中考数学方程组与不等式组复习知识点总结及经典考题选编

合集下载

中考数学方程组与不等式组复习知识点总结及经典考题选编

中考数学方程组与不等式组复习知识点总结及经典考题选编

2013 届中考数学方程 ( 组) 与不等式(组)复习知识点总结 及经典考题选编、方程 【知识梳理】1、知识结构2、知识扫描(1) 只含有一个未知数,并且未知数的次数是 1 的整式方程,叫做一元一次方程。

(2) 含有 2 个未知数,并且所含未知数的项的次数都是 1 次,这样的方程叫二元 一次方程 .(3) 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组 . (4)二元一次方程组的解法有 法和 法 .(5) 只含有 1 个未知数,并且未知数的最高次数是 2 且系数不为 0 的整式方程,叫做一元 二次方程,其一般形式为 ax 2 bx c 0(a 0) 。

(6) 解一元二次方程的方法有:① 直接开平方法;②配方法;③ 公式法;④ 因式分解法2 2 2 2例:(1)x 2 4 0 (2)x 2 4x 3 0 (3)2x 2 7x 4 (4)x 2 3x 2 0(7) 一元二次方程的根的判别式:b 2 4ac 叫做一元二次方程的根的判别式。

对于一元二次方程 ax 2 bx c 0(a 0) 当△> 0 时,有两个不相等的实数根; 当△= 0 时,有两个相等的实数根; 当△< 0 时,没有实数根; 反之也成立。

(8) 一元二次方程的根与系数的关系:如果 ax 2 bx c 0(a 0)的两个根是 x 1 , x 2 那么方程整式方程元一次方程元一次方程组一元一次方程的解法 一元一次方程的应用 二元一次方程组的解法 二元一次方程组的应用 元二次方程的有关概 念 一元二次方程的解法 一元二次方程 根的判别式,根与系数的关系 分式方程的概念 分式方程 分式方程的解法 分式方程的应用bx 1 x 2,a(9) 一元二次方程 ax 2 bx c 0(a 0) 的求根公式: (10) 分母 中含有未知数的方程叫分式方程 .(11)解分式方程的基本思想是 将分式方程通过去分母转化为整式方程 ◆ 解分式方程的步骤◆ 1、去分母, 化 分式方程 为 整式方程 ; ◆ 2、解这个 整式方程 ; ◆ 3、验 根。

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

北师大数学中考一轮综合复习 方程(组)与不等式(组)

北师大数学中考一轮综合复习  方程(组)与不等式(组)

