人教版初中七年级数学下册《点到直线的距离》教案

合集下载

点到直线的距离教案

点到直线的距离教案

3.3.3点到直线的距离教学目标:(一)知识目标:点到直线的距离公式.(二)能力目标:理解点到直线距离公式的推导;点到直线距离公式的简单应用. (三)德育目标:认识事物之间在一定条件下的转化;用联系的观点看问题.教学重点:点到直线的距离公式.教学难点:理解点到直线距离公式的推导.教学方法:探究讨论式在引入本节的研究问题:点到直线的距离公式之后,引导学生探究讨论点到直线距离的求解思路,一起分析探讨解决问题的各种途径,培养学生的发散性思维,进而逐一推导,培养学生研究问题、分析问题、解决问题的能力.教学过程:(课前教师板书标题“点到直线的距离”)课题导入:前面两节课,我们一起研究学习了两直线平行和垂直的充要条件,两直线的夹角公式,两直线的交点问题,逐步熟悉了利用代数手段研究几何问题的思想方法.这一节课,我们将研究怎样由点的坐标和直线的方程直接求点到直线的距离问题.思考题:(引导学生探究、讨论;每一种方法都要总结方法)求点(2,1)P 到直线:210L x y +-=的距离().师:首先申明现成的公式暂时不能用,请大家想想看利用我们学过的知识可以怎样解决这个问题? 做做看…(教师板书(2,1)P ,:210L x y +-=)…师:点到直线的距离是怎么定义的?做好的举手示意…(等到学生基本做好)师:答案是多少?…叫一个学生站起详细回答…师:还有没有其它方法?…好好想想,打开你的想象之门,看看还有没有其它的方法可以解决…同桌可以相互启发…师: 请大家总结一下⨯⨯⨯的解题方法,他是用什么方法解决这个问题的?是从哪个层面?师:好了!大家的方法层出不穷,这个题就先到这儿解法一:两点间距离法解:过点P 作直线:210L x y +-=的垂线1:20L x y -=,再求L 与1L 的交点21(,)55Q ,则点(2,1)P 到直线:210L x y +-=的距离即为:PQ =解法二:最小值法解:设(,)M x y 是直线:210L x y +-=上的任意一点,则12y x =-,得:PM===当25x =时,即21(,)55M 时,minPM=,这个值就是点P 到直线L 的距离. 解法三:三角形法 解:设直线L 倾斜角为α,过点P 作PQ L ⊥于点Q ,过点P 作1//L y 轴交L 于点(2,3)A -,4AP =,在R t P Q A∆中,cos cos PQ AP APQ AP α=⋅∠=⋅=.解法四:三角形法 解:设直线L 倾斜角为α,过点P 作PQ L ⊥于点Q ,过点P 作1//L x 轴交L 于点(0,1)B ,2BP =,在R t P Q B ∆中,cos sin PQ BP BPQ BP α=⋅∠=⋅==xx解法五:三角形法解:设直线L 倾斜角为α,过点P 作直线1//L L ,有1:250L x y +-=,L 与1L 距离即为所求.设1L 、L 与y 轴分别交于点21,P Q ,则21(0,5),(0,1)P Q ,214P Q =,过点1Q 作11//PQ PQ交L 于1P ,则1121211cos PQ PQ P Q P Q P ==⋅∠21cos P Q α=⋅==解法六:面积法解:过点P 作1//L x 轴交L 于点(0,1)B ,2BP =,过点P 作2//Ly 轴交L 于点(2,3)A -,4AP =,在Rt ABP ∆中,AB =,由三角形面积公式可知d AB BP AP ⋅=⋅d ⇒=. 