,()2cos 1πs x x x -+'=,设()2cos 1πt x x x =-+,则()2sin πt x x -'=+,此时()0t x '=在()0,2π有两个不同解1212π,,0π2x x x x <<<<,且当10x x <<或22πx x <<时,()0t x '>,当12x x x <<时,()0t x '<,故()t x 在()12,x x 上为减函数,在()10,x ,()2,2πx 上为增函数,而()()()π0π0,2π402t t t t ⎛⎫====> ⎪⎝⎭,故当π02x <<时,()0t x >,当ππ2x <<时,()0t x <,当π2πx <<时,()0t x >,故()s x 在π0,2⎛⎫ ⎪⎝⎭上为增函数,在π,π2⎛⎫ ⎪⎝⎭为减函数,在()π,2π为增函数,而()()0π0s s ==,故()0,2πx ∈时,()0s x ≥恒成立,综上1πa <-.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数y =g (x )的图象的交点问题.19. 数列{}n b 满足32121222n n b b b b n -++++= ,{}n b 前n 项和为n T ,等差数列{}n a 满足的的1143,a b a T ==,等差数列前n 项和为n S .(1)求数列{}{},n n a b 的通项公式;(2)设数列{}n a 中的项落在区间()21,1m m T T ++中的项数为()m c m N*∈,求数列{}mc 的前n 和n H;(3)是否存在正整数m ,使得3m m m mS T S T +++是{}n a 或{}n b 中的项.若有,请求出全部的m 并说明理由;若没有,请给出证明.【答案】(1)21n a n =-,12n n b -=(2)2121233m m m H +=-+(3)1m =,2m =或5m =【解析】【分析】(1)先利用数列通项与前n 项和的关系求出12n n b -=,然后得到12n n b -=为等差数列,求得n T ,再求得14,a a ,计算数列{a n }的通项公式即可;(2)先求出区间()21,1m m T T ++的端点值,然后明确{a n }的项为奇数,得到()21,1m m T T ++中奇数的个数,得到()m c m N*∈通项公式,然后求和即可;(3)先假设存在,由(1)求得2n S n =,21nn T =-,令3m m m mS T L S T ++=+,然后判断L 的取值,最后验证,不同取值时,m 的值即可.【小问1详解】由题可知,当1n =时,11b =;当2n ≥时,得3121221222n n b b b b n --++++=- 因为32121222n n b b b b n -++++= 两式相减得11122n n n n bb --=⇒=经检验,当*N n ∈时,12n n b -=显然,{b n }是以1为首项,2为公比的等比数列,所以122112nn n T -==--所以1143,17a b a T ====等差数列{a n }的公差71241d -==-所以21n a n =-【小问2详解】由(1)可知,2212,12m m m m T T +=+=因为21n a n =-,所以21n a n =-为奇数;故()m c m N *∈为区间()21,1m m TT ++的奇数个数显然2212,12m m m m T T +=+=为偶数所以21224222m m mm m c --==-所以()2121444412222m mm m m H ---++++=-++++ ()214141122122141233m mm m +--=⨯-=-+--【小问3详解】由(1)可知2n S n =,21nn T =-所以23322121m m m m m m S T m S T m ++++-=++-若3m m m mS T S T +++是{a n }或{b n }中的项不妨令3m m m mS T L S T ++=+,则L *∈N 则有()()()232221118221m m m m L L m L m ++-=⇒--=-+-因为210,20m m -≥>所以18L ≤≤因为L 为数列{a n }或{b n }中的项所以L 的所有可能取值为1,2,3,4,5,7,8当1L =时,得20m =无解,所以不存在;当18L <≤时得28112m L m L --=-令()2*1,2m m g m m -=∈N 得()22ln 2ln 22mm m g m +='-令()22ln 2ln 2h m m m =-+显然()22ln 2ln 2h m m m =-+为二次函数,开口向下,对称轴为()11,2ln 2m =∈()()()120,368ln 20,4815ln 20h h h =>=->=-<所以当3m ≤时,()0g m '>,()2*1,2m m g m m N -=∈单调递增;当3m ≥时,()0g m '<,()2*1,2m m g m m N -=∈单调递减得()()1531,416g g ==因为28112m L m L --=-所以89112L L L -≤⇒≥-所以L 的可能取值有5,7,8我们来验证,当5L =时,得21324m m -=,可得存在正整数解2m =或5m =,故5L =满足;当7L =时,得21126m m -=,当m 为整数时,212m m -分子为整数,分母不能被3整除;所以21126m m -=无正整数解,故7L =不满足;当8L =时,得2102m m -=,得存在正整数解1m =,故8L =满足;综上所诉,1m =,2m =或5m =.【点睛】关键点点睛:(1)需要构造数列,然后合理利用数列通项与前n 项和的关系求解即可;(2)需要明确两个数之间奇数的个数即可;(3)先假设存在,然后确定数列{a n }或{b n }中的项是哪些,最后再反过来求m 的值即可.。
长沙市长郡中学2023届高三上学期第三次月考数学试题(含答案)
【答案】D
【解析】
【分析】先作出 关于 的对称点 ,再作 关于 的对称点 ,因为光线从 点出发射到 上的 点经 反射后,入射光线和反射光线都经过 关于直线 的对称点 点,又因为再经 反射,反射光线经过 关于直线 的对称点,所以只需连接 、 交 与点 ,连接 、 分别交 为点 、 ,则 , 之间即为点 的变动范围.再求出直线 , 的斜率即可.
