整理立体几何专题(点到平面的距离)0
立体几何中点到直线的距离、点到平面的距离的计算 专题学案汇编

立体几何中点到直线的距离、点到平面的距离的计算 班级: 姓名: 小组:【学习目标】(1)理解立体几何中点到直线的距离、点到平面的距离的概念. (2)掌握各种距离的计算方法. 【重点、难点】重点:点到直线、点到平面距离公式的推导及应用. 难点:把空间距离转化为向量知识求解. 【学法指导】空间距离包括:点到点、点到线、点到面、线到线、线到面、面到面之间的距离.其中以点到面的距离最为重要,其他距离,如线到面、面到面的距离均可转化为点到面的距离,用向量法来求解。
【预习感知】1.两点间的距离的求法.设a =(a 1,a 2,a 3),则|a |=______________,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),则d AB =|AB→|=________________. 答案:a 21+a 22+a 23(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)22.点到直线距离的求法设l 是过点P 平行于向量s 的直线,A 是直线l 外定点.作AA ′⊥l ,垂足为A ′,则点A 到直线l 的距离d 等于线段AA ′的长度,而向量PA →在s 上的投影的大小|PA →·s 0|等于线段PA ′的长度,所以根据勾股定理有点A 到直线l 的距离d =_____________.d =|PA →|2-|PA →·s 0|2.3.点到平面的距离的求法设π是过点P 垂直于向量n 的平面,A 是平面π外一定点.作AA ′⊥π,垂足为A ′,则点A 到平面π的距离d 等于线段AA ′的长度,而向量PA→在n 上的投影的大小|PA →·n 0|等于线段AA ′的长度,所以点A 到平面π的距离d =____________. d =|PA →·n 0|.【预习检测】1.已知直线l 过定点A (2,3,1),且方向向量为n =(0,1,1),则点P (4,3,2)到l 的距离为( )A.322 B .22 C.102D . 2【解析】 PA →=(-2,0,-1),|PA →|=5,PA →·n |n |=-12,则点P 到直线l 的距离d =|PA →|2-|PA →·n |n ||2=5-12=322.【答案】 A图2-6-42.如图2-6-4所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离是( )A.12 B .24【解析】 建立如图所示坐标系,则D (0,0,0),A 1(1,0,1), O (12,12,1), 则DA 1→=(1,0,1), A 1O →=(-12,12,0),由题意知DA 1→为平面ABC 1D 1的法向量,∴O 到平面ABC 1D 1的距离为 d =|DA 1→·A 1O →||DA 1→|=122=24.【答案】 B3.已知长方体ABCD -A 1B 1C 1D 1中,AB =6,BC =4,BB 1=3,则点B 1到平面A 1BC 1的距离为________.【解析】 如图所示建立空间直角坐标系, 则A 1(4,0,3),B 1(4,6,3),B (4,6,0),C 1(0,6,3),A 1C 1→=(-4,6,0),A 1B →=(0,6,-3), BC 1→=(-4,0,3),A 1B 1→=(0,6,0),设平面A 1BC 1的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B →=0,解得n =(1,23,43).∴d =|A 1B 1→·n ||n |=122929.【答案】 122929【自主探究】 求点到直线的距离如图,在空间直角坐标系中有长方体ABCD -A ′B ′C ′D ′,AB =1,BC =1,AA ′=2,求点B 到直线A ′C 的距离.[分析] 可利用坐标向量法求出点B 到直线A ′C 的距离. [解析] 画出空间直角坐标系如图,因为AB =1,BC =1,AA ′=2, 所以A ′(0,0,2),C (1,1,0),B (1,0,0).