解法七:向量法 解:由方向向量的知识得与直线L 垂直的向量(2,1)n =.在直线L 上任取一点(1,1)Q -,向量QP 在向量n上的投影的绝对值就是点P 到直线L 的距离,有c o sd Q P θ=⋅,cos n QP n QP θ⋅=⋅⋅,n QP d n ⋅∴====. 进入主题:师:对照思考题,我们一起来看一个更具一般性的问题.在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线l 的方程是++=0A x B y C ,求点P 到直线l 的距离.师:点和直线都以字母形式给出,象刚才一样,有这么多方法,我们是能够解决,如果每一次都这样求,会不会太麻烦?其中是否有一般性的结论?可以直接当公式来用.我们一起来推推看.师:首先大家说说解决这个问题有哪些思路?学生:刚才用到的两点间距离法、最小值法、三角形法、面积法、向量法应该都可以解决这个问题.师:很好!能够看清问题的本质,那我们就挑一种书本上没有详细解释的方法来试试……还有其它方法请同学们课后再思考一下.解决方案:方案一:根据定义,点P到直线l的距离d是点P到直线l的垂线段的长.解题思路:一求垂线PQ的方程,二求Q点坐标,三求PQ长度.详细过程:设点P到直线l的垂线段为PQ,垂足为Q.先考虑0A≠由PQ l⊥00:()PQBl y y x xA⇒-=-即00Bx Ay Bx Ay-=-,解方程组00Ax By CBx Ay Bx Ay++=⎧⎨-=-⎩20022B x ABy ACxA B--⇒=+即点Q 的横坐标,2220000022B x ABy AC A x B xx xA B----∴-=+0022()A Ax By CA B++=-+000022()()B Ax By CBy y x xA A B++-=-=-+d∴==;0A=要验证过才行.方案二:直接用两点间距离公式推导.解题思路:设出Q坐标,列出满足条件,由距离公式求出距离.详细过程:设点11(,)Q x y,则111010(0)Ax By Cy y BAx x A++=⎧⎪-⎨=≠⎪-⎩1010001010()()()()()0A x xB y y Ax By CB x x A y y-+-=-++⎧⇒⎨---=⎩(1)(2)(1)(2)平方相加2222222101000()()()()()A B x x B A y y Ax By C⇒+-++-=++22200101022()()()Ax By Cx x y yA B++⇒-+-=+d⇒=0A=也满足.方案三:过点P分别作x、y轴的平行线,交已知直线于R,S两点,从而构成一个直角三角形,用勾股定理求出RS,再利用三角形等积求d.解题思路:一求R 、S 坐标,二求PR 、PS ,三求RS 长度,四求距离d .详细过程:设0,0A B ≠≠,这时l 与x 轴、y 轴都相交.过P 作x 轴的平行线,交l 于点10(,)R x y ;作y 轴的平行线,交l 于点02(,)S x y .由100200Ax By C Ax By C ++=++=得0012,By C Ax Cx y A B----==0001Ax By C PR x x A ++⇒=-=;0002Ax By CPS y y B++=-=00RS By C ++,由三角形面积公式d RS PR PS ⋅=⋅得=d ;0,0A B ≠≠也满足.方案四:利用向量的有关知识推导.解题思路:一找直线l 的垂直向量n ,二在直线l 上任取点Q ,三求向量QP 在向量n上的投影的绝对值即为所求.