A. B.
C. D.
【答案】ABD
【解析】
【分析】观察图形,分析剪掉的半圆的变化,纸板 相较于纸板 剪掉了半径为 的半圆,再分别写出 和 的递推公式,从而累加得到通项公式再逐个判断即可
【详解】根据题意可得纸板 相较于纸板 剪掉了半径为 的半圆,故 ,即 ,故 , , , … ,累加可得 ,所以 ,故A正确,C错误;
6.设 ,则()
A. B.
C. D.
【答案】D
【解析】
【分析】分别判断出 , , ,即可得到答案.
【详解】 .
因为 ,所以 .
所以 ;
因为 在R上为增函数,所以 ;
因为 在 上为增函数,且 所以 ,即 ;
所以 .
故选:D
7.将函数 的图象上所有点向右平移 个单位长度,得到如图所示的函数 的图象,则 ()
10.设 ,函数 在区间 上有零点,则 的值可以是()
A. B. C. 解不等式 得解.
【详解】由题得 ,
令 ,解得 ,取k=0,
,即 .
故选:BCD
11.如图, 是一块半径为1的圆形纸板,在 的左下端前去一个半径为 的半圆后得到图形 ,然后依次剪去一个更小半圆(其直径为前一个前掉半圆的半径)得图形 , ,记纸板 的周长为 ,面积为 ,则下列说法正确的是()
广西桂林中学届高三月月考试题 数学文
桂林中学11月考数学文科试题命题人:曹海平 审题人:周小英(考试时间:9:00-—--—11:00)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}{}()===B A C U,则,,2,31A ,2,3,4,51U ( )A .{3}B .{5}C .{1,2,4,5}D .{1,2,3,4}2.已知a R ∈,则“2a >"是“22a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件3.已知数列{a n }满足a 1 =0,n a an n 21+=+,那么2011a 的值是()A .2009×2010B .20112C .2010×2011D .2011×20124.已知等比数列{}na 中有31174a aa =,数列{}nb 是等差数列,且77a b =,则59b b +=( )A .2B .4C.8D .165.已知集合21{|216},0,3x A x x B xx⎧+⎫=-<=≤⎨⎬-⎩⎭则=B C A R( )A .517,3,222⎛⎤⎛⎫-- ⎪⎥⎝⎦⎝⎭B .517,3,222⎛⎫⎡⎫-- ⎪⎪⎢⎝⎭⎣⎭ C .1,32⎛⎤- ⎥⎝⎦D .1,32⎛⎫- ⎪⎝⎭6.设函数()6)(-=x x x f ,若()f x 在0x =处的切线斜率为( )A .0B .1-C .3D .6-7.已知322log 2,log 3,log 5a b c ===,下面不等式成立的是( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<8.函数211y x x =++的最大值是 ( )A .45B .54C .34D .439.已知命题p :关于x 的函数234y xax =-+在[1,+∞)上是增函数,命题q :关于x 的函数(21)xy a =-在R 上为减函数,若p 且q 为真命题,则a 的取值范围是 ( )A .23a ≤B .102a << C .1223a <≤ D .112a <<10.设函数()2f x x x a =++-的图象关于直线2x =对称,则a 的值为( )A .6B .4C .2D .2- 11.函数12()1log ()2xf x xg x -=+=与在同一直角坐标系下的图象大致是( ) 12.设曲线1(*)n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201012010220102009log log ......log x x x +++的值为( ) A .2010log 2009-B .1-C .()2010log20091-( D .1第Ⅱ卷二、填空题:(本大题共4小题;每小题5分,满分20分) 13.函数3)4lg(--=x x y 的定义域是 .14.记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =_____________15.设{na }为公比q 〉1的等比数列,若2008a 和2009a 是方程24830xx -+=的两根,则20102011aa +=__________。
北京市十一学校2011届高三数学月考试题理(2011.2.13)