计算直线A ′C 的方向向量A ′C →=(1,1,-2);找到直线A ′C 上一点C (1,1,0); 求点B (1,0,0)到直线A ′C 上一点C (1,1,0)的向量BC →=(0,1,0); BC →在A ′C →上的投影为BC →·A ′C →|A ′C →|=(0,1,0)·(1,1,-2)12+12+(-2)2=16; 所以点B 到直线A ′C 的距离为d =|B C →|2-|B C →·A ′C →|A ′C →||2=1-16=56=306.点面距已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且|GC |=2,求点B 到平面EFG 的距离.[分析] 在用向量方法求证垂直问题或求距离时,可以建立空间直角坐标系,通过坐标运算求解,也可直接通过向量运算进行求解.还可利用等积法求解. [解析] 解法一:(转化法)连接AC ,BD 交于点O ,设AC 与EF 交于H ,连接GH ,GO ,∵E 、F 分别为AB 、AD 的中点,∴EF ∥BD . ∵BD Ú平面GEF , ∴BD ∥平面GEF .∴点B 到平面EFG 的距离即为点O 到平面EFG 的距离. ∵ABCD 是正方形,∴AC ⊥BD ,∴EF ⊥AC . ∵GC ⊥平面ABCD ,又EF Ü平面ABCD ,∴GC ⊥EF ,∴EF ⊥平面GCH .∵EF 面GEF , ∴平面GEF ⊥平面GCH . 过O 点作OM ⊥GH 于M ,则OM ⊥平面GEF ,因此OM 是O 点到平面GEF 的距离,也等于B 点到平面GEF 的距离.∵正方形ABCD 边长为4, ∴|CH |=34|AC |=34×42=3 2.∵|GC |=2,且GC ⊥CA ,∴|GH |=4+18=22. ∵Rt △OMH ∽Rt △GCH , ∴|OM ||OH |=|GC ||GH |,∴|OM |=21111. ∴点B 到平面EFG 的距离为21111.解法二:(等体积法)连接BG ,BF ,可知V G -BEF =V B -GEF ,∵E 为AB 的中点,∴S △BEF =12S △ABF =12×12×2×4=2.连接AC 交EF 于H ,连接GH ,∵EF ⊥AC ,GC ⊥EF ,∴EF ⊥平面GCH ,∴EF ⊥GH . ∵|GC |=2,|AC |=42,∴|CH |=34×42=32,∴|GH |=GC 2+CH 2=4+18=22.∴S △GEF =12×|EF |×|GH |=12×22×22=211.设点B 到平面GEF 距离为h由V G -BEF =V B -GEF ,得13×|GC |×S △BEF =13×h ×S △GEF ,∴13×2×2=13×h ×211,解得h =21111. ∴B 点到平面GEF 的距离为21111.解法三:(向量法)如图所示,以C 为原点,分别以CD 、CB 、CG 所在的直线为x 轴、y 轴、z 轴建立坐标系,则B (0,4,0),E (2,4,0),F (4,2,0),G (0,0,2).∴GF →=(4,2,-2),EF →=(2,-2,0), 设平面GEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·GF →=0n ·EF →=0⇒⎩⎪⎨⎪⎧ 2x +y -z =0x -y =0⇒⎩⎪⎨⎪⎧y =x ,z =3x .令x =1,得n =(1,1,3).。
立体几何(点到面的距离)

立体几何(文科综合)1.如图, 在四棱锥P ABCD 中,四边形ABCD 是直角梯形, DC 2AD 2AB 2,DAB ADC 90 , PB 2,PDC 为等边三角形.1)证明:PD BC ;2)求点B到平面PCD的距离.答案】(1)略;(2)632.如图,圆锥PO中,AB是圆O的直径,C是底面圆O上一点,且CAB ,点D为半径OB的中6(Ⅰ)求证:CD 平面APB ;(Ⅱ)当APB是边长为4的正三角形时,求点A到平面PBC的距离. 【答案】(Ⅰ)见证明;(Ⅱ)h 4 1553.如图,已知在直四棱柱ABCD A1 B1C1D1 中,AD DC ,AB/ /DC ,DC DD1 2AD 2AB 2 .(1)求证:DB 平面B1BCC1 ;(2)求点A1到平面C1BD 的距离.【答案】(1)证明见解析;(2)3. 4.如图,四棱锥的底面是直角梯形,点,。