详细过程:设0,0A B ≠≠,由方向向量的知识得与直线l 垂直的向量(,)n A B =.在直线l 上任取一点(,)Q x y ,向量QP 在向量n上的投影的绝对值就是点P 到直线l 的距离,有cos d QP θ=⋅ ,cos n QP n QP θ⋅=⋅⋅,n QP d n ⋅∴===; (因为++=0Ax By C ,所以--=Ax By C )0,0A B ≠≠也满足. 方案五:三角函数法.解题思路:构造一个易求斜边的直角三角形,利用斜边与直角边的关系求出直角边即点到直线的距离作y 轴的平行线PM 交直线l 于点01(,)M x y ,满足010Ax By C ++=01Ax Cy B+⇒=-0001Ax By CPM y y B++∴=-=,记MPQ β∠=,则始终有cos cos βα=,而222222211cos 1tan 1B A A B B αα===+++,cos α∴=,cos PQ PM β∴=⋅=;0,0A B ≠≠也满足.方案六:最小值法.解题思路:在直线上任取一点(,)Q x y ,则min d PQ =. 详细过程:设0,0A B ≠≠,在直线l 上任取一点(,)Q x y ,满足++=0Ax By C +⇒=-Ax Cy B,则PQ =当""2bx a=-时,mind PQ ==⇒=d 0,0A B ≠≠也满足.结论:点P 00(,)x y 到直线l :++=0Ax By C的距离公式为=d .注意细节:假如P 在直线上呢?0d =照样适用;当A=0或B=0时,该公式也适用,当然此时可以不用该公式而直接求出距离.若知点P 00(,)x y 和直线l :=1x x ,则点P 到直线l的距离10d x x =-;若知点P 00(,)x y 和直线l :=1y y ,则点P 到直线l 的距离10d y y =-.师:有了这个公式,求点到直线的距离就十分方便了. 下面我们通过例题来熟悉一下这个公式.例题讲解:例1.求点(1,2)P -到下列直线的距离:(1)2100x y +-=;(2)32x =.解:d =25(1)33d =--=. 例 2.已知点(,6)A a 到直线342x y -=的距离d 取下列各值,求a 的值:(1)4d =;(2)4d >解:(1)4d =2a ⇒=或463a =;(2) 4d =>2a ⇒<或463a >. 巩固练习:(其中3,4,5为备用题)1.求原点到下列直线的距离:(1)32260x y +-=;(2)x y =.答案:(1)(2)0.2.求点(1,1)B -到直线y =. 答案:12. 3.求点(,)P m n m --到直线1x ym n+=的距离.4.点P 为直线32260x y +-=上的任意一点,O 为坐标原点,求OP 的最小值.答案:5.点(,)P x y 到直线512130x y -+=和直线3450x y -+=的距离相等,则点P 的坐标应满足什么关系式?答案:3256650740x y x y -+=+=或. 师:好了,今天的课就到这儿,我们小结一下.课堂小结:通过本节课的学习,要求大家理解点到直线距离公式的推导过程,并能简单应用公式解决问题;使用点到直线的距离公式时,应该注意以下几点:①若给出的直线方程不是一般式,则应先把方程化为一般式再用公式;②若点在直线上,有0d=,公式仍然适用;③点P到平行于坐标轴的特殊直线的距离要能直接写出来.课后作业:名师1个课时;公式的推导(一题多解)(做书上);书本54页13,15,16(做作业本上).板书设计:。