北师大数学中考一轮综合复习 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么bc2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a【典例】例1(2021秋•营口期末)解下列方程:(1);(2).例2(2020秋•潮阳区期末)已知关于x的方程2(x+1)﹣m=−m−22的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.例3(2020秋•蓬江区校级月考)已知关于x的方程3x﹣6(x−b3)=4x和3x+b4−1−5x8=1有相同的解,求这个解.例4(2021春•绿园区期末)先阅读下列解题过程,然后解答问题.解方程:|x﹣5|=2.解:当x﹣5≥0时,原方程可化为x﹣5=2,解得x=7;当x﹣5<0时,原方程可化为x﹣5=﹣2,解得x=3.所以原方程的解是x=7或x=3.(1)解方程:|2x+1|=7.(2)已知关于x的方程|x+3|=m﹣1.①若方程无解,则m的取值范围是;②若方程只有一个解,则m的值为;③若方程有两个解,则m的取值范围是.例5(2021秋•佳木斯期末)第五中学计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工16件,乙工厂每天能加工24件,且单独加工这批服装甲工厂比乙工厂要多用20天.在加工过程中,学校需付甲工厂每天费用80元,需付乙工厂每天费用120元. (1)求这批校服共有多少件;(2)为了尽快完成这批校服,先由甲、乙两个工厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天;(3)经学校研究制定如下方案,方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按(2)问的方式完成.请你通过计算帮学校选择一种省钱的加工方案.例6(2020秋•道里区期末)为满足防控新冠疫情的需要,某医务物品供应商欲购买一批疫情防护套装.现有甲、乙两个医用物品生产厂家,均标价每套防护套装80元.甲的优惠方案:购买物品一律九折;乙的优惠方案:如果超出600套,则超出的部分打八折. (1)购进多少套防护套装时,从甲生产厂家与乙生产厂家的进货价钱一样?(2)第一次购进了1000套,第二次购进的数量比第一次购进数量的2倍多100套,求医务用品供应商两次购进防护套装最少花多少钱?【随堂练习】1.(2020秋•金安区校级期中)如果关于x 的方程x−43=8−x+22的解与方程4x ﹣(3a +1)=6x +2a ﹣1的解相同,求a 的值.2.(2020秋•建湖县校级月考)已知关于x 的一元一次方程1−x−mx3=0. (1)若该方程的解为x =1,求m 的值;(2)若该方程的解为正整数,求满足条件的所有整数m 的值.3.(2021秋•鱼台县期中)先阅读下列解题过程,然后解答后面两个问题. 解方程:|x ﹣3|=2.解:当x ﹣3≥0时,原方程可化为x ﹣3=2,解得x =5; 当x ﹣3<0时,原方程可化为x ﹣3=﹣2,解得x =1. 所以原方程的解是x =5或x =1. (1)解方程:|3x ﹣2|﹣4=0. (2)解关于x 的方程:|x ﹣2|=b .4.(2021秋•牡丹江期末)某体育用品商店销售足球和篮球,其中篮球的单价比足球多30元,已知购买4个足球和3个篮球的费用相等. (1)求购买每个足球、篮球的单价分别是多少元?(2)由于“双十二”的来临,商店决定对所售商品进行促销.现有两种促销方案可供选择:方案一:买5个篮球赠一个足球. 方案二:所购买的商品均打9折.当购买6个篮球和多少个足球时,两种促销方案所花费用一致?(3)在(2)条件下,购买10个篮球和5个足球最少费用为 元.5.(2020秋•讷河市期末)某班级组织学生集体春游,已知班级总人数多于20人,其中有15名男同学,景点门票全票价为30元,对集体购票有两种优惠方案. 方案一:所有人按全票价的90%购票;方案二:前20人全票,从第21人开始每人按全票价的80%购票; (1)若共有35名同学,则选择哪种方案较省钱? (2)当女同学人数是多少时,两种方案付费一样多?知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即.(2)=0一元二次方程有两个相等的实数根,即2ba-. (3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系)0(2≥=a a x )0()(2≥=-a a b x ()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠21,240)x b ac =-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x ac b 42-⇔()002≠=++a c bx ax关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1(2020秋•合肥期末)用适当的方法解方程 (1)2(x +2)2﹣8=0 (1)2x 2+x −12=0.例2(2021秋•潍坊期中)解下列关于x 的方程: (1)3x 2﹣54=0;(2)(x ﹣1)(x +2)=2(x +2); (3)(x ﹣1)2﹣2(x ﹣1)=8.例3 (2020秋•兰州期中)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0,解得y 1=1,y 2=4.当y =1时,即x ﹣1=1,解得x =2;当y =4时,即x ﹣1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.请利用这种方法求下列方程: (1)(2x +5)2﹣(2x +5)﹣2=0; (2)32x ﹣4×3x +3=0.例4(2021秋•金乡县期中)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0,解得y 1=1,y 2=4,当y =1时,即x ﹣1=1,解得:x =2;当y =4时,即x ﹣1=4,解得:x =5,所以原方程的解:x 1=2,x 2=5.请利用这种方法求方程(2x +5)2﹣7(2x +5)+12=0的解.20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x例5(2020秋•白银期末)已知关于x的一元二次方程(x﹣3)(x﹣2)=m2(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.例6(2021秋•长安区校级期末)某公司自主研发一款健康的产品﹣﹣燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.【随堂练习】1.(2021秋•江油市期末)解下列一元二次方程:(1)x2+10x+16=0;(2)x(x+4)=8x+12.2.(2021秋•博兴县月考)解方程:(1)2x2﹣12x+5=0.(2)2x2﹣5x+1=0(用配方法).3.(2021秋•呼和浩特期末)已知关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x12+x22=k2+2k,求出k的值.4.(2021秋•振兴区校级月考)华美科技大厦一商户销售一种电子产品,每件进价为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?5.(2020秋•法库县期末)2020年突如其来的新型冠状病毒疫情,给生鲜电商带来了意想不到的流量和机遇,据统计某生鲜电商平台1月份的销售额是1440万元,3月份的销售额是2250万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某水果在“盒马鲜生”平台上的售价为20元/千克时,每天能销售200千克,售价每降价2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元/千克,若使销售该水果每天获利1750元,则售价应降低多少元?知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1(2021秋•铁岭县期末)解下列分式方程:(1)+4=;(2)﹣1=.例2(2020春•百色期末)增根是一个数学用语,其定义为在方程变形时,有时可能产生不适合原方程的根.对于分式方程:2x−3+mxx2−9=3x+3.(1)若该分式方程有增根,则增根为.(2)在(1)的条件下,求出m的值,例3(2021春•平阴县期末)请阅读下面解方程(x2+1)2﹣2(x2+1)﹣3=0的过程.解:设x2+1=y,则原方程可变形为y2﹣2y﹣3=0.解得y1=3,y2=﹣1.当y=3时,x2+1=3,∴x=±.当y=﹣1时,x2+1=﹣1,x2=﹣2,此方程无实数解.∴原方程的解为:x1=,x2=﹣.