静电场中导体达到静电平衡的条件
(整理)静电场中的导体和电介质

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。
(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。
掌握导体静电平衡条件

E E0,
U Ed ,
W
1 QU
2
(2) 将均匀介质充入两极板之间。
C ,
E E0 , r
U Ed ,
W 1 QU 2
(3) 将一导体平板平行地插入两极板之间。
d ,
C ,
E E0,
U Ed ,W 1 QU Nhomakorabea2试定性地讨论两板上的电荷、电容、极板之间电压、场强
和储存能量的变化。
课堂计算题
1
的高斯定理:
2
l2
D2S D1S S
已知两层介质中的场强分别为:
E1
1 1L1 2 L2
U
;
E2
2 1L1 2 L2
U
D2 D1
22 11 U 1 L1 2 L2
课后练习题
1. 金属球A半径为R,外面包围一层 r=2的均匀电介质壳,壳内外
半径分别为R 和2R , 介质内均匀分布电量为q0的自由电荷,金 属球接地,求介质壳外表面的电势。
基本概念和规律
1 . 导体静电平衡的条件
(1) 用电场强度描述
导体内部任一点的电场强度为零 E内 0
导体表面上任一点的电场强度垂直于该点的表面。
E表表面
(2) 用电势描述:整个导体是等势体,表面是等势面。
(3) 用电荷分布描述:导体内部没有电荷,电荷只分
布在导体表面。且 0 E
2. 有介质存在时的电场
(3)插入过程中,电介质板极化,束缚电荷与极板上的 自由电荷相互吸引。
静电力做正功,电场能减少。
则:外力做功为
A
We We
0U 2S 2 rd
(1
r)
0
S
Ud
大学物理授课教案 第八章 静电场中的导体和电介

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时,称这种状态为导体的静电平衡。
(2)静电平衡条件从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成: ①⇒导体内各点电势相等; ②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 导体静电平衡时其内0=E,∴ 0=•⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=•内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴ 空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即BAU U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=•内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q ,∴ 腔内表面必有感应电荷-q ,。
[理学]静电场中的导体
![[理学]静电场中的导体](https://img.taocdn.com/s3/m/d5df37ae767f5acfa0c7cdaf.png)
QB
4 0r 2
rA r rB
由于球壳接地有 U A 0 ,根据电势的定义,
则O点的电势为:
UO
UO UA
a E dr
0
rB 0
E1
dr
rA E rB 2
dr
a rA E3 dr
rA E rB 2
dr
rA QB dr
rB 4 r 2
QB
4 0
1 rB
1 rA
•高压设备都用金属导体壳接地做保护
•在电子仪器、或传输微弱信号的导线中都常用 金属壳或金属网作静电屏蔽。
•高压带电操作
U C
外界不影响内部
静电的应用
一、静电的特点
•带电体所带的静电电荷的电量都很小; •静电场所具有的能量也不大; •电压可能很高。
二、静电的应用
•范德格拉夫起电机 •静电除尘 •静电分离 •静电织绒 •静电喷漆 •静电消除器 •静电生物技术
B、C、D处的场强和电势又如何?
解:
(1)据静电平衡条件和高斯定理有:
s1
内球:电荷 q 均匀分布在球面; 球壳:内表面均匀分布 q ;
外表面均匀分布 2q 。
s2
D
C
BA
R3
o R1 R2
(2)由高斯定理,可算得:
E1 0
r R1
E2
q
40r 2
R1 r R2
E3 0
U R1 1r
R2 r
E1
dr
R3
R2
E R1 2
E4 dr
RR243 E23 q0rd2r
r
R3
R3
E4
dr
U2
q
静电场中的导体

R1 r R2
E3
1
4
0
Q q/ r2
U
R1
E.dr
R2 R1
E2.dr
R2 E3.dr 0
r R2
q/
4 0
1 R1
1 R2
1
4 0
Q q/ R2
0,
解得
q
R 1
Q
R
2
故外球壳外表面荷电 Q q/ Q R1 Q
R2
17
10
例8-14 如图所示,一带正电Q的点电荷离半径为R的金属球壳 外的距离为d,求金属球壳上的感应电荷在球心O处的场强。
q/
R
r
E0 0 E/ d
Q
解 以球心为坐标原点,球心指向点电荷的方向为矢径方向,则
点电荷在球心处的场强
Q
E0 4 0 (R d )2 r0
又
E E/ E 0
内
0
q
总之,导体壳内部电场不受壳外电荷的影响,接地导体使 得外部电场不受壳内电荷的影响。这种现象称为静电屏蔽。
12
2、尖端放电
在带电尖端附近,电离的分子与周围分子碰撞,使周围的 分子处于激发态发光而产生电晕现象。
+ +
++ +++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电晕, 故此,高压设备中的金属柄都做成光滑的球形。
△s面上σ均匀, E1=常矢 ,且垂直于导体表面,又E内=0
e
E表
E s1 1
0
ds
s
静电场中的导体总结