点到直线的距离公式教案

点到直线的距离公式教案

点到直线的距离公式教案一、教学目标:1.知识目标:了解点到直线的距离的概念和计算公式。

2.能力目标:学会运用点到直线的距离公式解决实际问题。

3.情感目标:培养学生的数学思维能力和解决问题的能力,增强对数学的兴趣和自信心。

二、教学重难点:1.重点:理解点到直线的距离的概念和计算公式。

2.难点:如何将点到直线的距离公式运用到实际问题中。

三、教学过程:1.导入新知识:教师通过实例引导学生回顾如何计算点到直线的距离。

即,点离直线的距离等于点到直线上任意一点所在的垂直平面的距离。

2.点到直线的距离公式的推导:教师通过几何证明或向量证明的方式,推导出点到直线的距离公式。

3.生命周期函数的说明:教师解释什么是函数,如何用函数表示点到直线的距离。

4.点到直线距离公式的使用:教师给出一些实际题材的例子,如房屋平面图中特定点离直线的距离、飞机在空中的高度等,要求学生运用点到直线的距离公式解决问题。

5.练习与讨论:教师布置一些相关的练习题,让学生独自或小组合作解答,并讨论解题思路和方法。

6.示范与操练:教师随机抽一道题目,为学生演示解题过程,并请学生依次完成该题目的解答。

7.温故知新:教师总结重要知识点和思路,帮助学生复习和巩固所学的知识。

8.拓展应用:教师设计一些能够拓展学生思维的应用题,要求学生分析问题并运用点到直线的距离公式解决。

9.讲评与总结:教师和学生共同讨论和总结此次学习的内容,强化学生对点到直线的距离公式的理解和应用。

四、教学评价:1.学生的课堂表现,包括参与讨论、解答问题的积极性和准确性。

2.学生完成的练习题和应用题答案的准确性和深入性。

3.学生在讲评环节的思维能力和解决问题的方法。

五、教学反思:本节课通过引入实例、推导公式、训练练习和应用题拓展等方式,帮助学生掌握了点到直线的距离的计算公式。

同时,通过讨论和解析问题,提高学生的数学思维能力。

但是,需要对练习和应用题的设计进行修改,增加一些开放性和质量较高的题目,以提高学生的解决问题的能力。

【最新】七年级数学下册点到直线的距离教案人教版

【最新】七年级数学下册点到直线的距离教案人教版

点到直线的距离教学目标:1、掌握点到直线的距离的有关概念。

2、会作出直线外一点到一条直线的距离。

3、理解垂线段最短的性质。

教学重点:点到直线的距离的概念及垂线段最短的性质。

教学难点:垂线段最短的性质及从直线外一点作直线的垂线的画法教学过程:一、准备知识1、垂直的概念2、经过直线外一点作这条直线的平行线,可以作几条?3、如何从直线外一点作已知直线的垂线?二、探究新知1、经过一点作一条已知直线的垂线。

(1)点P在直线AB上(2)点P在直线AB外2、讨论思考题:过一点P作已知直线的垂线,可以作几条?是不是一定可以作一条?如果有两条直线PC、PD与直线AB垂直,那么PC、PD的关系怎样呢?(重合)3、归纳:在平面内,通过一点有一条并且只有一条直线与已知直线垂直。

4、垂线段的概念:如图,设PO垂直于AB于O,线段PO叫作点P到直线AB的距垂线段。

PA、PB、PC、PD叫作斜线段。

5、垂线段PO的长度叫作点P到直线AB的距离。

6、做一做(1)请同学们测量一下,PO与PA、PB、PD、PC的长度,然后猜测一下它们之间的关系如何。

(2)按教材P73的做一做操作。

7、归纳结论:直线外一点与直线上各点连续的所有线段中,垂线段最短。

简单说成:垂线段最短。

8、垂线段的应用P74的动脑筋三、练习与小结1、练习P74的练习题2、课堂小结四、布置作业1、已知:经过直线m外一点P 。

求作:PO,使PO垂直于直线m,O点是垂足。

2、画一个5厘米的正方形ABCD,在正方形内部任取一点P,作经过点作正方形各边的垂线,垂足分别M、N、R、Q,测量PM、PN、PR、PQ的长度。

后记;。

点到直线的距离 教案

点到直线的距离 教案

点到直线的距离教案教案标题:点到直线的距离教学目标:1. 理解点到直线的距离的概念。

2. 掌握计算点到直线的距离的方法。

3. 能够应用点到直线的距离解决实际问题。

教学准备:1. 教师准备:白板、黑板笔、投影仪、教学课件、练习题、实际问题案例。

2. 学生准备:纸和铅笔。

教学过程:引入:1. 引导学生回顾点和直线的概念,并提问:你们知道如何计算一个点到一条直线的距离吗?2. 引导学生思考:当我们知道直线的方程和一个点的坐标时,如何计算点到直线的距离?探究:1. 展示一条直线和一个点的坐标,通过讨论的方式引导学生发现计算点到直线距离的方法。