我们将上述解方程的方法叫做换元法,请用换元法解方程:()2﹣2()﹣8=0.例4 (2020秋•河南期末)随着人们环保意识的增强,混动汽车也成了广大消费者的宠儿.某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为70元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.4元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?例5(2020秋•连山区期末)为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?【随堂练习】1.(2021秋•黔西南州期末)解方程:(1);(2).2.(2021秋•攸县期中)已知关于x的方程无解,求m的值.3.(2021秋•庆阳期末)庆阳香包又称“绌绌”,是甘肃庆阳的一种民俗物品.某商店准备用3000元购进A、B两种香包共150个,已知购买A种香包与购买B种香包的费用相同,且A种香包的单价是B种香包单价的2倍.(1)求A、B两种香包的单价各是多少元;(2)若计划用4500元的资金再次购进A、B两种香包共200个,已知A、B两种香包的单价不变,求A,B两种香包各购进多少个.4.(2021秋•铁西区期末)元旦将至,天猫某电商用4400元购入一批玩具盲盒,然后以每个60元的价格出售,很快售完.电商又以9600元的价格再次购入该商品.数量是第一次购入数量的1.6倍,售价每个上调了16元,进价每个也上调了16元.(1)该电商第一次购入的玩具盲盒每个进价是多少元?(2)该电商既要尽快售完第二次购入的玩具盲盒,又要使在这两次销售中获得的总利润不低于4000元.打算将第二次购入的部分盲盒按每个九折出售,最多可将多少个盲盒打折出售?知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1(2021秋•甘州区校级期末)解方程组:(1);(2)例2(2021•饶平县校级模拟)已知关于x,y的方程组和有相同解,求(﹣a)b值.例3(2021秋•沙坪坝区校级期中)已知关于x,y的二元一次方程组的解满足x+y=2,求实数x,y,m的值.例4(2020秋•太原期末)某景点的门票价格如下表:(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?例5(2020•越秀区校级二模)今年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村子的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.(1)求甲、乙两队单独完成此项工程各需多少天?(2)求甲、乙两队单独完成此项工程各需多少万元?【随堂练习】1.(2021秋•芗城区校级期中)解下列方程组:(1);(2).2.(2021春•沈丘县期末)已知方程组与有相同的解,求m,n的值.3.(2021秋•长丰县月考)已知关于x,y的二元一次方程组.(1)当方程组的解为时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.4.(2021秋•宝山区校级月考)某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如表:第一次第二次甲种货车(辆)25乙种货车(辆)36累计运货(吨)1328(1)甲、乙两种货车每辆可装多少吨货物?(2)王先生要租用该公司的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?5.(2021•济宁模拟)某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):甲 乙 进价(元/件) 20 28 售价(元/件)2640(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润? (3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多560元,则第二次乙商品是按原价打几折销售的?知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); a b a c c b a b c ac bc c a cb(3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).a b c ac bc c a cb ax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x【典例】例1(2020秋•肇源县期末)若0<m <1,m 、m 2、1m的大小关系是( )A .m <m 2<1mB .m 2<m <1mC .1m<m <m 2D .1m<m 2<m例2(2020秋•嵊州市期中)解不等式(组)并把解表示在数轴上 (1)3x +2>14; (2)1+x 2−2x+13≤1.例3(2020春•海珠区校级月考)解下列不等式: (1)2x ﹣1<﹣6; (2)x−12<4x−53;(3)解不等式组:{x −3(x −2)≥41+2x 3>x −1,并在数轴上表示它的解集.例4(2020秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?【随堂练习】1.(2020秋•萧山区期中)解下列不等式 (1)3x ﹣4≤4+2(x ﹣2);(2)2+x 3>2x−15+12.(2020秋•江干区校级期中)求出不等式组的解集,并在数轴上表示出来. {5x −2>3(x +1)x−12≤1−1−x 33.(2020春•沙河口区期末)为了让居民早日用上天然气,市燃气公司要给某小区用户改装天然气.现有360户申请了但还未改装的用户,此外每天还有新的申请.已知燃气公司每个小组每天改装的数量相同,且每天新申请的户数也相同,若安排2个小组同时做,则30天可以改装完所有新、旧申请;若再增加3个小组同时做,则可以减少20天就改装完所有新、旧申请.(1)求该小区7天内有多少需要改装的新、旧申请用户?(2)如果要求在7天内改装完所有新、旧申请,但前3天只能安排4个小组改装,那么最后几天至少需要增加多少个小组,才能完成任务?4.(2020•广西)某市为创建“全国文明城市”,计划购买甲、乙两种树苗绿化城区,购买50棵甲种树苗和20棵乙种树苗需要5000元,购买30棵甲种树苗和10棵乙种树苗需要2800元.(1)求购买的甲、乙两种树苗每棵各需要多少元.(2)经市绿化部门研究,决定用不超过42000元的费用购买甲、乙两种树苗共500棵,其中乙种树苗的数量不少于甲种树苗数量的14,求甲种树苗数量的取值范围.(3)在(2)的条件下,如何购买树苗才能使总费用最低?综合运用1.(2020秋•常熟市期中)若关于x 的方程x+m 3=x −m2与方程3+4x =2(3﹣x )的解互为倒数,求m 的值.2.(2020秋•武都区期末)解方程: (1)x−12=4x 3;(2)5x+13−2x−16=1.3.(2020秋•武汉月考)解不等式组{3−2(x −1)<3x 1−x−13≥0,把其解集在数轴上表示出来,并写出它的整数解.4.(2020秋•白云区期中)已知方程x 2﹣(k +1)x +k ﹣1=0是关于x 的一元二次方程. (1)求证:对于任意实数k ,方程总有两个不相等的实数根; (2)若方程的一个根是2,求k 的值及方程的另一个根.5.(2020秋•朝阳县期末)某工厂生产一批小家电,2018年的出厂价是144元,2019年,2020年连续两年改进技术,降低成本,2020年出厂价调整为100元. (1)这两年出厂价下降的百分比相同,求平均下降率.(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,单价应降低多少元?6.(2020秋•鞍山期末)假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km 的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度. (2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?7.(2020秋•本溪期末)某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.8.(2020秋•长沙月考)我市创全国卫生城市,梅溪湖社区积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)如果该街道需购买温馨提示牌和垃圾箱共3000个.该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的1.5倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?。

