数学建模 人口模型 人口预测

合集下载

数学建模在人口增长中的应用

数学建模在人口增长中的应用

数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。

面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。

数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。

1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。

其中,最常用的人口增长模型之一是指数增长模型。

指数增长模型假设人口增长的速度与当前人口数量成正比。

简单来说,人口数量每过一段时间就会翻倍。

这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。

2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。

通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。

除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。

这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。

3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。

通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。

例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。

此外,数学建模还可以用于评估不同人口政策的长期影响。

通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。

4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。

通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。

这些模型可以为城市规划、资源配置和社会发展提供重要参考。

在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。

例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。

数学模型在人口预测中的应用

数学模型在人口预测中的应用

数学模型在人口预测中的应用一、引言随着社会发展和经济不断发展,人们关注的焦点从过去的物质财富转向了社会福利和人口。

因此,在各国政府与经济学家的共同努力下,人口研究成为了当前最为热门的研究方向之一,而数学模型在人口预测中的应用也成为了最有效的工具之一。

二、人口模型与预测的基本知识1. 人口模型的分类基于不同的人口研究方向以及数据来源,人口模型分为两大类:(1)规模模型,又称为数量模型,主要用于研究整个社会群体的总量和增量,通常采用的是统计学的模型。

(2)结构模型,又称为质量模型,主要用于研究不同人口群体的不同性质,包括年龄、性别、收入、教育程度等等,通常采用的是社会学、人口学的模型。

2. 人口预测的方法由于人口研究中涉及数据较多、个体特征较为复杂,所以需要采用一些高效的数学模型预测人口的变化情况。

现在主要采用以下三种方法:(1)趋势分析法,即通过对历史趋势的分析来预测未来人口变化的趋势。

(2)卡尔曼滤波法,该方法主要适用于利用时间序列数据来预测未来人口变化。

(3)灰色模型法,该方法主要适用于在短期内预测人口变化,特别是在经济快速发展的情况下。

三、数学模型在人口预测中的应用范围1. 人口数量的预测在人口数量的预测中,数学模型通常采用的是指数增长模型、线性回归模型或者混沌理论等等,通过这些方法可以预测未来人口数量的变化趋势以及增长率的评估。

2. 人口结构的预测在人口结构的预测中,数学模型通常采用的是多元回归模型、模糊分类模型或者集成模型等等,通过这些方法可以预测未来不同年龄段和性别的人口数量,为政府和社会提供更详实的人口信息和规划建议。

3. 人口迁移的预测在人口迁移的预测中,数学模型通常采用的是马尔可夫模型、神经网络模型或者空间计量模型等等,通过这些方法可以预测不同地区的人口迁移规模和趋势,为地区经济建设和发展带来更多的启示和思路。

四、数学模型在人口预测中的局限性数学模型虽然在人口预测中有很多的优点,特别是在数据处理、预测精度等方面,但是也存在着一些局限性,如对数据的敏感度较高,对于中途的误差难以纠正,同时还需要大量的数据支撑和调整,这些也对数学模型在人口预测中的应用造成了一定的制约。

数学建模 之 人口模型

数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。

首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。

对两种模型的求解,我们引入了微分方程。

其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。

先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。

一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。

然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。

附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。

故假设等价于:单位时间人口增长量与当时人口成正比。

设人口增长率为常数r 。

时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析随着社会经济的发展,人口增长一直是一个备受关注的问题。

数学建模是研究人口增长和人口结构的重要方法之一、本文将对中国人口增长的预测和人口结构进行简析,并利用数学建模方法进行预测分析。

首先,中国人口增长的情况是众所周知的。

随着中国的经济快速发展,人民生活水平的提高,医疗水平的提高以及计划生育政策的实施,中国的人口增长率逐渐放缓。

根据国家统计数据,自2024年以来,中国的总人口增长率一直在下降,其中在2024年总人口为14亿人,增长率仅为0.35%。

根据这一趋势,可以推断出未来的人口增长率可能会进一步下降。

在进行人口增长预测时,可以运用数学建模方法中的指数增长模型。

指数增长模型是描述人口增长的一种常用方法,其基本形式为:N(t)=N0*e^(r*t)其中,N(t)表示时间t时刻的人口数量,N0表示初始人口数量,r表示人口增长率,e表示自然对数的底数。

