人口模型预测数学建模作业
数学建模作业

题目在5.6节人口预测和控制模型中,总和出育率)(t β和生育模式),(t r h 是两种控制人口增长的手段。
试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,以及生育第二胎的一些规定,可以怎样通过这两种手段加以实施。
摘 要针对中国人口的实际特点,建立人口分布函数。
收集数据得到中国人口随年份变化的增长率,解决中国人口中短期和长期的人口预测与控制问题。
首先,将人口的预测问题转化为对出生率的预测,通过对数据的分析研究,发现影响人口增长的主要因素可归结为出生率及生育模式的变化,并依次建立不同参数随时间变化的递推数学模型从而讨论各个参数对人口增长的影响。
利用Gamma 函数拟合死亡率对年龄的分布,建立人口分布函数模型,由于概率分布是相对稳定的。
所以对人口预测而言其结果具有可控性,由此可以为我国的计划生育政策作出贡献。
关键词:人口控制;人口分布函数;生育模式一、问题重述在5.6节人口预测和控制模型中,总和出育率)(t β和生育模式),(t r h 是两种控制人口增长的手段。
试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,以及生育第二胎的一些规定,可以怎样通过这两种手段加以实施。
二、问题分析据了解,我国人口总数占世界人口总数的22%,居世界第一,虽然在二十世纪八十年代就已经开始控制人口,但人口增长的脚步依然没有停下,人口老年化问题也越来越严重,所以现在开始提倡一对夫妻只能生一个孩子、晚婚晚育以及定下了一些关于第二胎的政策。
所以,考虑用微分方程中生育率和生育模式来求解问题。
三、模型假设1.时刻t 年龄小于r 的人口2.在社会安定的局面下和不太长的时间里,死亡率大致与时间无关3.无重大天灾人祸,死亡率出生率大致与时间无关。
4.人口统计数据不存在大的误差。
四、符号说明1.人口分布函数记作),(t r F ;2.婴儿的出生率记为)(),0(t f t p =;3.时刻t 、年龄r 的人的死亡率记为),(t r μ;4.dr t r p t r ),(),(μ表示时刻t 年龄在[]dr r r +,内单位时间的死亡人数;5.)(0r p 是人口调查得到的已知函数;6.婴儿的出生率记为)(t f ;五、模型建立由问题假设我们可以得到各个年龄段的人口数,即人口分布函数为: ds t s p t r F r⎰=0),(),(由于在社会安定的局面下和不太长的时间里,死亡率大致与时间无关,于是可近似的假设)(),(r t r μμ=因为)(0r p 与)(r μ可由人口统计数据得到,所以),(t r μ可由)0,(r μ粗略估计,为了预测和控制人口的发展状况,我们需要关注和可以用作控制的就是婴儿的出生率)(t f ,因此我们主要通过讨论)(t f 来研究人口的研究与控制。
数学建模人口模型人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。
2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。
对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。
首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。
在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。
然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。
与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。
对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。
同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。
并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。
基于人口增长模型的数学建模(DOC)

