植物抗病虫育种((荷)R. E. Niks[等]著;张红生,鲍永美等译)思维导图
作物抗病虫遗传育种-V1

作物抗病虫遗传育种-V1作物抗病虫遗传育种作物是人类最基本的生物资源之一,发展健康、高效的农业生产是保障人类生存和持续发展的重要保障。
作物病虫害一直是农业生产中的重要问题之一,传统的农业防治方法主要依赖化学农药,但化学农药带来的环境污染及其对人类健康的危害已经引起了世界各国的高度关注。
因此,从遗传学的角度来改善作物的抗病虫能力已成为当今农业科学研究的热点之一。
1.抗病虫遗传育种的概念遗传育种是指利用遗传学原理和方法加速农作物品种改良的过程。
抗病虫遗传育种就是通过改良抗病虫性状的遗传基础来培育抗病虫的优良品种。
常用的遗传育种方法主要包括杂交育种、重组育种、转基因育种等。
2.抗病虫遗传育种的原理作物植株的抗病虫性状主要是由遗传因素控制的,可以通过遗传育种来提高植株对病虫害的抵抗力。
抗病虫遗传育种的原理主要包括以下几个方面:(1)基因筛选:将抗病虫相关的基因筛选出来,通过杂交或育种方法将其引入到优良品种中。
(2)克隆基因:将抗病虫基因直接克隆,通过基因工程等技术加速育种过程。
(3)基因组学筛选:现代遗传学技术的发展,如高通量测序等,可以对整个基因组进行筛选,提高效率和精确度。
(4)转座子技术:转座子是一种能够在基因组中移动的DNA序列,可以被用来激活或关闭相应的基因,从而提高作物对病虫害的抵抗力。
(5)组织培养技术:利用组织培养技术可以加速育种过程,如离体培养、植物细胞将性等。
3.抗病虫遗传育种的应用抗病虫遗传育种技术已经广泛应用于植物育种领域,丰富了作物品种资源,培育了许多抗病虫性强、产量高的作物品种。
其中,水稻的抗病虫育种取得了重大进展,新品种不但产量高,而且对病虫害的抵抗力也大大提高。
此外,小麦、玉米、棉花、蔬菜等作物的抗病虫育种也在不断推进中。
4.抗病虫遗传育种的前景随着科技的不断进步和人们对生态环境保护和安全健康的重视,抗病虫遗传育种作为一种优良的农业技术,其在未来的应用前景会越来越广阔。
未来的抗病虫遗传育种技术将更加精细化、高效化,为农业生产提供更有效的技术手段,并推动农业可持续发展。
农作物抗病虫害育种与品种改良

汇报人:可编辑 2024-01-07
目 录
• 农作物抗病虫害育种概述 • 农作物抗病虫害品种改良 • 农作物抗病虫害育种与品种改良的挑战与前景 • 农作物抗病虫害育种与品种改良的实践应用
01
CATALOGUE
农作物抗病虫害育种概述
定义与重要性
定义
农作物抗病虫害育种是指通过遗传改良,培育具有抗病、抗虫能力的作物新品 种的过程。
案例
某地区针对当地主要病虫害,通过传 统育种与分子育种相结合的方法,成 功培育出多个抗病虫害小麦新品种, 有效提高了该地区小麦生产的产量和 品质。
03
CATALOGUE
农作物抗病虫害育种与品种改良的挑战与 前景
面临的挑战
病虫害的多样性
抗性遗传的复杂性
不同地区、不同作物面临的病虫害种类繁 多,增加了育种和品种改良的难度。
未来发展前景与展望
技术进步推动
随着基因组学、生物信息学等领域的不断发展,农作物抗 病虫害育种与品种改良将迎来更多的技术突破和应用。
环境友好型农业的发展
随着人们对环境保护意识的提高,环境友好型农业将成为未来发 展的趋势,为农作物抗病虫害育种与品种改良提供了广阔的发展
空间。
满足可持续发展的需求
在全球气候变化和资源紧张的背景下,发展具有抗逆性、高产优 质、资源节约型的农作物新品种,对于保障全球粮食安全和可持
续发展具有重要意义。
04
CATALOGUE
农作物抗病虫害育种与品种改良的实践应 用
在农业生产中的应用
提高农作物产量
优化农业结构
通过抗病虫害育种和品种改良,可以 减少农作物受到病虫害的侵害,提高 农作物的产量和品质。
植物抗病虫育种原理与策略