利用指数增长模型可以对未来的人口增长进行预测。

但要注意的是,由于人口增长受到多种因素的影响,例如政策调整、经济发展、文化变迁等,所以对于人口的精确预测是一项复杂而困难的任务。

因此,在进行人口预测时,应结合实际情况,综合考虑人口增长的多个因素。

另外,人口结构是指人口在不同年龄段的分布情况。

人口结构反映了一个地区或国家的经济、社会、教育等方面的发展状况。

中国的人口结构表现为老龄化趋势和少子化现象。

根据国家统计数据,中国的老龄化人口比例逐年提高,同时生育率呈下降趋势。

这种人口结构的变化将对中国的社会、经济等多个方面产生深远的影响。

为了分析人口结构的变化,可以利用数学建模中的人口金字塔。

人口金字塔以年龄为横轴,人口数量为纵轴,通过金字塔的形状和比例来反映人口的结构情况。

通过观察人口金字塔的变化,可以了解人口的年龄分布情况,判断人口的变化趋势,为相关政策和规划提供依据。

总之,中国人口增长的预测和人口结构的分析是一个复杂的问题,数学建模可以提供一种客观、科学的方法来分析这些问题。

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。

人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。

因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。

本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。

方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。

这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。

通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。

建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。

常用的数学模型包括指数增长模型、Logistic增长模型等。

在本文中,我们以Logistic增长模型为例。

Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。

Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。

参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。

参数估计可以通过拟合历史数据来完成。

常用的参数估计方法包括最小二乘法、最大似然估计等。

模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。

为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。

如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。

预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。

通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。

例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。

结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。

人口增长的预测(数学建模论文

人口增长的预测(数学建模论文

关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。

" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。

二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。

首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。

并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。

按照这个假设,。

用参数=3.0,r=0.0386, =1908, =14.5。

画出N=N(t)的图像,作为人口增长模型的一种近似。

做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。

当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。

用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。

按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。

三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。

设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。

Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。

数学建模之人口预测

数学建模之人口预测

四、符号说明
1.模型一 t 表示某一时刻; P(t) 表示时刻 t 我国的人口数,P0 = P(0); r 表示人口增长率为常数。 2.模型二 t 表示某一时刻; P(t) 表示时刻 t 我国的人口数; Pm(t)表示自然资源和环境条件能容纳的最大人口数量; r 为固有增长率,表示人口很少是(理论上是 x=0)的增长率。 3.模型三 1)F(r,t):人口分布函数; 2)f(t):婴儿出生率; 3) (t):总和生育率; 4)h(r,t):生育模式。
查权威数据可知,我国最大的人口容量是 15--16 亿,上表中的数据大于 16 亿,并有继续上升的趋势,因此,此模型误差较大,究其原因,主要在于没有资 源、环境的限制。
5.2 阻滞增长模型 5.2.1 模型建立 人口增长到一定数量后增长率下降的主要原因中,自然资源、环境条件等因 素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大。阻滞 增长模型就是考虑了这些因素,对指数增长的基本假设进行修改后得到的。 阻滞增长作用主要是体现在对人口增长率 r 的影响上,使得随着 r 的增长人 口数量 P(t)的增长而下降。 则可以把 r 表示为 P 的函数 r(P),且它应是减函数。 于是方程应该改写为 dP (1) rP ,P(0)=P0 dt 假设 r(P)是一个关于 P 的线性函数,即 r(P)=r-Ps(r>=0,s>0) (2) 其中这里的 r 为固有增长率,表示人口很少是(理论上是 x=0)的增长率。引入 自然资源和环境条件能容纳的最大人口数量 Pm(t)当 P(t)= Pm(t)时,人口不再增
3
令△t
0,得到 P(t)满足微分方程 dP (2) rP dt 由这个方程可以解出 rt P(t)=P0e (3) r>0 时,表示人口将按指数规律随时间无限增长。 [3] 利用线性最小二乘法 ,将(3)式取对数,得到 y=rt+a,y=ln P ,a=ln P0 (4) [4] 运用Matlab编程 (程序见附录1),以1999-2006年至的数据对(4)进行数据 拟合,得到相关的参数 a=lnP0=7.1385; r=0.0063,得到 P0=exp(a)=1259.5 (百万) 。 因此可以得到指数增长模型的方程为: P(t)=1259.5 *exp(0.0063*t) (5) 同理可得:若以全部数据拟合对(4)进行数据拟合,得到指数增长模型的方 程为: P(t)= 1262.6*exp(0.0055*t) (6)

数学建模论文-人口预测模型

数学建模论文-人口预测模型

中国人口预测模型摘要本文对人口预测的数学模型进行了研究。

首先,建立一次线性回归模型, 灰色序列预测模型和逻辑斯蒂模型。

考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)其中加权系数为:,其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,然后对人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。

在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。

而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。

而人口增长预测是对未来进行预测的各环节中的一个重要方面。

准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。

2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。

例如,中国人口预期寿命约为70 岁左右,因此,长期人口预测最好预测到70年以后,中期40—50 年,短期可以是5 年、10年或20 年。

根据2007 年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。

2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。

对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。

首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测,得出在 2040 年时,中国人口有 14.32 亿。

在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。

然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1)灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出 2040 年时,中国人口有 14.22 亿。

与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。

对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。

同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。

并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。

对于新政策的实施,我们做出了两个假设。

在假设只有出生率改变的情况,人口呈现一次函数线性增加。

并拟合出一次函数0.032735617965.017372.5t Y e ⨯=⨯-;在假设人口增长率增长20%时,做出了预测如果单独二胎政策实施,到2021年,深圳市常住人口数将会到达1137.98千万人。