2. 教师通过投影仪展示计算点到直线距离的公式,并解释公式的含义。

3. 以几个具体的例子,引导学生使用公式计算点到直线的距离。

实践:1. 学生独立完成练习题,巩固计算点到直线距离的方法。

2. 学生分组,解决实际问题案例,应用点到直线距离解决实际问题。

3. 学生展示自己的解决思路和答案,并互相评价。

总结:1. 教师总结点到直线距离的计算方法,并强调掌握这一方法的重要性。

2. 教师提醒学生在实际问题中运用点到直线距离的方法时要注意问题的特点和条件。

3. 教师鼓励学生继续巩固和应用所学的知识。

拓展:1. 提供更多的练习题,让学生进一步巩固和应用点到直线距离的方法。

2. 引导学生思考:如何计算点到平面的距离?并与点到直线的距离进行比较。

评估:1. 教师观察学生在课堂上的表现和回答问题的能力。

2. 教师收集学生独立完成的练习题和实际问题案例的答案,进行评估和反馈。

教学延伸:1. 学生在课后自主学习相关的数学知识,拓宽对点到直线距离的应用场景的理解。

2. 学生探究其他几何图形的距离计算方法,如点到曲线的距离等。

注意事项:1. 教师应根据学生的实际情况和学习进度,适当调整教学内容和难度。

2. 在教学过程中要鼓励学生积极参与讨论和思考,培养他们的数学思维能力和解决问题的能力。

点到直线的距离公式教案

点到直线的距离公式教案

点到直线的距离公式教案教学目标:1. 理解点到直线的距离定义;2. 知道点到直线的距离公式及其推导过程;3. 能够熟练运用点到直线的距离公式求解相关题目。

教学重点:1. 点到直线的距离定义;2. 点到直线的距离公式的推导过程。

教学难点:能够熟练运用点到直线的距离公式求解相关题目。

教学准备:1. 教师准备白板、黑板笔、教学PPT等教学工具;2. 学生准备纸、铅笔和计算器。

教学过程:一、导入(5分钟)教师可以通过以下问题导入:怎样计算一个点到一条直线的距离呢?请学生思考并提出自己的见解。

二、讲解点到直线的距离定义(5分钟)教师通过PPT展示点到直线的距离定义,并解释清楚每个术语的含义。

例如,点$P(x_0,y_0)$ 到直线$Ax+By+C=0$的距离定义为点P到直线上一点$Q(x,y)$的最短距离。

三、推导点到直线的距离公式(15分钟)教师通过几何解析法详细讲解点到直线的距离公式的推导过程。

具体步骤如下:1. 假设点P到直线的距离为d,直线上的一点为Q;2. 连接PQ,假设直线的斜率为k,直线上点Q的坐标为$(x,y)$;3. PQ的斜率为$\frac{y-y_0}{x-x_0}$,与直线的斜率k相乘得到-1,即$\frac{y-y_0}{x-x_0}\cdot k=-1$;4. 化简上式得到$y=kx+kx_0-y_0$;5. PQ的长度为$d=\sqrt{(x-x_0)^2 + (y-y_0)^2}$;6. 代入$y=kx+kx_0-y_0$得到$d=\frac{|Ax+By+C|}{\sqrt{A^2+B^2}}$。

四、概念讲解(5分钟)教师讲解点到直线的距离公式中的一些常见概念和符号,例如,|x|表示x的绝对值,A、B、C分别表示直线的系数。

五、例题演练(20分钟)教师通过多个例题的演练来帮助学生掌握点到直线的距离公式的运用。

学生可以通过纸和铅笔分步解题,最后用计算器求得具体数值。

六、巩固练习(10分钟)教师布置一些类似的练习题,要求学生用点到直线的距离公式来解答。

《点到直线的距离》的说课稿[大全5篇]

《点到直线的距离》的说课稿[大全5篇]

《点到直线的距离》的说课稿[大全5篇]第一篇:《点到直线的距离》的说课稿一、教学方法的选择(1)指导思想:在“以生为本”理念的指导下,充分体现“教师为主导,学生为主体”。

(2)教学方法:问题解决法、讨论法等。

本节课的任务主要是公式推导思路的获得和公式的推导及应用。

我选择的是问题解决法、讨论法等。

通过一系列问题,创造思维情境,通过师生互动,让学生体验、探究、发现知识的形成和应用过程,以及思考问题的方法,促进思维发展;学生自主学习,分工合作,使学生真正成为教学的主体。

二、教学用具的选用在选用教学用具时,我考虑到,在本节课的公式推导和例题求解中思路较多,所以采用了计算机多媒体和实物投影仪作为辅助教具.它可以将数学问题形象、直观显示,便于学生思考,实物投影仪展示学生不同解题方案,提高课堂效率。