4.4抗病虫性的遗传
主效基因遗传 绝大多数的垂直抗性或过敏性坏死类型抗 性是受单基因或少数几个主效基因控制的.抗、感亲本杂 交后代的分离基本上符合孟德尔分离比例。 • 基因的显隐性 在一般情况下,抗病虫性为显性,感病 虫性为隐性。 • 复等位性 抗性基因常有复等位性,每个等位基因或抗 不同生理小种或具有不同的表型效应。 • 不同抗病基因间连锁和互作 • 抗病基因之间还经常发生上位、抑制、互补、修饰等 作用。一般抗性较强的基因对抗性较弱的基因具有上 位性
微效基因遗传 作物的水平抗性或中等程度抗性多为多基 因控制的数量性状,属于微效基因遗传。抗、感品种杂交 后.F2的抗性分离呈连续的正态分布或偏正态分布.有明 显的超亲现象,其抗性程度易受环境条件的影响。小麦对 赤霉病的抗性和水稻对纹枯病的抗性都是由多基因控制的 数量性状。 细胞质遗传 也称非染色体遗传,即控制抗性的遗传物质 涉及细胞质中的质体和线粒体.与染色体无关。细胞质遗 传的抗性特点是抗、感亲本杂交时,正、反交所得的 n 植 株抗性表现不一样,抗性表现母本遗传,或者抗、感亲本 杂交后代自交或与亲本回交,抗性不发生分离。玉米T型 雄性不育细胞质易受小斑病菌 T小种的侵染,而具有正常 细胞质和其他雄性不育系细胞质的自交系
按寄主对寄生物的反应分为
免疫 性(immunity) 某寄主作物群体在任何已知的条件下, 从不受某种特定病原菌侵染危害或某种特定害虫取食 危害的特性 过敏性(hypersensitivity) 当寄生物入侵后,被侵细胞周围 细胞立即死亡从而阻止寄生物的进一步扩展,而产生的 抗性 耐病(tolerance) 当某一寄主品种被病原菌侵染.其发病 程度与感病品种相当,产量、籽粒饱满度及其他农艺 性状等不受损害或影响较小.这类品种称为耐病品种 避病( 虫 )(klenducity) 感病的寄主品种在一定条件下避 开病原菌(害虫)的侵染而未发病的现象称为避病(虫), 包括时间避病和空间避病两类。从严格意义上讲,避 病并不是植物本身具有的抗病能力,当条件变化时, 它们同样会感病,但在生产实践中很有应用价值,所 以在抗病育种中应充分挖掘其潜力并加以利用
第十一章 抗病虫育种

感
抗 感
抗
感 感
抗
抗 感
当抗病基因为显性,无毒基因为显性,相互非亲和,寄主表现 抗性。
三、作物抗病虫性鉴定
抗性鉴定是抗病虫育种的重要环节
1、田间鉴定
病虫害高发区,多年多点联合鉴定 发病条件调控:喷雾、遮荫、施肥、播种期 (1)病害鉴定方法 根据病害种类、侵入途径和实际条件,选择合适 的方法,保证病原菌和寄主都处于有利于发病的 环境条件。
(一)主效基因遗传 绝大多数的垂直抗性或过敏性坏死型抗性是 受单基因或少数几个主效基因控制的,抗、 感亲本杂交后代的分离基本上符合孟德尔分
离比例。
1、基因的显隐性
一般情况下,抗病虫性为显性,感病虫性为隐性:
水稻对褐飞虱的抗性,抗感品种杂交后,F2抗
性表现3:1或9:3:3:1。说明抗性由主效显
常用的接种方法:
喷雾法、注射法、浸根法、剪叶法、摩擦法、介体介导
真菌病害:
+ 细菌病害: + 病毒病害: 线虫病害: -
+ + + -
+ + +
+ + -
+ -
+/+ -
专门病圃 感病对照 抗病对照 多小种分别或混合接种 鉴定指标(定性或定量): 免疫、高抗、中抗、感、高感 病株率 病叶率 病斑面积 病情指数……
(2)抗虫田间鉴定
寄主群体大小、生长状况;害虫源;接种
后的条件都影响结果。
大面积感虫作物或品种中设置试验;
品种中套种测试材料;
利用特殊杀虫剂控制其他害虫或天敌而不 杀害测试昆虫。
抗病虫育种技术