1)证明:平面2)求点到平面的距离。
答案】( 1 )见解析;( 2 )1)证明:平面平面2)求点到平面的距离.答案】(1)见解析(2)6.如图所示,在三棱锥D-ABC中,AC,BC,CD两两垂直,AC=CD=1,=,O为AB 的中点.平面的中5.如图,在三棱柱,是边的中点.中(底面为正三角形),平面说明点 M , N 的位置 ( 不要求证明 );(2) 求点 C 到平面 ABD 的距离.【答案】( 1)见解析;( 2)(1) 求证: CF ∥平面 ; (2) 求三棱锥 C - 的高.【答案】( 1)见解析;( 2)求证:平面 平面,求点 到平面 的距离与平面 ACD 平行,且与棱 DB ,CB 分别相交于 M , N ,在图中画出该截面多边形,并在 的条件下,若 ,求 与平面 所成角的正切值的侧棱 AA1⊥底面 ABC ,∠ACB =90°, E 是棱 的中点, F 是 AB 的中点,8.已知四棱锥的底面 是菱形, 底面 是 上的任意一点7.如图,三棱柱 ABC -答案】( 1)见解析( 2) (3)9.如图, 已知 平面 , 为矩形, 、 分别为 、 的中点,1)求证: 平面 ;2)求证:面平面3)求点 到平面 的距离 .答案】( 1)证明见解析; (2)证明见解析; (3) .1)证明: 平面答案】( 1)证明见解析; (2)11.在长方体 ABCD A 1BC 1 1D 1 中,底面 ABCD 是边长为 2的正方形, AA 1=2 3,E 是 AB 的中点, F10.如图,在四棱锥 点 Q 在棱 AB中, 平面的体积为,求点 B 到平面 PDQ 的距离 .是 BB 1 的中点1)求证:EF / / 平面A1DC1;2)求点A到平面A1DC1 的距离.答案】(1)见解析(2) 2 217ADFC是边长为2的正方形,点M 是棱EF 的中点.2)若三棱锥B DEF 的体积为4,求点B到平面ADFC 的距离.答案】(1)见解析(2)613.已知四棱锥P ABCD的底面为菱形,且ABC 60 ,AB PC 2,AP BP 2 .1)求证:平面PAB 平面ABCD ;2)求点D 到平面APC的距离.答案】(1)证明见解析;(2) 2 21714.如图,在等腰梯形ABCD中,AB/ /CD ,AD DC CB CF ,ABC 60 ,四边形ACFE为平行四边形,FC 平面ABCD ,点M 为线段EF 中点.1)求证: BC ⊥平面 ACFE ;2)若 AD 2,求点 A 到平面 MBC 的距离 答案】( 1)详见解析; ( 2) 4 21 .715.如图所示,在梯形 ABCD 中, AD ∥ BC ,AB ⊥BC ,AB BC 1, PA ⊥平面 ABCD , CD ⊥2)若 PA AD ,求点 B 到平面 PAC 的距离.答案】( 1)见解析( 2) 16.如图, 在直三棱柱 ABC-A 1B 1C 1 中, ABC 为正三角形, AB=AA=1 2 , M 是 A 1C 的中点, N 是 A 1B 1 的中点1)证明:MN ∥ 平面 BCC 1B 1 ; 2)求点 M 到平面 ACB 1的距离 .PAC ;【答案】( 1)见证明;(2) 21717.如图,在底面是正方形的四棱锥P ABCD 中, PA 平面 ABCD , BD 交 AC 于点 E , F 是 PA 的中点, G 为 AC 上一动点.1)求证: BD FG ;2)若 G 是AE 的中点, PA AB 4,求点 P 到平面 FGD 的距离. 答案】(1)证明见解析; (2) 2 14.718.如图,四面体 ABCD 中, O 、 E 分别是 BD 、BC 的中点,1)求证: AO 平面 BCD ;2)求异面直线 AB 与 CD 所成角的余弦值; 3)求点 E 到平面 ACD 的距离。
专题11立体几何中的点面距离问题解析版