三、关于教学过程的设计“数学是思维的体操”,一题多解可以培养和提高学生思维的灵活性,及分析问题和解决问题的能力.课程标准指出,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识间的有机联系,感受数学的整体性。

课标又指出,鼓励学生积极参与教学活动.为此,在具体教学过程中,把本节课分为以下:“创设情境提出问题——自主探索推导公式——变式训练学会应用——学生小结教师点评——课外练习巩固提高”五个环节来完成.下面对每个环节进行具体说明。

(一)[创设情境提出问题]1、这一环节要解决的主要问题是:创设情境,引导学生分析实际问题,由实际问题转化为数学问题,揭示本课任务.同时激发学生学习兴趣,培养学生数学建模能力.2、具体教学安排:多媒体显示实例,电信局线路问题,实际怎样解决?能否转化为解析几何问题?学生很快想到建立坐标系.如何建立坐标系?建系不同,点和直线方程不同,用点的坐标和直线方程如何解决距离问题,由此引出本课课题“点到直线的距离”。

(二)[自主探索推导公式]1、这一环节要解决的主要问题是:充分发挥学生的主体作用,引导学生发现点到直线距离公式的推导方法,并推导出公式.在公式的推导过程中,围绕两条线索:明线为知识的学习,暗线为特殊与一般的逻辑方法以及转化、数形结合等数学思想的渗透。

《点到直线的距离》(教案)

《点到直线的距离》(教案)

《点到直线的距离》(教案)教学目标:1、学习直线和点的基本概念,并能对其进行简单的区分和操作。

2、学习什么是点到直线的距离,掌握用不同方法求点到直线的距离。

3、能够在实际问题中运用所学知识,解决相关问题。

教学重点:1、点和直线的概念,及其区分;2、点到直线的距离的定义,及其求法。

教学难点:1、点到直线的距离的求法;2、两种方法的运用能力的提高。

教学方法:情景教学法。

教学资源:黑板、白板、笔、纸教学过程:一、导入新课1、分发习题册,并让学生先自学第十一章的内容。

2、提问:“在课堂上,你们了解过直线和点吗?”由此扩展对点和直线的概念和区分。

二、学习点到直线的距离1、引导学生思考,如何求点到直线的距离?2、讲解点到直线的距离的定义,即“点到直线距离是从该点引一条垂线到直线上,垂线的长度就是点到直线的距离”。