数学建模论文题目:人口增长模型的确定专业、姓名:专业、姓名:专业、姓名:人口增长模型摘要随着人口的增加,人们越来越认识到资源的有限性,人口与资源之间的矛盾日渐突出,人口问题已成为世界上最被关注的问题之一。
问题给出了1790—1980年间美国的人口数据,通过分析近两百年的美国人口统计数据表,得知每10年的人口数的变化。
预测美国未来的人口。
对于问题我们选择建立Logistic模型(模型2)现实中,影响人口的因素很多,人口也不能无限的增长下去,Logistic 模型引进常数N 表示自然资源和环境所能承受的最大人口数,因而得到了一个贝努利方程的初值问题公式,从实际效果来看,这个公式较好的符合实际情况的发展,随着时间的递增,人口不是无限增长的,而是趋近于一个数,这个即为最大承受数。
我们还同时对数据作了深入的探讨,作数据分析预测,通过观测比较选择一个比较好的拟合模型(模型3)进行预测。
预测接下来的每隔十年五次人口数量,分别为251.4949, 273.5988 , 293.4904 , 310.9222 325.8466。
关键词:人口预测Logistic模型指数模型一、问题重述1790-1980年间美国每隔10年的人口记录如下表所示。
试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。
二、问题分析人口预测是一个相当复杂的问题,影响人口增长除了人口数与可利用资源外,还与医药卫生条件的改善,人们生育观念的变化等因素有关…….可以采取几套不同的假设,做出不同的预测方案,进行比较。
人口预测可按预测期长短分为短期预测 (5年以下)、中期预测(5~20年)和长期预测(20~50年)。
在参数的确定和结果讨论方面,必须对中短期和长期预测这两种情况分开讨论。
中短期预测中所用的各项参数以实际调查所得数据为基础,根据以往变动趋势可较准确加以估计,推算结果容易接近实际,现实意义较大。
数学建模习题中国人口增长预测

中国人口增长预测本题是一个人口发展预测的问题。
人口发展与一般种群增长一样,是由自然增长率决定的。
然而,人类个体是一种社会的个体,所以人口发展有自己的特点。
想到人口的迁移,性别比例,城镇化等。
同时,人口发展受政策的影响,例如计划生育;也要受到人们意识的影响,像生育意识等。
但是从社会层面上看,生育意识在整个社会上体现为妇女的生育模式,进而可以特别地去考虑。
思考方法:首先,数据的处理。
在经过EXCEL分析和验证后,适当修正题中的个别有误数据后,利用有效数据进行建模求解,在此过程中,我们提取出死亡率、生育率等感念,且把人的一生按年龄分为青年期、衰老期等阶段。
这是求解人口增长模型的必要过程和方法。
其次,模型建立。
和一般的预测模型一样,本模型也是个预测模型,所以考虑到用题目所给的五年的信息,来推测今后几十年的人口的总数和结构情况。
对此,我们选用差分方程模型和数据参数拟合等方法。
同时,将死亡率与出生率分开分别计算和拟合,通过五年的实际数据拟合出相应函数的参数,再利用此函数进行评估和预测。
最后,利用已有信息以及上述所求出的对应函数和方程,对中短期与长期进行估计和预测,进而得出人口结构、人口比例、人口数量等一系列的相关数据。
以下是解答过程:1.数据说明:x:表示最大的年龄;mi=1,2,3,4,5,6 其中1表示市男性,2表示市女性,3表示镇男性,4表示镇女性,5表示乡男性,6表示乡女性;A :表示婴儿性别比例矩阵;* :表示点乘;P(x,t):表示t时刻年龄为x的人口数量;ibir(x,t):表示t时刻年龄为x的出生率;i)(,i dea x t:表示t时刻年龄为x的死亡率;)(i t k:表示t时刻婴儿的死亡率;tra(x,t):表示t时刻年龄为x的人口迁出率;i2.假设条件1. 假设国内社会环境稳定,无异常大量死亡或出生情况发生,人口比例,人口总数不会出现突变状况; 2. 假设只存在乡向城镇迁出,不存在其他迁移方式,且不同年龄段迁移率相同; 3. 假设不考虑国家之间的迁入与迁出,把中国内部看为一个封闭的模型; 4. 对于90岁以上的人都按照90岁处理; 5. 假设只存在乡向城镇迁出,不存在其他迁移方式,且不同年龄段迁出率相同,按照0.6%均匀增长。
数学建模作业6

[beta,r,J]=nlinfit(t',x','renkou1',beta0);
beta
y=renkou1(beta,t)
[YY,delta]=nlpredci('renkou1',t',beta,r,J);