专题11 立体几何中的点面距离问题【方法总结】应用等体积转化法求解点到平面的距离等体积转化法就是通过变换几何体的底面,利用几何体(主要是三棱锥)体积的不同表达形式构造方程来求解相关问题的方法,主要用于立体几何中求解点到面的距离.关键是准确把握三棱锥底面的特征,选择的底面应具备两个特征:一是底面的形状规则,即面积可求;二是底面上的高比较明显,即线面垂直关系比较直接.【例题选讲】[例1](2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.解析 (1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME=12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1綊DC ,可得B 1C A 1D ,故ME ND , 因此四边形MNDE 为平行四边形,所以MN ∥ED .又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,所以MN ∥平面C 1DE .(2)过点C 作C 1E 的垂线,垂足为H .由已知可得DE ⊥BC ,DE ⊥C 1C ,又BC ∩C 1C =C ,BC ,C 1C ⊂平面C 1CE ,所以DE ⊥平面C 1CE ,故DE ⊥CH .又C 1E ∩DE =E ,所以CH ⊥平面C 1DE ,故CH 的长即为点C 到平面C 1DE 的距离.由已知可得CE =1,C 1C =4,所以C 1E =17,故CH =41717.从而点C 到平面C 1DE ∥=∥=的距离为41717. [例2]如图,在四棱锥P -ABCD 中,底面是边长为2的正方形,P A =PD =17,E 为P A 的中点,点F 在PD 上且EF ⊥平面PCD ,M 在DC 延长线上,FH ∥DM ,交PM 于点H ,且FH =1.(1)证明:EF ∥平面PBM ;(2)求点M 到平面ABP 的距离.解析 (1)证明:取PB 的中点G ,连接EG ,HG ,则EG ∥AB ,且EG =1,∵FH ∥DM ,且FH =1,又AB ∥DM ,∴EG ∥FH ,EG =FH ,即四边形EFHG 为平行四边形,∴EF ∥GH .又EF ⊄平面PBM ,GH ⊂平面PBM ,∴EF ∥平面PBM .(2)∵EF ⊥平面PCD ,CD ⊂平面PCD ,∴EF ⊥CD .∵AD ⊥CD ,EF 和AD 显然相交,EF ,AD ⊂平面P AD ,∴CD ⊥平面P AD ,CD ⊂平面ABCD ,∴平面ABCD ⊥平面P AD .取AD 的中点O ,连接PO ,∵P A =PD ,∴PO ⊥AD .又平面ABCD ∩平面P AD =AD ,PO ⊂平面P AD ,∴PO ⊥平面ABCD ,∵AB ∥CD ,∴AB ⊥平面P AD ,∵P A ⊂平面P AD ,∴P A ⊥AB ,在等腰三角形P AD 中,PO =P A 2-AO 2=17-1=4. 设点M 到平面ABP 的距离为h ,连接AM ,利用等体积可得V M -ABP =V P -ABM , 即13×12×2×17×h =13×12×2×2×4,∴h =817=81717,∴点M 到平面P AB 的距离为81717. [例3]如图,已知四棱锥P -ABCD 的底面ABCD 为菱形,且∠ABC =60°,AB =PC =2,P A =PB =2.(1)求证:平面P AB ⊥平面ABCD ;(2)求点D 到平面APC 的距离.解析 (1)证明:取AB 的中点O ,连接PO ,CO ,(图略),由P A =PB =2,AB =2知△P AB 为等腰直角三角形,∴PO ⊥AB ,PO =1, 由AB =BC =2,∠ABC =60°知△ABC 为等边三角形,∴CO =3.又由PC =2得PO 2+CO 2=PC 2,∴PO ⊥CO ,又AB ∩CO =O ,∴PO ⊥平面ABC , 又PO ⊂平面P AB ,∴平面P AB ⊥平面ABCD .(2)由题知△ADC 是边长为2的等边三角形,△P AC 为等腰三角形,设点D 到平面APC 的距离为h ,由V D P AC =V P ADC 得13S △P AC ·h =13S △ADC ·PO .∵S △ADC =34×22=3,S △P AC =12P A ·PC 2-⎝⎛⎭⎫12P A 2=72, ∴h =S △ADC ·PO S △P AC =3×172=2217,即点D 到平面APC 的距离为2217. [例4]如图,在单位正方体ABCD A 1B 1C 1D 1中,E ,F 分别是AD ,BC 1的中点.。
立体几何求点到面距离问题

立体几何求点到面距离问题引言立体几何是研究空间中的图形和空间关系的一个分支学科。