3、讲解两种方法如何求出点到直线的距离,并带着学生通过案例进行实际运用,进行验证。

4、补充例题,让学生通过自己的计算和思考来解题,并让学生相互交流。

5、公开课进行示范教学。

三、练习1、就教室内的物体进行距离计算,如教室门口离桌子的距离。

2、让学生阅读小问题,通过图像求解答案。

四、课外拓展1、出示各种图形,让学生独立计算各种情况下的到直线的距离。

2、让学生去实验室或其他地方,进行实地考察、测量点到直线的距离。

五、总结1、总结点到直线的距离的求法,并列举案例。

2、解释什么是求点到直线的距离,如何通过数学方法进行计算。

六、作业布置1、课堂上布置练习题,分组进行解决。

2、预习下一课的内容。

七、教学评价1、教师定期对学生进行小测验,以检查学生对本课题的掌握程度。

2、教师跟踪观察在课外拓展的实验中,学生是否有很好的理解和应用课堂所学知识。

3、收集学生的答题作业,从中发现问题并进行针对性教学。

八、教学反思1、教师观察到很多学生在学习过程中对于点和直线的区分还不是很明确,需要更好的引导和讲解。

2、在课堂规划中,需要考虑更具体和实用的案例,以便让学生真正地理解并运用所学知识。

点到直线的距离的教案

点到直线的距离的教案

点到直线的距离的教案教案标题:点到直线的距离的教案教案目标:1. 理解点到直线的距离的概念和计算方法。

2. 掌握使用坐标系计算点到直线的距离的技巧。

3. 能够应用点到直线的距离的概念解决实际问题。

教学资源:1. 白板、黑板或投影仪。

2. 教学PPT或教学素材。

3. 学生练习册或作业本。

教学步骤:引入活动:1. 使用一张图片或实际物体,让学生观察并描述点到直线的距离。

2. 引导学生思考点到直线的距离的概念,并与学生进行讨论。

知识讲解:1. 介绍点到直线的距离的定义,并与学生一起探讨如何计算点到直线的距离。

2. 解释使用坐标系计算点到直线的距离的方法,并通过示例演示计算过程。

示范练习:1. 在白板上绘制一个坐标系,并给出一条直线的方程。

2. 随机选择一个点,让学生使用计算公式计算该点到直线的距离。

3. 逐步引导学生完成计算过程,并解答学生可能遇到的问题。

合作探究:1. 将学生分成小组,每组选择一个直线方程和一个点的坐标。

2. 学生通过合作讨论和计算,互相检查答案并解释计算过程。

3. 每个小组选择一组问题,向全班展示他们的计算结果和解题思路。

拓展应用:1. 给学生一些实际问题,让他们运用点到直线的距离的概念解决问题,如建筑设计、地理测量等。

2. 引导学生思考如何应用点到直线的距离的概念解决更复杂的问题,并鼓励他们尝试解决。

总结回顾:1. 对本节课所学内容进行总结,并强调点到直线的距离的重要性和应用。

2. 回答学生提出的问题,并解释可能存在的困惑或误解。

3. 鼓励学生在课后继续练习和应用点到直线的距离的知识。

评估与反馈:1. 布置一些练习题或作业,以检验学生对点到直线的距离的理解和应用能力。

2. 对学生的作业进行评估,并提供及时的反馈和指导。

教学延伸:1. 鼓励学生进一步研究点到直线的距离的相关知识,并进行更深入的探究。

2. 提供一些拓展资源,如相关的视频、教学网站等,供学生自主学习和探索。

教学注意事项:1. 确保学生理解点到直线的距离的概念和计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点到直线的距离
教学目标:1、掌握点到直线的距离的有关概念。

2、会作出直线外一点到一条直线的距离。

3、理解垂线段最短的性质。

教学重点:点到直线的距离的概念及垂线段最短的性质。

教学难点:垂线段最短的性质及从直线外一点作直线的垂线的画法
教学过程:
一、准备知识
1、垂直的概念
2、经过直线外一点作这条直线的平行线,可以作几条?
3、如何从直线外一点作已知直线的垂线?
二、探究新知
1、经过一点作一条已知直线的垂线。

(1)点P在直线AB上(2)点P在直线AB 外
2、讨论思考题:过一点P作已知直线的
垂线,可以作几条?是不是一定可以作一条?
如果有两条直线PC、PD与直线AB垂直,那么PC、PD的关系怎样呢?(重合)
3、归纳:在平面内,通过一点有一条并且只有一条直线与已知直线垂直。

4、垂线段的概念:
如图,设PO垂直于AB于O,线段
PO叫作点P到直线AB的距垂线段。

PA、PB、PC、PD叫作斜线段。

5、垂线段PO的长度叫作点P到直
线AB的距离。

6、做一做
(1)请同学们测量一下,PO与PA、PB、PD、PC的长度,然后猜测一下它们之间的关系如何。

(2)按教材P73的做一做操作。

7、归纳结论:直线外一点与直线上各点连续的所有线段中,垂线段最短。

简单说成:垂线段最短。

8、垂线段的应用
P74的动脑筋
三、练习与小结
1、练习P74的练习题
2、课堂小结
四、布置作业
1、已知:经过直线m外一点P 。

求作:PO,使PO垂直于直线m,O点是垂足。

2、画一个5厘米的正方形ABCD,在正方形内部任取一点P,作经过点作正方形各边的垂线,垂足分别M、N、R、Q,测量PM、PN、PR、PQ的长度。

相关文档
最新文档