plot(t,x,'b*',t,YY,'r')
error=abs(y-x)
42.3671
33.6329
1910
92.0
52.6268
39.3732
1920
106.5
65.3711
41.1289
1930
123.2
81.2016
41.9984
1940
131.7
100.8656
30.8344
1950
150.7
125.2915
25.4085
1960
179.3
155.6324
23.6676
佛山科学技术学院
上机报告
课程名称数学建模
上机项目人口模型
专业班级
一、问题提出
人口问题是当前世界上人们最关心的问题之一。认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提。
要求:分别建立并求解两个最基本的人口模型,即:指数增长模型和Logistic模型,并利用表1给出的近两百年的人口统计数据,画出图形拟合数据,对模型做出检验,最后用它预报2000年的人口。
f=renkou2(beta,t)
plot(t,x,'r*',t,f)
error=abs(f-x)
画图:
(根据拟合出的数据和原来数据填写表格)
6.2 人口增长模型 数学建模

一、粮食生产 19501950-1984 世界粮食产量的增幅超过人口增 长速度。但84年以后粮食产量增幅一直落后 长速度。但84年以后粮食产量增幅一直落后 于人口增长速度。 原因:缺少新垦土、灌溉量减少、土地生 产率的提高越来越难。
二、水资源的匮乏 国际水资源管理研究预测,到2050年, 国际水资源管理研究预测,到2050年, 约有10亿人口将面临缺水的状况。 约有10亿人口将面临缺水的状况。 三、海洋捕捞
2005年11月 世界人口状况报告》 2005年11月《世界人口状况报告》显示目 前世界总人口为64.647亿,我国占了约20% 前世界总人口为64.647亿,我国占了约20% 2050年世界人口将达77-112亿,若采取94 2050年世界人口将达77-112亿,若采取94 亿的预测值。会带来什么影响?
例题2齐次微分方程3一阶线性非线性微分方程其他模型malthusmalthus11模型假设模型假设33美国的实际人口数据美国的实际人口数据22模型建立模型建立33模型检验分析模型检验分析1人口预测人口预测22景区游客人数增长景区游客人数增长3城市人口增长城市人口增长
第六章鱼类减少
饲料
渔业养殖
四、森林覆盖率、生物多样性、能源危机等等
2、复习
1、微分方程:含有导数 或微分的方程 2、微分方程的类型:
(1)可分离变量的微分方程,形如 dy = f ( x) ⋅ g ( y ) dx
(2)齐次微分方程 (3)一阶线性、非线性微分方程 其他
例题 模型
2、模型建立
3、模型分析检验
美国的实际人口数据
二、阻滞增长模型
1、 模型假设 设人口增长率r是人口数N的线性递减函数, 记为r ( N ), K 是自然资源和环境条件的最大人 口容量,r 表示人口很少时的增长率(固有增 长率)
数学建模-人口增长模型

人口增长模型摘要本文根据某地区的人口统计数据,建立模型估计该地区2010年的人口数量。
首先,通过直观观察人口的变化规律后,我们假设该地区的人口数量是时间的二次函数,建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数,从而可以预测2010年的人口数为333.8668百万。
然后,我们发现从1980年开始该地区的人口增长明显变慢,于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们建立了阻滞增长模型,利用此模型我们最后求出2010年的人口预报数为296.3865。
关键字:人口预报,二次函数模型,阻滞增长模型问题重述:根据某地区人口从1800年到2000年的人口数据(如下表),建立模型估计出该地区2010年的人口 ,同时画出拟合效果的图形。
符号说明)(t x t 时刻的人口数量 0x 初始时刻的人口数量 r 人口增长率m x 环境所能容纳的最大人口数量,即0)( m x r问题分析首先,我们运用Matlab软件[1]编程(见附件1),绘制出1800年到2000年的人口数据图,如图1。