因的影响,即抗性是寄主与寄生物(病虫) 双方的基因型互作的结果,但它们也各自有 其独立的遗传系统。 针对寄主方面每一个垂直抗病基因,在 病原菌方面或迟或早也会出现一个相对应的 毒性基因。毒性基因只能克服其相应的抗性 基因,而产生毒性(致病)效应。在寄主-寄 生物体系中,任何一方的每个基因都只有在 另一方相应基因的作用下,才能被鉴定出来。
上述概念延伸到寄主-昆虫的关系时也同样存 在,即当寄主中每有一个主效抗性基因时,在 昆虫方面便迟早会有一个相应的致害基因。当 寄主具有抗虫基因时而昆虫不具有致害基因时, 则表现为抗虫;而当寄主具有抗虫基因时,但 昆虫具有相应的致害基因时,寄主则是不抗虫 的。
第二节 抗病性及其鉴定
一、病原菌致病性的遗传和变异
过去认为基因对基因学说主要是针对主效基因 制约的垂直抗性而言,目前认为:在微效基因系 统中也可能存在着基因对基因的关系,只是当若 干个乃至多个微效基因共同决定着抗病性和致病 性时,分化互作很小,难以从试验误差中区分开 来而被忽略。 同时,就每一个微效基因而言,虽然存在着基 因对基因的关系,但是其专化性很弱,相对品种 对相对小种的定向选择作用也就不大,因而小种 的组成变化较慢,所以就总的系统而言,抗病性 能稳定持久。
(多基因,水平抗病性)
⑴ 垂直抗性(小种特异性或专化性抗性)
同一寄主品种对病原菌的不同的生理小种具有特异 反应或专化反应。 特点是抗、感反应表现明显,易于识别。往往受单 基因或几个主基因的控制,抗病×感病杂交后代的抗 性一般按孟德尔遗传规律分离。 但抗病性易随病原菌生理小种的变异而丧失,大面 积推广易使侵染它的生理小种上升为优势小种。
(二)致病性的遗传
对真菌病害的遗传研究认为: 毒性为单基因隐性遗传。 侵染力是多基因遗传。
高级植物育种学(1)

张锴
水稻纹枯病
水稻细菌性条斑病
水稻胡麻叶斑病
水稻恶苗病
水赤霉病
小麦白粉病
小麦锈病
玉米瘤黑粉 病
玉米丝黑穗病
玉米螟
世界各地每年由于害虫造成的农作物损失 达3.6亿美元,由于病害造成的损失达3亿 美元。
在中国,大约有1600种常见的病虫害可感染 作物,其中几十种可以导致巨大灾难。如果我 们不阻止和控制这些疾病和昆虫,我们每年将 面临超过15%的粮食损失以及25%棉花损失。
• 王延鹏等利用 TALEN技术对小麦中的 TaMLO基因进行定点突变, 获得了对白粉病 具有广谱抗性的小麦株系。
• 水稻抗虫转基因育种
抗病虫转基因育种
• 面临问题
基因编辑抗病虫育种
• 基因编辑技术简介 • 利用工程核酸酶在体内精确编辑基因组的
技术。 • 工程核酸酶主要有三种: • ZFN(第一代) • TALEN(第二代) • CRISPR/Cas9(第三代)
ZFN
ZFN 以二聚体的形式结合 DNA,融合的 FokⅠ 以二聚体形式发挥对间区序列的切割作用
基因聚合育种的方式
• 传统聚合育种
• 需要多次回交,时间久,成本高,需要大量的人力物力
• 分子标记辅助选择聚合育种
• 能够对基因型直接选择,快速准确,不易受环境影响等优 点
• 转基因聚合育种
• 完全无关的品种间的基因也能够被转入
抗病基因聚合育种报道
• 苑冬冬(2012)利用 SSR 标记获得了多个聚 合不同陆地棉抗黄萎病 QTL 组合的株系
100
感
病
感
性
病
性
1234567 生理小种
图10-5 水平抗性示意图
一种植物抗虫基因及其应用[发明专利]
![一种植物抗虫基因及其应用[发明专利]](https://img.taocdn.com/s3/m/8b997533a7c30c22590102020740be1e650ecce8.png)
(10)申请公布号(43)申请公布日 (21)申请号 201310571740.6(22)申请日 2013.11.13C12N 15/82(2006.01)A01H 5/00(2006.01)C12Q 1/68(2006.01)(71)申请人中国科学院上海生命科学研究院地址200031 上海市徐汇区岳阳路319号(72)发明人苗雪霞 薛红卫 郭惠民 周时荣(74)专利代理机构上海专利商标事务所有限公司 31100代理人陈静(54)发明名称一种植物抗虫基因及其应用(57)摘要本发明涉及一种植物抗虫基因及其应用。
本发明人从抗虫性水稻植株中找到了对有害昆虫具有抗生作用的抗虫基因。
所述基因可用于制备对昆虫有抗性的转基因植物,或在育种领域作为一种筛选抗虫植物的分子标记。
(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书12页序列表4页 附图5页(10)申请公布号CN 104630260 A (43)申请公布日2015.05.20C N 104630260A1/1页1.一种提高植物抗虫性的方法,包括:将AOC4多肽或OPR7多肽的编码基因导入植物中。
2.如权利要求1所述的方法,其特征在于,所述的方法包括:(1)提供携带表达载体的农杆菌,所述的表达载体含有AOC4多肽或OPR7多肽的编码基因;(2)将植物细胞或组织或器官与步骤(1)中的农杆菌接触,从而使AOC4多肽或OPR7多肽的编码基因转入植物。
3.如权利要求1所述的方法,其特征在于,所述的OPR7多肽选自下组:(a)如SEQ ID NO:4氨基酸序列的多肽;(b)将SEQ ID NO:4氨基酸序列经过一个或多个氨基酸残基的取代、缺失或添加而形成的,且具有(a)多肽功能的由(a)衍生的多肽;(c)与SEQ ID NO:4氨基酸序列的多肽具有70%以上的序列相似性,且具有(a)多肽功能的由(a)衍生的多肽。
4.如权利要求1所述的方法,其特征在于,所述的AOC4多肽选自下组:(a)如SEQ ID NO:2氨基酸序列的多肽;(b)将SEQ ID NO:2氨基酸序列经过一个或多个氨基酸残基的取代、缺失或添加而形成的,且具有(a)多肽功能的由(a)衍生的多肽;(c)与SEQ ID NO:2氨基酸序列的多肽具有70%以上的序列相似性,且具有(a)多肽功能的由(a)衍生的多肽。
作物育种抗病虫育种