q 2
方向朝左
2 0 s q EC 2 0 s
EB
q
方向朝右
X
方向朝右
16
2、右板接地
4 0
高斯定理:
q 1 2 s 2 3 0
1 2
0
A
3
q
B p
4
0
C
q
P点的合场强为零:
1 2 3 0
1 0
EA 0
q 2 s q 3 4 0 s q EB EC 0 0s
根据高斯定理有:
E ds
3
p
4
E1 E2 E3
q
i
i
2 3 0
0
( 2 3 )s
E4
0
0
X
E p E1 E2 E3 E4 0 P点的场强是四个带电面产生 1 2 3 4 0 E p E1 E2 E3 E4 0, E p
q p
V p Vq
Ei dl 0
p
导体静电平衡条件:
Ei 0
q
V p Vq
导体表面:场强方向处处垂直于表面 表面即为一等势面
4
导体的静电平衡
静电平衡条件:
场强
导体内部场强处处为零
表面场强垂直于导体表面
' E内 E 0 E 0 ' E表面 E0 E 表面
E1 0 E3 0 E2 4 0 r22 q1
q1 q1
A
B
q1 q2 E4 4 0 r42
q1 q1 q1 q2 1 q1 q2 V1 ( ) ; V3 4 0 R1 R2 R3 4 0 R3 1 q1 q1 q1 q2 1 q1 q2 V2 ( ) ; V4 4 0 r2 R2 R3 4 0 r4 1
物理-导体电介质存在时静电场的计算

2 0
其余 电荷 在S面元处内、外侧产生场强为 E2则有:
E1 E2 0, (内侧)
E1
E2
0
n,
(外侧)
由此解得:
E2
2 0
n
一、有导体存在时静电场的计算
其余所有电荷在S面元处的场强,大小等于面元自己激发 的场强,方向在导体内侧与面元场相反,在导体外侧与面
元场同向。
电荷S受到的电场力 E2
q0内
(介质中的高斯定理)
介质方程
二、极化电介质中的静电场计算
利用介质中的高斯定理求电场、极化电荷分布:
条件:电荷及介质的分布具有一定对称性
球对称、柱对称 、镜面对称
自由电荷分布
D dS
S
q0内
( S )
D 0 r E
P 0( r 1)E
P
n
q S dS
二、极化电介质中的静电场计算
Qi const.
i
一、有导体存在时静电场的计算
例1 在无限大的带电平面的场中,平行放置一无限大金
属平板,求:金属板两侧面电荷面密度。
解: 设金属板面电荷密度 1, 2
由对称性和电量守恒 1 2
-1 +2
由场叠加原理及导体体内任一点P场强
为零的事实:
1 2 0 20 20 20
R2 Q r1
3. 两介质交界处的极化电荷
R1 R0
解:1. 场的分布
r2
r<R 0
导体内部
R 0<r<R1 E2
E1 0 P1
Qr
4 0 r1r 3
0
二、极化电介质中的静电场计算
RPrP>321<Rr2<R00E24rr12E14314Q 44r0Qr0Q0Qr30rrr1r2rrrP233r3 0
第13章-静电场中的导体和电介质汇总

(2)空腔内电场强度处处为零,或者说,空腔内的电势处处相等。
证明:在导体内部作一个包围内表面的闭
q
合曲面,由静电平衡v条件,此曲面
上各点的电场强度 E 0,则通过
Ò闭S合Ev曲d面Sv的 0电通量所为以零,即q:i 0
S
假设导体空腔内表面上分布有等量异号的 电荷,是否可以?
屏蔽作用──导体壳内所包围的区域不受外电场的影响。
第13章 静电场中的导体和电介质
本章重点: 本章作业:
§13.1 静电场中的导体
一、导体的静电平衡条件
导体在静电场中,两侧出现正、负电
荷的现象叫做静电感应现象。产生的
电荷称为感应电荷。产生外电场的
电荷称为施感电荷。
静电平衡时:
E E0 E 0
E0
E0
E0
静电平衡时,要求表面电荷也不能移动.即表面处的静电场
( R1 r R2 ) (r R2 )
q
R2
R1
R
(2)根据静电平衡条件和电势的定义可得电势的分布为
R
R1
R2
R1 q
U1
r
E1dr
R
E2dr
E3dr
R1
E4dr
R2
R
4π0r 2 dr
R2
4π0r 2 dr
1
4π 0
q R
q R1
qQ R2
(r R)
U2
R1
E2dr
E2
则面元dS所受的电场力为 单位面积上受到的电场力为
F
2
2 0
E2 en
dS
2 2 0
d Sen
例题13-3 半径为R的孤立金属球,接 地,与球心相距 l 处有一点电荷+q, 求球 上的感应电荷q′。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电场中导体达到静电平衡的条件
静电场中的导体达到静电平衡的条件取决于导体的形状、尺寸和电荷分布,以及导体所处的环境。
在静电平衡状态下,导体内部的电场应该为零,导体表面上的电荷应该均匀分布。
为了达到这种状态,以下是一些条件:
1. 导体必须是完全闭合的,以便电荷不能逃离或进入。
如果导
体不是完全闭合的,则无法达到静电平衡。
2. 导体表面必须光滑,以便电荷可以均匀分布在表面上。
如果
表面不光滑,则电荷可能会聚集在凹陷处,导致电场不均匀。
3. 导体必须足够大,以便电荷分布得足够均匀。
如果导体太小,则电荷分布可能不均匀,导致电场不均匀。
4. 导体应该尽可能地接近其他导体或地面,以便电荷可以流回
地面或其他导体中。
如果导体不接近其他导体或地面,则电荷可能会在导体内部积累,导致电场不均匀。
5. 导体内部不能存在电荷堆积或电场,以便电荷可以均匀地分
布在导体表面上。
如果导体内部存在电荷堆积或电场,则电荷可能会聚集在导体表面上,导致电场不均匀。
综上所述,导体达到静电平衡的条件包括导体必须是完全闭合的、表面光滑、足够大、接近其他导体或地面以及内部不能存在电荷堆积或电场。
只有在这些条件下,导体才能够达到静电平衡状态。
- 1 -。