18001820184018601880190019201940196019802000图1 1800年到2000年的人口数据图从图1我们可以看出1800年到2000年的人口数是呈现增长的趋势的,而且类似二次函数增长。
所以我们可以建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数。
于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们可以建立一个阻滞增长模型。
模型建立模型一:二次函数模型我们假设该地区t时刻的人口数量的人口数量)(tx是时间t的二次函数,即:2()=++x t at bt c我们可以根据最小二乘法,利用已有数据拟合得到具体参数。
即,要求a、b和c,使得以下函数达到最小值:221(,,)()ni i i i E a b c at bt c x ==++-∑其中i x 是i t 时刻该地区的人口数,即有:2222)3.28020002000...)2.718001800(),,(-+⋅+⋅++-+⋅+⋅=c b a c b a c b a E令0,0,0E E E a b c∂∂∂===∂∂∂,可以得到三个关于a 、b 和c 的一次方程,从而可解得a 、b 和c 。
数学建模人口模型

实验一 人口模型与混沌实验目的1.了解Logistic 模型的基本概念。
2.了解的1(1)n n n x rx x +=-分叉和混沌现象。
3.学习、掌握MATLAB 软件有关命令。
实验步骤及结果1. 根据离散Logistic 模型)t (x )x )t (x (r )t (x x )t (x )t (x m -+=+=+11∆t=0,1,2,…,预测出2005-2011年我国的人口总数,其中r =0.029,=m x1950838861。
实验结果如下图所示:r =0.029,=m x 19508388612. 讨论简化的logistic 迭代方程))t (x )(t (rx )t (x -=+11,对于不同的r 和x0观察数列的收敛情况,分别给出t-x 坐标系下图形。
当x(1)=0.4,r 分别为0.7,1.5,3.2时实验结果如下图所示:3、绘制Feigenbaum 图过程:为了观察r 对迭代格式))t (x )(t (rx )t (x -=+11的影响,将区间(0,4]以步长r ∆离散化。
对每个离散的r 值进行迭代,忽略前50个迭代值,把点5152100(,),(,),,(,)r x r x r x 显示在坐标平面上。
实验结果如下:实验代码:1.x=[2005:1:2011];y(1)=126743;r=0.029;k=1950838861;for i=1:11y(i+1)=y(i)+r*(1-y(i)/k)*y(i); endplot(x,y(6:12),'+');hold on2.x=[1:19];y(1)=0.4;r=3.2;for i=1:18y(i+1)=r*(1-y(i))*y(i);plot(x(i),y(i),'+');hold onendxlabel('t');ylabel('x');title('r=3.2,x(1)=0.4')3.for r=[0.005:0.005:4]x(1)=0.6;t=linspace(r,r,100);for j=1:99x(j+1)=r*x(j)*(1-x(j));endhold onplot(t,x,'r+','markersize',0.5); endxlabel('t');ylabel('x');title('r(0,4),x(0.6)')。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上传是为了分析数学的乐趣,请粘贴复制的时候也多思考哈。
为了更多的学子们2014 年数学建模论文第二套题目:人口增长模型的确定专业、姓名:土木135提交日期:2015/7/2 晚上题目:人口增长模型的确定摘要对美国人口数据的变化进行拟合,并进行未来人口预测,在第一个模型中,考虑到人口连续变化的规律,用微分方程的方法解出其数量随时间变化的方程,用 matlab 里的 cftool 工具箱求出参数,即人口净增长率 r=, 对该模型与实际数据进行对比,并计算了从 1980年后每隔10 年的人口数据,与实际对比,有很大出入。