(3)致病性的遗传 毒性: 毒性:单基因隐性遗传 侵袭力: 侵袭力:可能是多基因遗传
(4)致病性的变异 ) 突变: a 突变:真菌和病毒中已发现不少新的毒性基因 来自突变。 来自突变。 b 有性杂交:病原真菌小种间、变种间和种间杂 有性杂交:病原真菌小种间、 交后基因发生重组。 交后基因发生重组。 c 体细胞重组 异核现象和拟性重组 d 适应性变异
相 对 病 指 (感 病 性 )
相 对 病 指 (感 病 性 )
生理小种
生Байду номын сангаас小种
垂直抗病性示意图
水平抗病性示意图
3 抗病虫性机制
(1)抗病性机制 ) 抗侵入:当病原菌侵入寄主前后, 抗侵入:当病原菌侵入寄主前后,寄主可以 凭借固有的或诱发的组织结构障碍, 凭借固有的或诱发的组织结构障碍,阻止病原 菌的侵入和侵入后建立寄生关系。 菌的侵入和侵入后建立寄生关系。 抗扩展: 抗扩展:病原菌侵入寄主体内建立寄生关系 仍会遇到寄主某些组织结构、 后,仍会遇到寄主某些组织结构、生理生化特 性等方面的抑制而难于进一步扩展。 性等方面的抑制而难于进一步扩展。 过敏性坏死反应
(2) 抗虫性机制 不选择性: a 不选择性:某些作物品种本身具有某些形态和生理 等特征特性,表现出对某些害虫具有拒降落、拒取食、 等特征特性,表现出对某些害虫具有拒降落、拒取食、 拒产卵和拒栖息等特性。 拒产卵和拒栖息等特性。 抗生性:某些寄主作物体内含有毒素或抑制剂, b 抗生性:某些寄主作物体内含有毒素或抑制剂,或 缺乏昆虫生长发育所需要的一些特定的营养物质, 缺乏昆虫生长发育所需要的一些特定的营养物质,致 使取食后,其幼龄若虫或幼虫死亡, 使取食后,其幼龄若虫或幼虫死亡,或发育和繁殖受 到有害影响的特性。 到有害影响的特性。 耐害性:有些作物品种遭受虫害后, c 耐害性:有些作物品种遭受虫害后,仍能正常生长 发育, 发育,在个体或群体水平上均表现出一定的再生或补 偿能力,不致大幅度减产的特性。 偿能力,不致大幅度减产的特性。