北京市十一学校2011届高三数学练习(理) 命题人:李锦旭 2011.2.13第Ⅰ卷一. 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知x y R ∈,,i 为虚数单位,且()112x y i i +-=+,则复数()1x yi ++所对应点的位置为( )A .实轴正半轴上B .实轴负半轴上C . 虚轴正半轴上D . 虚轴负半轴上2.已知条件()2:14p x +>;条件:q x a >;且p ⌝是q ⌝的充分而不必要条件,则a 的取值范围是( )A .1a ≥B .1a ≤C .3a ≥-D .3a ≤-3.要从10名男生和5名女生中选出6人组成啦啦队,若按性别依此比例分层抽样且某男生担任队长,则不同的抽样方法数是( ) A . 2539CCB . 25310C C C . 25310AAD . 25410CC4.已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( ) A .//////m n m n ααββαβ⊂⊂⇒,,, B .//m m n n αα⇒⊥,⊥ C .////m n m n αβαβ⊂⊂⇒,, D .//n m n m αα⇒,⊥⊥5.若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为( )A . 2B . 3C . 4D .6.类似于十进制中逢10进1,十二进制的进位原则是逢12进1,采用数字0,1,2…,9和字母M 、N 共12个计数符号,这些符号与十进制数的对应关系如下表:例如,由于563312101211=⨯+⨯+,所以,十进制中563在十二进制中就被表示为3MN .那么,十进制中的2011在十二进制被表示为( )A .1N27B .11N5C .12N5D .11N77.如图,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+,则x y +的值为( )A . 2B . 1C . 1+D . 2+ 8.在一次学科内研究性学习课上,老师给出问题:研究函数()222x xaf x +=(其中a 为非零实数)的性质.随机选择5位同学得到的结果如下: ①当0a >时,()f x 在定义域上为单调函数;②当1a =-时,函数()f x 的图象的关于原点中心对称; ③对于任意的0a >,函数()f x 均能取到最小值为 ④对于任意的0a >,函数()f x 为偶函数;⑤当1a =时,对于满足121201,,x x x x <<<的所有总有()()()21213ln 22f x f x x x -<-. 其中所有正确结果的序号为( )A .①②③B .③④⑤C . ②③D . ②③⑤第Ⅱ卷二. 填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.9. 52x x ⎛⎫- ⎪⎝⎭的展开式中3x 项的系数为 (用具体数字作答).10.设变力()F x 作用在质点M 上,使M 沿x 轴正向从2x π=运动到2x π=,已知()sin F x x x =+,且变力F 的方向与x 轴正向相同,则力()F x 对质点M 所做的功为11.设D 是不等式组21023041x y x y x y +≤⎧⎪+≥⎪⎨≤≤⎪⎪≥⎩表示的平面区域,则D 中的点()P x y ,到直线10x y +=距离的最大值是 .12. 如图,已知PA 是⊙O 的切线,切点为A ,PC 交⊙O 于B 、C 两点,2PB =,6BC =,AB =则PA 的长为__ _ ,ACB ∠的大小为___ _.PAx13.在直角坐标系x O y 中,直线L 的参数方程为112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),在极坐标系(与直角坐标系x O y 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为2sin ρθ=.(1)圆C 的直角坐标方程为;(2)设圆C 与直线L 交于两点A 、B ,若点P 的直角坐标为),则∣PA ∣+∣PB ∣的值为 .14.如图,在三棱锥O ABC -中,三条棱OA 、OB 、OC 两两垂直,且OA >OB >OC ,分别经过三条棱OA ,OB ,OC 作一个截面平分三棱锥的体积,截面面积依次为1S ,2S ,3S ,则将1S ,2S ,3S 按从小到大顺序排列为 .三.解答题(要求写出必要的解题步骤,共80分)15.(本小题满分13分)已知数列{}n a 的前n 项和2n S n n =+,数列{}n b 满足121n n b b +=-,且12b =. (Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)假设数列{}n c 的前n 项和n T ,且21log n n nc a b =⋅,证明:1n T <.16.(本小题满分13分)如图A B ,是单位圆O 上的动点, 且A B ,分别在第一,二象限.C 是圆与x 轴正半轴的交点,AOB ∆为正三角形.