2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用

2025年中考数学总复习第一部分考点精讲第二章方程(组)与不等式(组)第三节分式方程及其应用
(1)两人要去距离学校10 km的图书批发市场购买图书,出发时,张老师因有事
耽搁,故李老师骑自行车先行出发,20 min后,张老师乘坐汽车出发,结果
两人同时到达①.已知汽车的平均速度是自行车平均速度的2倍,求李老师骑自
行车的平均速度;
2025版
数学
甘肃专版
解:设自行车的平均速度为x km/h,则汽车的平均速度为2x km/h,根据题意,
2025版
第三节
数学
甘肃专版
分式方程及其应用
2025版
数学
甘肃专版
2025版












数学
甘肃专版
2025版








数学
甘肃专版
2025版

















数学
甘肃专版
2025版

















数学
甘肃专版
2025版
数学
甘肃专版
2025版


- = ,解得x=15,


经检验,x=15是原分式方程的解,且符合题意.
答:李老师骑自行车的平均速度为15 km/h.
2025版
数学
甘肃专版
【分层分析】
第一步:设自行车的平均速度为x km/h;

初中数学中考不等式与不等式组的知识点

初中数学中考不等式与不等式组的知识点

初中数学中考不等式与不等式组的知识点初中数学中考不等式与不等式组的知识点在现实学习生活中,是不是经常追着老师要知识点?知识点有时候特指教科书上或考试的知识。

相信很多人都在为知识点发愁,以下是店铺为大家整理的初中数学中考不等式与不等式组的知识点,希望对大家有所帮助。

一、知识框架二、知识概念1、用符号“<”“>”“≤?”“≥”表示大小关系的式子叫做不等式。

2、不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6、了一个一元一次不等式组。

7、定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

初中数学中考不等式与不等式组的知识点篇11、不等式2、不等式及其解集用或号表示大小关系的式子叫做不等式。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

3、不等式的性质不等式有以下性质:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。

4、实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x5、一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。