关键词:GM(1,1)灰色模型 Logistic 阻滞增长模型 线性拟合 非线性拟合【目录】一、问题重述--------------------------------------------------------------------------------------(4)二、符号定义与说明-----------------------------------------------------------------------------(4)三、模型假设--------------------------------------------------------------------------------------(4)四、问题分析及模型建立及求解A、问题一:1、问题背景----------------------------------------------------- -------------(5)2、问题分析-------------------------------------------------------------------(5)3、模型建立模型一:阻滞增长模型的建立--------------------------------------(6)阻滞增长模型的求解--------------------------------------(6)阻滞增长模型的分析--------------------------------------(7)阻滞增长模型的优化--------------------------------------(7)阻滞增长模型优化后的分析-----------------------------(9)模型二:GM(1.1)灰色预测模型的建立----------------------------(9)GM(1.1)灰色预测模型的求解---------------------------(10)GM(1.1)灰色预测模型的分析---------------------------(11)B、问题二:1、问题重述------------------------------------------------------------------(11)2、问题假设------------------------------------------------------------------(11)3、问题背景------------------------------------------------------------------(12)4、灰色预测模型的建立---------------------------------------------------(14)5、灰色预测模型的求解---------------------------------------------------(14)6、模型的优化(新政策实施后的预测)------------------------------(15)新政策下的建模--------------------------------------------------(16)假设拟合成一次线性函数------------------------------(16)假设按比例增长------------------------------------------(17)数据分析及评价--------------------------------------------------(17)五、模型总评价-----------------------------------------------------------------------------------(18)六、参考文献--------------------------------------------------------------------------------------(19)七、附录--------------------------------------------------------------------------------------------(19)人口的数量和结构是影响经济社会发展的重要因素。

从20世纪70年代后期以来,我国鼓励晚婚晚育,提倡一对夫妻生育一个孩子。

此计划生育是我国的一项基本国策。

近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素。

党的十八届三中全会提出了开放单独二孩,今年以来许多省、市、自治区相继出台了具体的政策。

收集一些典型的研究评论报告,根据每十年一次的全国人口普查数据,建立模型,对报告的假设和某些结论发表自己的独立见解,并针对深圳市或其他某个区域,讨论计划生育新政策(可综合考虑城镇化、延迟退休年龄、养老金统筹等政策因素,但只须选择某一方面作重点讨论)对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。

【符号定义与说明】【模型假设】1.不考虑我国人口向国外搬迁,同时也不考虑外国人口向国内搬迁;2.不考虑战争、灾害、疾病对人口数目的影响;3.假设一年内,各个地区,各个年龄段的死亡率不会发生变化;4.假设在一年内,处于生育年龄的妇女生育率不会发生变化;5.假设附件中所给数据真实可靠具有预测性;6.假设影响中国总人口数的主要因素是死亡率和出生率。

问题一:对中国未来的人口数量进行预测。

一、问题背景中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。

人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。

在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。

对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。

政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。

长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。

随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。

二、问题分析本题需要结合中国的实际情况和人口增长的特点来对中国人口增长的中短期和长期趋势做出预测。

首先,我们从简单模型入手,利用已有年份的人口总量数据预测将来的人口总量的变化趋势,从总体上对人口发展做出预测。

其次,把人口的增长特点考虑在内,利用动态模型并进行计算机模拟,得到符合中国实际情况的模型,包含了老龄化水平、性别比例、城镇化等更细致的结果。

最后,我们对每个模型的预测结果进行对比,评判其各自的优点及缺点,并对政府部门提出一些建设性的意见。

三、模型建立及求解1.3.1模型建立A.阻滞增长模型针对未来中国人口总数,我们建立简单的预测模型---阻滞增长模型。

(具体建立方法见附录1)我们可以得到以下等式:表2 2002~2013年人口计算与实际数据的相对误差表3 阻滞增长模型预测2014~2040年的人口数据下图是优化后阻滞增长模型拟合中国人散点图。

2002200420062008201020122014年份人口数/亿重新拟合后计算人口数和实际人口数对比图图2 优化后阻滞增长模型拟合中国人散点图 优化后的模型分析: 对于优化后的模型,在2002到2010年间坐到了高度符合。

但是在2010年后的数据的拟合中还是出现一些小问题。

1.3.2模型二:GM(1.1)灰色预测模型 1.3.2.1 模型建立由于人的出生和死亡是随机的,因为我们利用灰色预测模型中的累加效果,尽量减少这种随机的影响,在此我们采用GM(1.1)灰色预测模型(具体参考附录)。

为了使预测结果效果更佳,并不直接用总人口序列建模,而是先求出各年的净增人口序列,即2002~2013年各年的净增人口数据如表4,然后应用净增人口序列建模计算净增人口预测值。

相关文档
最新文档