若A 点的坐标为()x y ,,记α=∠COA (Ⅰ)若A 点的坐标为34 55⎛⎫ ⎪⎝⎭,,求αααα2cos cos 2sin sin 22++的值; (Ⅱ)求2||BC 的取值范围.17.(本小题满分13分)甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如下:(Ⅰ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;(Ⅱ)若将频率视为概率,对乙同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为X ,求X 的分布列及数学期望EX .18.(本小题满分13分)已知四棱锥ABCD P -的底面ABCD 是正方 形,且⊥PD 底面ABCD ,其中E 为PA 的中点,1PD AD ==. (Ⅰ)求证:PB DE ⊥;(Ⅱ)求二面角D PB A --的大小;(Ⅲ)线段PB 上是否存在一点M ,使⊥PC 平面ADM , 若存在,试确定M 点的位置;若不存在,请说明理由.19.(本小题满分14分)如图,椭圆C 的中心在原点,焦点在x 轴上,12,F F 分别是椭圆C 的左、右焦点,M 是椭圆短轴的一个端点,过1F 的直线l 与椭圆交于,A B两点,12MFF ∆的面积为4,2ABF ∆的周长为(Ⅰ)求椭圆C 的方程;(Ⅱ)设点Q 的坐标为()1 0,,是否存在椭圆上的 点P 及以Q 为圆心的一个圆,使得该圆与直线12,PF PF 都相切,如存在,求出P 点坐标及圆的方程,如不存在,请说明理由.20.(本小题满分14分)设)(x f 是定义在区间),1(+∞数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有0)(>x h ,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P . (Ⅰ)设函数)(x f )1(12ln >+++=x x b x ,其中b 为实数. (i ) 求证:函数)(x f 具有性质)(b P ; (ii )求函数)(x f 的单调区间.(Ⅱ) 已知函数)(x g 具有性质)2(P .给定,),,1(,2121x x x x <+∞∈设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1α>,1β>若<-|)()(|βαg g |)()(|21x g x g -,求m 的取值范围.北京市十一学校2011届高三数学练习(理) 2011.02.13命题人:李锦旭9.___________ ;10.____________ ; 11.__________;12._______;_____;13._________ _;______; 14. ________ _.三、解答题:(本大题共6个小题,共80分,解答应写出文字说明,证明过程或演算步骤,请将解答写在规定的区域内,在其他区域内答题无效)班 姓 学17.(本小题满分14分)18.(本小题满分14分)北京市十一学校2011届高三数学练习(理)参考答案班级 姓 学1.B 【解析】由复数相等的定义可得x=3,y=1,于是(1)4x y i ++=-,对应点在实轴负半轴上,选B .2.A 【解析】p ⌝:13≤≤-x ,q ⌝:a x ≤;p ⌝⇒q ⌝但反之不然!即q ⌝p ,结合数轴得1a ≥,故选A . 3. A 4. D 5. C6.D 【解析】32201111211211127=⨯+⨯+⨯+,故表示成十二进制为11N7,选D .7. B 【分析】可考虑分析图形特征,确定基底,AB AC 并将AD 向,AB AC方向来分解:作DF AB ⊥,设1AB AC BC DE ==⇒==60DEB ∠=,BD ∴=由45DBF ∠=解得2DF BF ===故1x =+y =8.D 【解析】x xa x f 22)(+=,令xx a 22=得2log 2=x ,增区间为),(log 2+∞a ,减区间为)log ,(2a -∞,不能说“在定义域上为单调函数”,故①错;当1a =-时xx x f --=22)(为奇函数,故②对;对于任意的a R +∈,函数()f x a ax x222≥+=,取到最小值a x axx 2log 22=⇒=,故③对;易知只有a=1时为偶函数,故④错;当1a =时,对于满足121201,,x x x x <<<的所有有2ln 23)1()()()(1212='<'≤--f x f x x x f x f ,故“21213()()ln 2()2f x f x x x -<-总有.”成立,⑤对. 