中考不等式与方程复习有答案

中考不等式与方程复习有答案

不等式与不等式组一、知识要点概述1、不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.2、不等式(组)的解法(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变.(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集.(3)设a<b,那么:①不等式组的解集是x>b(大大取大);②不等式组的解集是x<a(小小取小);③不等式组的解集是a<x<b(大小、小大中间找);④不等式组的解集是空集(大大、小小题无解).3、不等式(组)的应用会列一元一次不等式(组)解决实际问题,其步骤是:(1)找出实际问题的不等关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.二、典例剖析例1、(1)已知不等式3x-a≤0的正整数解恰是1,2,3,则a的取值范围是________.(2)已知关于x的不等式组无解,则a的取值范围是________.分析:对于(1),由题意知不等式的解在x<4的范围内;对于(2),从数轴上看,原不等式组中两个不等式的解集无公共部分.解:(1)由题意得,∴9≤a<12.(2)由(1)得x>a,由(2)得x≤3,因不等式组无解,∴a≤3.说明:确定不等式(组)中参数的取值或范围常用的方法有:(1)逆用不等式(组)解集确定;(2)分类讨论确定;(3)借助数轴确定.例2、解下列关于x的不等式(组).(1)|x-2|≤2x-10;(2)(2mx+3)-n<3x.分析:对于(1)确定“零界点”x=2(令x-2=0得x=2)分x≥2和x<2,去掉绝对值后求出不等式的解集;对于(2),化为ax<b的形式,再就a的正负性讨论.说明:涉及未知系数或绝对值式子的题目,均可用零点分段讨论法解答.例3、已知3a+2b-6=ac+4b-8=0且a≥b>0求c的取值范围.分析:消去a,b得到关于c的不等式组,解不等式组得c的取值范围.分析:已知不等式组的解集,求某些字母的值(或范围)是不等式组解集确定方法的逆向应用,处理这类问题时,可先求出原不等式组含有字母的解集,然后对照已知“对号入座”,应取有针对性的方法.例6、东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠方法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本.(1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的关系式;(2)比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习本60本设计一种更省钱的购买方案.分析:(2)中比较哪种优惠办法更省钱与购买练习本的数量有关,因此应分类讨论;(3)中因为可同时用两种优惠办法购买,所以需要重新建立关于毛笔枝数的关系式求解.解:(1)依题意,可得y甲=25×10+5(x-10)=5x+200(x≥10);y乙=(25×10+5x)×90%=4.5x+225(x≥10)(2)由(1)有y甲-y乙=0.5x-25当y甲-y乙=0时,解得x=50;当y甲-y乙>0时,解得x>50;当y甲-y乙<0时,解得x<50.所以,当购买50本书法练习本时,两种优惠办法的实际付款一样,即可任选一种办法付款,当购买本数在10~50之间时,选择优惠办法甲付款更省钱;当购买本数大于50本时,选择优惠办法乙更省钱.(3)①因为60>50,由(2)知不考虑单独选用优惠办法甲购买.若只用优惠办法乙购买10支毛笔和60本书法练习本需付款(25×10+5×60)×90%=495(元)②若用优惠办法乙购买m支毛笔,则须用优惠办法甲购买(10-m)支毛笔,用优惠办法乙购买60-(10-m)=m+50本书法练习本,设付款总金额为P,则:P=25(10-m)+[25m+5(m+50)]×90%=2m+475(0≤m≤10)所以,当m=0即用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本时,P取得最小值为:2×0+475=475(元)故选用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本的方案最省钱.例7、我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A、B 两种产品共80件,生产一件A产品需要甲种原料5kg,乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案?请你设计出来.(2)设生产A、B两种产品的总成本为y元,其中一种生产的件数为x,试写出y与x之间的关系式,并利用关系式说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?分析:若设安排生产A种产品x件,根据题意可建立关于x的不等式组,解出不等式组得x 的取值范围.由x为整数在取值范围内确定x的取值,从而得出生产方案,然后由成本的已知条件求出x与y之间的关系式,根据此关系式求出最低生产总成本.解:(1)设安排生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:解得:34≤x≤36因为x为整数,所以x只能取34或35或36.所以该工厂现有的原料能保证生产,有三种生产方案:第一种:生产A种产品34件,B种产品46件;第二种:生产A种产品35件,B种产品45件;第三种:生产A种产品36件,B种产品44件.(2)设生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:y=120x+200(80-x)即y=-80x+16000(x取34或35或36)由式子可知,当x取最大值36时,y取最小值为-80×36+16000=13120元,即第三种方案;生产A种产品36件,B种产品44件,总成本最低,最低生产成本是13120元.说明:利用列不等式组然后求出不等式组的集,在其解集内求出符合条件(一般是整数)的值,是解方案设计型应用题的常用方法.方程与方程组一、知识要点概述1、等式和方程的有关概念、等式的基本性质.2、一元一次方程的解法及最简方程ax=b解的三种情况.(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1.