因此又改进出更为符合实际的阻滞增长模型,应用微分方程里的分离变量法和积分法解出其数量随时间变化的方程,求出参数人口增长率r=和人口所能容纳最大值 x m =, 与实际数据对比,拟合得很好,并预测出 1980年后每隔 10 年的人口数据,与实际对比,比较符合。
为了便于比较两个模型与实际数据的描述情况作对比,又做出了两个模型与实际数据的对比图,以及两个模型的误差图。
关键词:人口预测微分方程马尔萨斯人口增长模型阻滞增长模型一、问题重述1790-1980 年间美国每隔 10 年的人口记录如下表所示表 1 人口记录表试用以上数据建立马尔萨斯 (Malthus) 人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。
如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。
二、问题分析由于题目已经说明首先用马尔萨斯人口增长模型来刻划,列出人口增长指数增长方程并求解,并进行未来 50 年内人口数据预测,但发现与实际数据有较大出入。
考虑到实际的人口增长率是受实际情况制约的,因此,使人口增长率为一变化的线性递减函数,列出人口增长微分方程,求出其方程解,并预测未来五十年内人口实际数据。
三、问题假设1. 假设所给的数据真实可靠 ;2. 各个年龄段的性别比例大致保持不变3. 人口变化不受外界大的因素的影响;4. 马尔萨斯人口模型( 1)单位时间的人口增长率 r 为常数; (2)将 x(t) 视为 t 的连续可微函数。
5. 改进后的模型(阻滞增长模型)(1) 人口净增长率 r 为变化量。
四、变量说明x(t) t 时刻的人口数量x 1790初始时刻的人口数量 r 人口净增长率 x m 环境所能容纳的最大人口数量,即 r(x m ) 0五、模型建立1.马尔萨斯人口增长模型t=1790 时的人口数为 x 1790 , 在 t 到 t+Δt 这一时间间隔内,人口的增长为则得到可建立含初始条件的微分 方程 x'(t) =rx(t) , x(1790) x 1790 =(省略 10^6)其解为 x(t) x1790er (t 1790)2.阻滞增长模型 假设人口增长生长率为人口 x(t) 的线性递减函数,即 x m 。
假设自然资源和环境条件所能承受的最大人口容量为x m ,显然,当 x x m 时, r(x m ) r xr m 0。
所以 s r /r m 。
因此有r(x) r rx / r m 。
于是建立下列微分方程 x'(t) r(1 x(t))x(t) ,x m11 x(1790) 3.9。
把上式化为 ( )dx rd(t 1790)。
分离常 x x x mx mm i 于 由 ) t ( x数并积分得到:x m。
x m r(t 1790)1 ( 1)ex1790六、模型求解1. 马尔萨斯模型求解参数估计 :r 可以用实际数据的线性最小二乘法求解,对于x(t) x1790e r (t 1790),直接求解是比较麻烦的,因此在两边取对数,即lnx(t) ln x1790 r(t 1790) ,记lnx(t) y ,ln x1790 ln3.9 1.36 =a。
则原方程化为 (x) = *exp(r*(t-1790)) 。
利用 1790 —1900 年的数据进行拟合,得到 r=. 所以也能求出方程程序见附录 1。
但本题还可以应用matlab 里的 cftool 工具箱求参数,在命令行中输入得到更精确的解:General model:f(x) = *exp(r*(t-1790))Coefficients (with 95% confidence bounds):r=,得到如图所示结果,其中蓝线表示马尔萨斯人口模型预测人口数据,正方形黑点表示实际人口数据。
图 1. 马尔萨斯人口模型与实际人口数据则每隔 10 年预测人口为 : x1990 332.1 , x2000 412.8 , x2010 517.7, x2020 646.5, x2030 799.3 ,然而查阅相关年份美国实际人口数据, 1990年为百万, 2000年为百万,2010年为百万。
对于 2020年和 2030年实际还没有统计,因为没有发生,但通过前三个数据就可以看出马尔萨斯模型预测人口与实际有很大出入,所以必须对该模型做出改进,得到更符合实际的预测模型。
2. 阻滞增长模型求解通过对x '(t )求导得拐点在x x m / 2时,人口增长速度最大。