也可用结论)1,0(),(),()()(211212⊂∈'=--x x f x x x f x f ξξ,而.2ln 232ln )22(2ln )22()(1=-<-='--ξξξf 9. -10【解析】令1=x 得562222221210=⇒=-=+++=++++n a a a n n n ,故52()x x -的展开式通项为5521552()(2)r r r r r rr T C x C x x--+=-=-,令r=1即得.10.21518π-【解析】变力F 所做功222222115(sin )(cos )| 1.28W x x dx x x πππππ=+=-=-⎰11. 12. 4 ,30 . 13. 22(1)1x y +-=, 3 14. 321S S S <<【解析】设,,()OA a OB b OC c a b c ===>>,过棱OA 且平分三棱锥的体积的截面交侧面OBC 于OD ,是Rt BOC ∆斜边BC 的中线,故1111()224S OA BC == ,同理可得231144S S ==结合a b c >>,易得321S S S <<.三、解答题: 15.本小题满分13分解:(Ⅰ)当1n =时,112a S ==当2212,[(1)(1)]2n n n n a S S n n n n n -≥=-=+--+-=时,所以,2n a n = ……………………………………3分 由121n n b b +=-得:112(1),n n b b +-=-所以,{}1n b -是以111b -=为首项,2为公比的等比数列.所以,1111(1)22n n n b b ---=-= ,所以,121n n b -=+ …………………6分 (Ⅱ)证明:当1n =时,11012121111log 2log (21)2T c a b ====<⋅+ …………………7分 当2n ≥时,12211log 2log (21)n n n n c a b n -==⋅+ 12112log 22(1)n n n n -<=-111()21n n =-- …………………10分 故11111222132(1)n T n n ⎛⎫<++++ ⎪⨯⨯-⎝⎭… 1111111(1)()()222231n n ⎛⎫=+-+-++- ⎪-⎝⎭ (11111112222)n ⎛⎫=+-<+= ⎪⎝⎭ 综上,1n T <成立. ……………………………………13分 16.本小题满分13分解:(1)因为A 点的坐标为34,55⎛⎫⎪⎝⎭,根据三角函数定义可知,40,sin 25παα<<=,得3cos 5α=, …………………2分∴22sin sin 2cos cos 2αααα++=22sin 2sin cos 203cos 1αααα+=-…………………5分 (Ⅱ)因为060AOB ∠=, 所以cos COB ∠=0cos(60)COA ∠+=)60cos(+α …………………6分 所以由余弦定理得222||||||2||||cos BC OC OB OC OB BOC =+-∠=)3cos(22πα+-…………………9分ππαππαπ6532,26<+<∴<< ,2cos )3cos(65cos ππαπ<+<∴,即cos()023πα-<+<, …………………11分23||22+<<∴BC ,…………………13分 17.本小题满分13分【解答】由茎叶图知甲乙两同学的成绩分别为:甲:82 81 79 88 80 乙:85 77 83 80 85 (Ⅰ)派乙参赛比较合适, ……………………………………1分 理由如下:甲的平均分82x =甲,乙的平均分82x =乙,甲乙平均分相同;………………………3分 又甲的标准差的平方(即方差)210S =甲,乙的方差29.6S =乙,22S S>乙甲;……………………………………5分 甲乙平均分相同,但乙的成绩比甲稳定,∴派乙去比较合适;……………………………………6分 (Ⅱ)记乙同学在一次数学竞赛中成绩高于80分为事件A ,有3()5P A =, ……………………………………7分X 可能取值为:0,1,2,3, ……………………………………8分其分布列为:X 0 1 23P812536125 54125 27125……………………………………12分∴8365627901231251251251255EX =⨯+⨯+⨯+⨯=.…………………………………13分 或直接使用下法:X 服从二项分布3(3,)5B ,故EX np =95=.【注】本题第(Ⅰ)小题的结论唯一但理由不唯一,只要考生从统计学的角度给出其合理解答即可得分.如还可有如下解释:法2 从统计学的角度看,甲获得85分以上(含85分)的概率115P =,乙获得85分以上(含85分)的概率225P =,甲的平均分82x =甲,乙的平均分82x =乙,平均分相同; ∴派乙去比较合适.法3 若从学生得82分以上(含82分)去分析:甲获得82分以上(含82分)的概率125P =, 乙获得82分以上(含82分)的概率235P =,甲的平均分82x =甲, 乙的平均分82x =乙,平均分相同;∴派乙去比较合适. 18.