(2)最简方程ax=b的解有以下三种情况:①当a≠0时,方程有唯一解;②当a=0,b≠0时,方程无解.③当a=0,b=0时,方程有无穷多解.3、一元二次方程的一般形式是ax2+bx+c=0(a≠0)其解法主要有:直接开平方法、配方法、因式分解法、求根公式法.4、一元二次方程ax2+bx+c=0(a≠0)的求根公式是:注意:求根公式成立的条件为:①a≠0;②b2-4ac≥0.5、一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac.当△>0时,方程有两个不相等的实数根.当△=0时,方程有两个相等的实数根,即;当△<0时,方程没有实根,反之成立.6、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则7、以两数α、β为根的一元二次方程(二次项系数为1)是x2-(α+β)x+αβ=0.8、解一次方程组的基本思想是消元,常用的消元方法是加减消元法和代入消元法.9、解简单的二元二次方程组的基本思想是“消元”与“降次”.①若方程组中有一个是一次方程,则一般用代入消元法求解;②若方程组中有能分解成两个一次方程的方程,则一般用“分解降次”的方法将原方程组化为两个或四个方程组求解.10、简单的分式方程组的解法,一般是用去分母或换元法将其转化为整式方程组求解,并要验解.11、方程组的解的存在性问题,一般转化为方程的解的存在性问题来研究.二、典例剖析点评:灵活解一元一次方程时常用到以下方法技巧.(1)若括号内有分数时,则由外向内先去括号,再去分母;(2)若有多重括号,则去括号与合并同类项交替进行;(3)恰当用整体思想.例2、解下列关于x的方程.(1)4x+b=ax-8(a≠4)(2)mx-1=nx(3)分析:把方程化为一般形式后,再对每个方程中字母系数可能取值的情况进行讨论.例4、已知m是整数,方程组有整数解,求m的值.分析:先求出y,运用整除的性质求出m的值,需注意所求的整数m要使得x也为整数.解:由原方程组解得,若y有整数解,则2m+9=±1或±2或±17或±34,经检验当2m+9=±1或±17时,m为整数且x也为整数,得m=4或-4或-5或-13.例5、已知关于x的一元二次方程有两个不等的实数根.(1)求m的取值范围;例7、解下列方程(2)3x2+x-7=0分析:对于(1)首先应回避复杂的小数运算,注意此时只运用分数的基本性质而未用到等式有关性质.对于(2)此方程用分解因式法难以行通,故考虑用求根公式.解:(1)原方程化简得方程两边都乘以12(即去分母)得3(35x-5)=4(5-x)-6(25x+5)去括号得:105x-15=20-4x-150x-30移项及合并同类项得:259x=5例8、如果关于x的一元二次方程kx2-2(k+2)x+k+5=0没有实根,试说明关于x的方程(k-5)x2-2(k+2)x+k=0必有实数根.分析:由一元二次方程kx2-2(k+2)x+k+5=0没有实数根,可以得出k≠0,b2-4ac<0,从而求出k的取值范围,再由k的取值范围来说明(k-5)x2-2(k+2)x+k=0必有实数根.解:∵关于kx2-2(k+2)x+k+5=0没有实数根,解得k>4当k=5时,方程(k-5)x2-2(k+2)x+k=0为一元一次方程,-14x+5=0,此时方程的根为.当k≠5时,方程(k-5)x2-2(k+2)x+k=0为一元二次方程∴△=[-2(k+2)]2-4(k-5)·k=4(9k+4)∵k>4且k≠5,∴△=4(9k+4)>0∴此时方程必有两不等实数根,综上可知方程(k-5)x2-2(k+2)x+k=0必有实数根.点评:(1)方程“有实数根”与“有两个实数根”有着质的区别.方程“有实数根”表示方程可能为一元一次方程,此时方程有一实数根,方程也可能为一元二次方程,此时方程有两个实数根,而方程“有两个实数根”,则表示此时方程一定为一元二次方程.点评:构造一元二次方程是解题的常用技巧,构造的主要方法有:(1)当已知等式具有相同的结构,就可以把两个变元看成关于某个字母的一元二次方程;(2)对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程.分式方程一、知识要点概述1、分式方程:分母中含有未知数的有理方程叫分式方程.2、解分式方程的基本思想方法是:3、解分式方程必须验根.二、典型例题剖析例1、解方程.分析:根据解分式方程的一般步骤来解此题.解:方程两边同乘以(x+3)(x-2)得:10+2(x-2)=(x+3)(x-2)化简,整理得:x2-x-12=0解之得x1=-3或x2=4经检验可知:x1=-3是原方程的增根,x2=4是原方程的根.∴原方程的根是x=4.分析:用换元法解这些分式方程.解:(1)设x2-x=y,则原方程变为解这个方程得y1=-2,y2=6,当y1=-2时,x2-x=-2,此方程无解;当y2=6时,x2-x=6,∴x1=-2,x2=3.经检验可知:x1=-2,x2=3都是原方程的根.∴原方程的解为x1=-2,x2=3.例3、当m为何值时,关于x的方程无实根?分析:先将分式方程化为整式方程,如果整式方程有实根,那么这些根均是原方程的增根,这样x=0或x=1是所得整式方程的根,如果整式方程无实根,那么原方程也无实根.解:原方程去分母,整理得:x2-x+2-m=0①(1)若方程①有实根,根据题意知,方程①的根为x=0或x=1.把x=0或x=1代入方程①得m=2.而x=0或x=1是原方程的增根.∴当m=2时原方程无实根.(2)若方程(1)无实根,则△=(-1)2-4(2-m)<0解之得∴当时,原方程无实根.综合之,当m=2或时,原方程无实根.例4、若方程有增根,试求m的值.分析:分式方程将会产生增根,即最简公分母x2-4=0,故方程产生增根有两种可能:x1=2,x2=-2.由增根的定义知:x1=2,x2=-2是原分式方程去分母化成整式方程的根,由根的定义即可求出m的值.解:将原方程去分母得:2(x+2)+mx=3(x-2)整理得:(m-1)x=-10 (1)∵原方程有增根,∴x2-4=0∴x1=2,x2=-2.将x1=2代入(1)得2(m-1)=-10∴m=-4将x2=-2代入(1)得-2(m-1)=-10∴m=6所以m的值为-4或6.点评:(1)增根的求法:令最简公分母为0;(2)求有增根的方程中参数的值,应先求出可能的增根,再将其代入化简后的整式方程即可.例5、已知a2-a-1=0且求x的值.分析:为求x的值,须将x与a2分离,联想到分式的基本性质,从而原等式含,这样应从条件出发构造倒数关系.解:。