在立体几何中,求点到面的距离是一个常见的问题。
本文将从基本概念出发,深入探讨立体几何中求点到面距离的问题。
什么是点到面的距离点到面的距离是指空间中一个点到平面的最短距离。
这个距离可以用于求解一系列实际问题,例如工程中的装配问题、机器人导航问题等。
点到面距离的计算方法在立体几何中,求点到面的距离可以采用多种方法。
下面将介绍几种常用的计算方法。
求点到平面的公式假设平面的方程为Ax+By+Cz+D=0,点的坐标为(x0,y0,z0),点到平面的距离可以通过公式计算:距离= |Ax0 + By0 + Cz0 + D| / √(A^2 + B^2 + C^2)其中,|x|表示x的绝对值。
点到三角形的距离若平面上有一个三角形ABC,点P到三角形的距离可以按照以下步骤计算:1.求三角形ABC的法向量N;2.用三角形ABC的一条边向量B-A和两个边向量C-A、P-A构造Gram矩阵,记作G;3.求Gram矩阵的特征值λ1、λ2、λ3;4.计算点到三角形的距离d = √(2* (λ1^2 + λ2^2 + λ3^2) / (λ1 +λ2 + λ3));其中,√表示平方根。
点到立方体的距离立方体是一个六个面都是正方形的多面体。
点到立方体的距离可按照以下步骤计算:1.将立方体视为六个平面;2.对于每个平面,计算点到平面的距离;3.取最小的平面距离作为点到立方体的距离。
点到面距离的应用点到面的距离在计算机图形学、计算机辅助设计、计算机视觉等领域有着广泛的应用。
计算机图形学中的应用在计算机图形学中,点到面的距离可以用于线框模型的绘制、曲面的包围盒计算等。
例如,当我们需要绘制一个线框模型时,可以通过计算点到平面的距离,来确定哪些线是显示的,哪些线是隐藏的。
计算机辅助设计中的应用在计算机辅助设计中,点到面的距离可以用于零件装配的碰撞检测、表面贴花等。
立体几何知识点和例题(含有答案)

【考点梳理】一、考试内容1.平面。
平面的基本性质。
平面图形直观图的画法。
2.两条直线的位置关系。
平行于同一条直线的两条直线互相平行。
对应边分别平行的角。
异面直线所成的角。
两条异面直线互相垂直的概念。
异面直线的公垂线及距离。
3.直线和平面的位置关系。
直线和平面平行的判定与性质。
直线和平面垂直的判定与性质。
点到平面的距离。
斜线在平面上的射影。
直线和平面所成的角。
三垂线定理及其逆定理。
4.两个平面的位置关系。
平面平行的判定与性质。
平行平面间的距离。
二面角及其平面角。
两个平面垂直的判定与性质。
二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。
对于异面直线的距离,只要求会计算已给出公垂线时的距离。
2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。
对于异面直线上两点的距离公式不要求记忆。
3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。
能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。
三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。
(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。
暑假立体几何中的距离问题

立体几何中的距离问题【要点精讲】 1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。
其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P 在该平面上的射影为P ′,则线段PP ′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。
○2等体积法。
直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。
求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。