本小题满分13分 解法一:(Ⅰ)因为⊥PD 底面ABCD ,又AB ⊂平面ABCD ,所以AB PD ⊥;因为ABCD 是正方形,所以AB CD ⊥,又PD AD D = ,所以AB ⊥平面PAD . 在PDA ∆中,因为PD AD =,E 为PA 的中点,所以PA ED ⊥, 由根据三垂线定理可得知:PB DE ⊥…………………………4分(Ⅱ)设AC 交BD 于点O ,因为BD AC ⊥,PD AC ⊥,所以⊥AC 平面PBD . 作F PB OF 于点⊥,连结AF ,则PB AF ⊥, 所以OFA ∠是二面角D PB A --的平面角由已知得,1,PA AB PB ==所以3PA AB AF PB ⋅==, 所以sin 23==∠AF AO OFA ,所以060=∠OFA , 所以二面角D PB A --的大小为060.…………………………………8分 (Ⅲ)当M 是PB 中点时,有⊥PC 平面ADM .……………9分 证明:取PC 的中点,H 连结MH 、DH ,则//MH BC , 所以//MH AD ,故平面ADM 即平面ADHM . 所以CD AD ⊥,所以PC AD ⊥,又PC DH PC ⊥⊥因为,所以平面ADHM ,PC ⊥所以ADM 平面.……………………………………13分解法二:以D 为原点,以DA 、DC 、DP 为x 轴、y 轴、z 轴建立空间直角坐标系,则)0,0,0(D ,(0,0,1)P ,(1,1,0)B ,(1,0,0)A ,(0,1,0)C (Ⅰ)11(,0,)22DE = ,(1,1,1)PB =-,所以1111(1,1,1)(,0,)02222PB DE ⋅=-⋅=-=所以PB DE ⊥,即PB DE ⊥(Ⅱ)(0,0,1)DP = ,(1,1,1)PB =- , (0,1,0)AB =,设平面PBD 的一个法向量为),,(1111z y x n =,则11110,0z x y z =⎧⎨+-=⎩ 取)0,1,1(1-=n . 设平面PBA 的一个法向量为),,(2222z y x n =,则22220,x y z y +-=⎧⎨=⎩ 取)1,0,1(2=n . 所以21,cos 21>=<n n ,所以二面角D PB A --的大小为060. (Ⅲ)令(01),PM PB λλ=<< 则(,,),(1,0,1),PM AP λλλ=-=-AM = 所以P M A P + =(1,,1),λλλ--(0,1,1)PC =-由已知,AD PC ⊥,要使⊥PC 平面ADM ,只须AM PC ⊥,即0,AM PC ⋅= 则有(1)0λλ--=,得21=λ,所以 当M 是PB 中点时,有⊥PC 平面ADM . 19.解:(Ⅰ) 由题意知:,4,4221==⨯⨯bc b c 22,284==a a ,解得 2==c b∴ 椭圆的方程为14822=+y x ………………………… 6分 (Ⅱ)假设存在椭圆上的一点),(00y x P ,使得直线21,PF PF 与以Q 为圆心的圆相切,则Q 到直线21,PF PF 的距离相等,)0,2(),0,2(21F F -1PF : 02)2(000=+--y x y y x2PF : 02)2(000=--+y x y y x …………………… 8分2220022001)2(|3|)2(||d y x y y x y d =++=+-=………… 9分化简整理得: 0832********=++-y x x …………… 10分 ∵ 点在椭圆上,∴ 822020=+y x解得:20=x 或 80=x (舍) ………………………… 13分20=x 时,20±=y ,1=r ,∴ 椭圆上存在点P ,其坐标为)2,2(或)2,2(-,使得直线21,PF PF 与以Q 为圆心的圆1)1(22=+-y x 相切… ……………… 14分 20. 本小题满分14分解:(1)(i )由,12ln )(+++=x b x x f 得⋅++-='22)1(1)(x x bx x x f 因为1>x 时,,0)1(1)(2>+=x x x h 所以函数)(x f 具有性质)(b P .……………………………………2分 (ii )当2≤b 时,由1>x 得,0)1(121222>-=+-≥+-x x x bx x 所以,0)(>'x f 从而函数)(x f 在区间),1(+∞上单调递增.……………………………………4分当2>b 时,解方程012=+-bx x ,得24,242221-+=--=b b x b b x .因为124,12422422221>-+=<<-+=--=b b x b b b b b x 所以当),1(2x x ∈时,0)(<'x f ;当),(2+∞∈x x 时.0)(>'x f ;当2x x =时=')(x f 0.从而函数)(x f 在区间),1(2x 上单调递减,在区间),(2+∞x 上单调递增.