人教版中考数学第一轮复习第二章方程与不等式

人教版中考数学第一轮复习第二章方程与不等式

第二章 方程与不等式第七讲 一次方程(组)【基础知识回顾】一、 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 即:若a=b,那么a c= ,若a=b (c≠o )那么a c= 【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:1、 解二元一次方程组的基本思路是: ;2.解方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解 2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【重点考点例析】 一、选择题1.一元一次方程2x=4的解是( )A .x=1 B .x=2 C .x=3 D.x=4x=ay=b 的形式2.已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩二、填空题12.方程组31x yx y+=⎧⎨-=⎩的解是.13.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)-(3x-5y)的值是.14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.15.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.三、解答题20.解方程组128 x yx y=+⎧⎨+=⎩.21.解方程组251x yx y+=⎧⎨-=⎩.【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有个未知数,并且未知数最高次数是2的方程2、一元二次方程的一般形式:其中二次项是一次项是,是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a≠0这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果ax 2 =b 则X 2 = X1= X2=2、配方法:解法步骤:①、化二次项系数为即方程两边都二次项系数,②、移项:把项移到方程的边③、配方:方程两边都加上把左边配成完全平方的形式④、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程ax 2+bx+c=0(a≠0) 满足b 2-4ac≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】三、一元二次方程根的判别式关于X的一元二次方程ax 2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示①当时,方程有两个不等的实数根②当时,方程看两个相等的实数根方程有两个实数跟,则③当时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】四、一元二次方程根与系数的关系:关于X的一元二次方程ax 2 +bx+c=0(a±0)有两个根分别为X1、X2则x1+x2 = x1x2 =【重点考点例析】一、选择题1.方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=0 2.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-23.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根4.一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-17.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥08.若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>49.关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-110.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 11.用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2二、填空题三、解答题21.选择适当的方法解下列方程:(1)27(23)28x -=; (2)223990y y--= (3)221x +=; (4)2(21)3(21)20x x ++++= 23.关于x 的一元二次方程为(m-1)x 2-2mx+m+1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25.要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am ,另三边用竹篱笆围成,如图,如果篱笆的长为35m ,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a 对题目的解起着怎样的作用?第九讲 分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即分式方程 ﹥整式方程2、解分式方程的一般步骤:①、 ②、 ③、3、增根:转化 去分母 A B D E F在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编一、方程 【知识梳理】1、知识结构方程⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程 2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有 2 个未知数,并且所含未知数的项的次数都是 1 次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有 法和 法.(5)只含有 1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为 )0(02≠=++a c bx ax 。

(6)解一元二次方程的方法有:① 直接开平方法;②配方法;③ 公式法;④ 因式分解法例:(1)042=-x (2)0342=--x x (3)4722=+x x (4)0232=+-x x(7)一元二次方程的根的判别式: ac b 42-=∆叫做一元二次方程的根的判别式。

对于一元二次方程)0(02≠=++a c bx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根; 反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02≠=++a c bx ax 的两个根是21,x x 那么a b x x -=+21, ac x x =⋅21 (9)一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x(10) 分母 中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是 将分式方程通过去分母转化为整式方程 .◆ 解分式方程的步骤◆ 1、去分母, 化 分式方程 为 整式方程 ;◆ 2、解这个 整式方程 ;◆ 3、验 根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式 【知识梳理】1、知识结构⎪⎩⎪⎨⎧解法性质概念不等式2、知识扫描(1) 只含有 一个 未知数,并且未知数的次数是 1 ,系数不为 0 的不等式,叫做一元一次不等式。

(2)不等式的基本性质:①不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向 ; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向 ;③不等号的两边都乘以(或除以)同一个负数,不等号的方向 。