在问题分析已经得到该模型的表达式,运用 matlab 里的 cftool 工具箱拟合求出参数 General model:f(x) = a*+*exp(-r*(t-1790)))Coefficients (with 95% confidence bounds):模型预测数据,黑点表示实际人口数据 图 2. 组织增长模型预测数据与实际人口数据根据该方程预测得到 x 1990 , x 2000 , x 2010 , x 2020 , x 2030 .其中 1990, 2000,2010 年这三年的预测人口数斗鱼实际人口数据很接近。
但还是有一定的误差,模 型也存在一定的改进程度才能更符合实际情况。
但从图形看,与实际拟合的很好。
3. 为了便于比较两种模型与实际数据的直观对比, 编出程序附录 2把他们放在一个坐标 系里。
图 3. 两个模型与实际人口数据的对比图形虽然直观,但不具体,因此应算出两种模型与实际的误差值比较,程序见附录 3. 得到下图。
图 4. 马尔萨斯模型与阻滞增长模型误差的比较 从图中可以看出阻滞增长模型的误差更小。
七、结果分析1. 马尔萨斯模型结果分析则 每 隔 10 年 预 测 人 口 为 : x 1990 332.1 , x 2000 412.8 , x 2010 517.7, x 2020 646.5, x 2030 799.3 ,然而查阅相关年份美国实际人 口数据, 1990年为百万, 2000年为百万, 2010年为百万。
对于 2020年和 2030年实际 还没有统计,因为没有发生,但通过前三个数据就可以看出马尔萨斯模型预测人口与实 际有很大出入,所以必须对该模型做出改进,得到更符合实际的预测模型。
2. 阻滞增长模型结果分析根据该方程预测得到 x 1990 , x 2000 , x 2010 , x 2020 , x 2030 . 其中 1990年实际人口为百万, 2000 年为百万, 2010 年为百万,这三年的预测人口数与实际人口 因此 x 285.9 285.9 3.9 1)e 0.02858( t 1790) 并得到如下图, 蓝线表示组织增长数据很接近。
但还是有一定的误差,模型也存在一定的改进程度才能更符合实际情况。
但从图形看,与实际拟合的比较好。
八,模型的评价与推广Malthus 数学模型在短期内具有较好的准确度,简易易行,但是不能准确的预测处人口长期的发展趋势,不具有预测人口长期增长数量的能力。
为此,结合资料,考虑到一些实际因素,建立了能很好滴预测人口数量增长的 logstic 模型。
在人口增长的整个过程中 logistic 模型预测的数据与题中所给数据能很好地在误差范围内,几乎一致。
但由于也存在误差,因此也可以通过相关多项式拟合出其方程,也是可以的,比如二次多项式,但次数不一定越高越好,应使模型所预的数据与实际数据更接近,才是比较好的模型。
logistic 模型在人口预测中,在医疗卫生中可以预测寻找某一疾病的危险因素(以及疾病的发展趋势),预测自然界中种群数量的增长等都发挥着巨大的作用。
九、参考文献[1] 王玉英王建国史加荣鲁萍 . 数学建模及其软件实现北京:清华大学出版社 ,2015.[2] 赵凤群戴芳王小侠肖艳婷数学实验基础西安理工大学理学院2013十、附录程序 1 马尔萨斯模型的线性解法t0=[1790:10:1980];X0=[ ];plot(t,x, 'o' );n=1;a=polyfit(t0,x0,n);y=log(x);p=poly2sym(a)程序 2 人口数量实际值与两种模型预测数据对比图clear;t=[1790:10:1980];nx1=*exp.*(t-1790)); nx2=./ (1+*exp.*(t-1790)));plot(t,x, 'r' ,t,nx1, 'b' ,t,nx2, 'g' );legend( ' 实际值 ' , ' 马尔萨斯模型 ' , '? 阻滞增长模型 ' ) 程序 3 两种模型误差散点图x=[ ];clear; t=[1790:10:1980]; x=[ ];nx1=*exp.*(t-1790)); nx2=./(1+*exp.*(t-1790)));W1=(x-nx1)./x;W2=(x-nx2)./x; plot(t,W1, '*' ,t,W2, 'x' ); legend( ' 马尔萨斯模型误差 ' ,' 阻滞增长模型误差 ' )。