……………………………………8分综上所述,当2≤b 时,函数)(x f 的单调增区间为),1(+∞;当2>b 时,函数)(x f 的单调减区间为),24,1(-+b b 单调增区间为).,24(2+∞-+b b ……………………………………9分(2)由题设知,)(x g 的导函数),12)(()(2+-='x x x h x g 其中函数0)(>x h 对于任意的),1(+∞∈x 都成立,所以,当1>x 时,,0)1)(()(2>-='x x h x g 从而)(x g 在区间),1(+∞上单调递增.……………………………………10分 ①当∈m (0,1)时,有,)1()1(11121x x m mx x m mx =-+>-+=α222)1(x x m mx =-+<α,得),(21x x ∈α,同理可得),(21x x ∈β,所以由)(x g 的单调性知))(),(()(),(21x g x g g g ∈βα,从而有<-|)()(|βαg g |)()(|21x g x g -,符合题设.……………………………………11分 ②当0≤m 时,有,)1()1(22221x x m mx x m mx =-+≥-+=α11121)1()1(x mx x m mx x m =+-≤+-=ββ,于是1,1>>βα及)(x g 的单调性知)()()()(21αβg x g x g g ≤<≤, 所以≥-|)()(|βαg g |)()(|21x g x g -,与题设不符……………………………………12分 ③当1≥m 时, 同理可得21,x x ≥≤βα,进而得≥-|)()(|βαg g |)()(|21x g x g -, 与题设不符. ……………………………………13分 因此,综合①②③得所求的m 的取值范围为(0,1).……………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州宏升高复学校2011届第三次月考
数学试卷(理科)
一. 选择题 : 本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 只
有一项是符合题目要求的 . 1.已知复数z 满足2)1()1(i z i +=-,则z =( )
A . -1+ i
B .1+i
C . 1-i
D .-1-i
2
.6
1x ⎫⎪⎭展开式中的常数项为( )
A .15
B .15-
C .20
D .20-
3.下列不等式不一定成立的是( )
A .),(,222R b a ab b a ∈≥+
B .),(,232R b a a a ∈>+
C .)0(,2|1|>>+x x x
D .),(,2
2
2
2R b a b a b
a ∈+≤
+ 4.若向量a 与b 的夹角为120° ,且||1,||2,a b c a b ===+,则有( )
A .c a ⊥
B .⊥
C .//
D .// 5.已知==
-∈x x x 2tan ,54
cos ),0,2(则π
( )
A .247
B .-247
C .724
D .-7
24
6.执行如图的程序框,输出的A =( ) A .2047 B .2049 C .1023 D .1025 7.已知f ( x ) = ⎩⎨
⎧≤->-0
)
(log 0)
5(2x x x x f ,
则f ( 2009 ) 等于( )
A .–1
B .0
C .1
D .2 8.关于x 的函数)sin()(φφ+=x x f 有以下命题:
①R ∈∀φ,)()2(x f x f =+π; ②R ∈∃φ,)()1(x f x f =+ ③R ∈∀φ,)(x f 都不是偶函数;④R ∈∃φ,使)(x f 是奇函数. 其中假命题的序号是( )
A .①③
B .①④
C .②④
D .②③
(第6题)
9.如图是函数Q(x)的图象的一部分, 设函数f (x) = sinx, g ( x ) =
x
1
, 则Q(x)是( ) A .
)
()
(x g x f B .f (x)g (x) C .f ( x ) – g ( x ) D .f ( x ) + g ( x )
10.设S =2221111++
+2
23
1
211+++ 2241311++
+ …+2
22009
1200811++,则不大于S 的最大整数[S]等于( ) A. 2007 B.2008 C.2009 D. 3000
二.填空题: 本大题有7小题, 每小题4分, 共28分. 把答案填在答题卷的相应位置.
11.若数列{}a n 满足条件: 211=-+n n a a ,且1a =23
, 则30a = _ __. 12.在△ABC 中,若∠B =60°,sinA=3
1
,BC
=2,则 AC =
13.某篮球运动员在一个赛季的40场
比赛中的得分的茎叶图如图所示,则这组数据的中位数是 ;众数是 . 14.若y x ,满足条件⎩⎨
⎧≤≤+x
y y x 23
,则
y x z 32+=的最大值是__ ___.