(3). 解一元一次不等式的一般步骤是:①去分母②去括号③移项、合并同类项④系数化为1。

◆注意:不等式的两边都乘以(或除以)同一个负数,要 不等号的方向.【】一、选择题1.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )(A )2 (B )-2 (C )1 (D )-12. x x 22=的解是( )A.2=x B.21-=x ,02=x C.0,221==x x D.0=x3.下列方程中,是分式方程的是( )A 、()6131=-xB 、5172+=+x xC 、1=+b x a x (x 为未知数)D 、01=-xx 4.下列说法中错误的是( )A、分式方程的解等于0,就说明这个分式方程无解;B 、 解分式方程的基本思路是把分式方程转化为整式方程;C 、检验是解分式方程必不可少的步骤;D 、能使分式方程的最简公分母等于零的未知数的值不是原分式方程的根.5.若关于x 的方程xm x -+=-4342有增根,则m 的值为( ) A、2- B 、2 C 、2± D 、46.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是( ) (A )12x y =-⎧⎨=⎩ (B)12x y =⎧⎨=-⎩ (C )12x y =-⎧⎨=-⎩ (D )21x y =-⎧⎨=⎩ 7.不等式组24010x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )⎩⎨⎧<<b x a x a x < ⎩⎨⎧<>bx a x b x a << ⎩⎨⎧><b x a x 无解8.(2008湘潭)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为x cm ,那么x 满足的方程是( )(A)213014000x x +-= (B)2653500x x +-=(C)213014000x x --= (D)2653500x x --=9.已知二元一次方程组⎩⎨⎧=-=-3242n m n m ,则n m +的值是( )A 、1B 、0C 、-2D 、-110.计算:262393m m m m -÷+--的结果为( ) A.1 B.33m m -+ C.33m m +- D.33m m + 二、选择题11.若不等式组⎩⎨⎧>->-0x 2b 2a x 的解集是1x 1<<-,则=+2006)b a (___________。

12.不等式x 8x 25-≤-的负整数解是_________________。

13.小明在解关于x 的方程135=-x a 时,误将x -看作x +,解得方程的解是2-=x ,则原方程的解为 .14.若05232=-+kx x 是关于x 的一元一次方程,则k = .15.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 .16.(2008大连)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.17.符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bad bc c d =-,请你根据上述规定求出下列等式中x 的值. 2111111xx =--18.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.19.下列各式中,能用平方差公式分解的是 ( )A.229b a +B.122+-b aC.229b a +-D.229b a --20. 杭州市政府计划2年内将市区人均住房面积由现在的a 平方米提高到b 平方米。

设每年人均住房面积增长率为x ,则x 满足的方程是 ( )A. b x a =+)1(B. b x a =+)21(C. b x a =+2)1(D. b x a x a a =++++2)1()1(21. 将二次函数2247y x x =-+配方成2()y a x m k =++的形式,则a,m,k 分别为多少( )A.2,2,7B.2,1,7C.2,-1,5D.2,-1,6三、解答题22. 解方程组42 5.x y x y +=⎧⎨-=⎩, 23。

解方程组⎩⎨⎧=++=)2(5)1(122y x x y24.解分式方程12211x x x +=-+. 25。

.解分式方程11322x x x-=--- 26.解不等式:x 121x ≥+-,并把解集表示在数轴上。

27.解不等式组,并在数轴上把解集表示出来。

⎪⎩⎪⎨⎧-<--≥+-)2(x 8)1x (31)1(x 323x28.解不等式组⎪⎩⎪⎨⎧+<-≤-②①)1x (42x 121x ,并写出不等式组的正整数解。

29.小刚、小明一起去精品文具店买同种钢笔和同种练习本,根据下面的对话解答问题: 小刚:阿姨,我买3支钢笔,2个练习本,共需多少钱?售货员:刚好19元.小明:阿姨,那我买1支钢笔,3个练习本,需多少钱呢?售货员:正好需11元.(1)求出1支钢笔和1个练习本各需多少钱?(2)小明现有20元钱,需买1支钢笔,还想买一些练习本,那么他最多可买练习本多少个?30.某班到毕业时共结余经费1 800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?31.已知关于x 的一元二次方程032=-+kx x .(1)求证:方程有两个不相等的实数根;(2)取k 的一个整数值,使得原方程有两个整数解,并求出解.32.今年,苏州市政府的一项实事工程就是由政府投入1000 万元资金,对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造,某社区为配合政府完成该项工作,对社区内1200 户家庭中的120户进行了随机抽样调查,并汇总成下表:(1)改造后,一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水,试估计该社区一年共可节约多少吨自来水?(2)抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?33. A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度.34.市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株。

甲种树苗50元/株,乙种树苗80元/株,有关统计说明:甲、乙两种树苗的成活率分别为90%和95%。

(1)若购买树苗的钱不超过34000元,应如何选购树苗?(2)若希望树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗?35.“五一”黄金周期间,某学校计划组织385名师生租车旅游;现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元,若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金,请你帮助该学校选择一种最节省的租车方案。

36. 王女士看中的商品甲乙两商场均有售且标价相同,但两商场采用的促销方式不同, 甲商场:一次性购物超过100元,超过的部分八折优惠;乙商场:一次性购物超过50元,超过的部分九折优惠;那么她在甲商场购物超过多少元就可比乙商场购物优惠?37. 将一箱苹果分给若干小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,求这箱苹果的个数与小朋友的人数。

相关文档
最新文档