15.设函数)3
2sin(2π
+
=x y 的图象关于点P )0,(0x 成中心对称,
若]0,2
[0π
-∈x ,则0x =__
16.在下列五个函数中,①x
y 2=,②x y 2log =,③2
x y =, ④1
-=x y ,⑤x y 2cos =.当1021<<<x x 时,使2
)
()()2(2121x f x f x x f +>+恒成立的函数是___ _ (将正确序号都填上)
17.有3张都标着字母A ,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中6张卡片组成牌号,则可以组成的不同牌号的总数等于 .(用数字作答)
(第9题
三. 解答题: 本大题有5小题,共72分. 解答应写出文字说明, 证明过程或演算步骤. 18.(本小题满分14分)
如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点. (Ⅰ)如果A ,B 两点的纵坐标分别为45,12
13
,求cos α和sin β (Ⅱ)在(Ⅰ)的条件下,求cos()βα-的值;
(Ⅲ)已知点
C (1-,求函数()f OA OC α=⋅的值域.
图4
19、(本小题满分14分)
某商场“十.一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。
顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(Ⅰ)求该顾客摸三次球被停止的概率;
(Ⅱ)设ξ(元)为该顾客摸球停止时所得的奖金数,求ξ的分布列及数学期望E ξ.
20.(本题14分)数列{}n a 中,12a =,1n n a a cn +=+(c 是不为零的常数,123n =,,,),
且123a a a ,,成等比数列.(1)求c 的值;(2)求{}n a 的通项公式; (3)求数列}{n
n c n c
a ⋅-的前n 项之和n T .
21.(本题15分)已知,a R ∈函数)()(2a x x x f -=. (1)当a =3时,求f (x )的零点;
(2)求函数y =f (x )在区间[1,2]上的最小值.
22.(本题15分)已知二次函数f ( x ) = x 2 + a x (a R ∈). (1)若函数y = f (sinx +3cosx) (x R ∈)的最大值为3
16
,求()f x 的最小值; (2)当a = 2时,设n ∈N *, S= )
3(3)13(13)1(1)(n f n
n f n n f n n f n +--+++++ , 求证:43< S <
2 ;
(3)当a > 2时, 求证f (sin 2xlog 2sin 2x+cos 2xlog 2cos 2x) ≧1 – a , 其中x ∈R , x ≠ k π且x ≠ k π2
π
+(k ∈Z )
杭州宏升高复学校2011届第三次月考
数学试卷(理科)答题卷
一.选择题: 本大题共10小题, 每小题5分, 共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.
题号 1 2 3 4 5 6 7 8 9 10 答案
二.填空题: (本大题有7小题, 每小题4分, 共28分)
11.12. 13.14. 15.16. 17.
三. 解答题: (本大题有5小题, 共72分)
18.(本题14分)
19.(本题14分)
20.(本题14分)
21.(本题15分)22.(本题15分)
18.解:(Ⅰ)根据三角函数的定义,得4sin 5α=
,12
sin 13
β=. 又α是锐角,所以,3
cos 5α=
.……………………………4分 (Ⅱ)由(Ⅰ)知,4sin 5α=,12
sin 13
β=.
又α是锐角,β是钝角, 所以 3cos 5α=
,5
cos 13
β=-. 所以 5312433
cos()cos cos sin sin ()13
13565
βαβαβα-=+=-
⨯+⨯=.……9分 (Ⅲ)由题意可知,(cos ,sin )OA αα=,(1OC =-.
所以 ()3s i n c o s 2s i n ()
6
f O A O C π
αα
αα=⋅=-=-,
因为
02π
α<<
,所以663
π
π
π
α-
<-
<
,
所以函数()f OA OC α=⋅的值域为(1-.……………………………14分
19解(Ⅰ)记“顾客摸球三次被停止”为事件A ,则1122323
51
()55
C C A P A A ==分
(Ⅱ)
04080
6ξ的可能值为:、、分21222223551
(0)6
A C A P A A ξ==+=
113112
2
2322234551(40)3C C A C C A P A A ξ==+=,21331422332445
551(80)92
C C A C C A P A A ξ==+=分
12分
111160
40806323
E ξ∴=++=(元)14分。