异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定) 点到面的距离的做题过程中思考的几个方面:①直接作面的垂线求解;②观察点在与面平行的直线上,转化点的位置求解; ③观察点在与面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。
立体几何求体积、点到平面的距离专题(理科)

立体几何求体积、点到平面的距离专题(理科)如图,三棱柱111ABC A B C -中,侧面11BB C C 是边长为2且160CBB∠=︒的菱形,1AB AC =.(1)证明:平面1AB C ⊥平面11BB C C .(2)若1AB B C ⊥,AB BC =,求点B 到平面111A B C 的距离.如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,60PAC BAC ∠=∠=︒,4AC =,3AP =,2AB =.二、(优质试题湖北武汉高三二月调研)一、(优质试题河北石家庄高三质量检测(二))(1)求三棱锥P ABC -的体积; (2)求点C 到平面PAB 的距离.如图,四棱锥E ABCD -中,底面ABCD 是平行四边形,M ,N 分别为BC ,DE 中点.(1)证明:CN ∥平面AEM ;(2)若ABE △是等边三角形,平面ABE ⊥平面BCE ,CE BE ⊥,2BE EC ==,求三棱锥N AEM -的体积.三、(优质试题福建莆田高三下学期三月质量检测)【答案】(1)见解析;(2)7【解析】(1)连接1BC 交1B C 于O ,连接AO , 侧面11BB C C 为菱形,∴11B C BC ⊥;1AB AC =,O 为1BC 的中点,1AO BC ∴⊥,又1B C AO O =,1BC ∴⊥平面1AB C ,1BC ⊂平面11BB C C ,∴平面1AB C ⊥平面11BB C C .(2)由1AB B C ⊥,1BO B C ⊥,ABBO B =,1B C ∴⊥平面ABO ,AO ⊂平面ABO ,又1AO BC ⊥,11BCB C O =,AO ∴⊥平面11BB C C ,菱形11BB C C 的边长为2且0160CBB∠=,BO ∴=,2AB BC ==,1AO ∴=又1CO =,AC 111ABC A B C S S =△△,设点B 到平面111A B C 的距离为h ,由11111111B A B C A BB C A BB C VV V ---==得111221332h =⋅⋅⋅,h ⇒=,∴点B 到平面111A B C【答案】(1)3;(2.【解析】(1)过P 作PH AC ⊥交AC 于一点H ,二、(优质试题湖北武汉高三二月调研)一、(优质试题河北石家庄高三质量检测(二))。
高中数学 第3章 空间向量与立体几何 3.7 点到平面的距离课件 湘教版选修2-1

d=|AP1|=___||_A_P_|_c_o_s_∠_P_A__N_|__=___|_A_|Pn_·|_n_| __.
1.已知直线 l 过点 A(1,-1,2),和 l 垂直的一个向量为 n=
(-3,0,4),则 P(3,5,0)到 l 的距离为( )
A.5
B.14
C.154
D.45
答案:C
2.已知直线 l 与平面 α 相交于点 O,A∈l,B 为线段 OA 的中
d=
|B→C|2-B→|CA→·′AC→′|C2=
16 4-14
=2
35 7.
用向量法求点到直线的距离的一般步骤 (1)建立空间直角坐标系; (2)求直线的方向向量; (3)计算所求点与直线上某一点所构成的向量在直线的方向向 量上的射影长; (4)利用勾股定理求解.另外,要注意平行直线间的距离与点到 直线的距离之间的转化.
则 A(4,0,0),B(0,3,0),P0,0,95, 所以A→B=(-4,3,0),A→P=-4,0,95, 所以A→P在 AB 上的投影长为|A→P|A·→BA→| B|=156, 所以点 P 到 AB 的距离为 d= |A→P|2-1562= 16+8215-22556=3. 答案:3
点到直线的距离 如图,在空间直角坐标系中有长方体 ABCD-A′B′C′D′, AB=1,BC=2,AA′=3,求点 B 到直线 A′C 的距离.
又 AC∥平面 PEF,
所以
AC
到平面
PEF
的距离为
17 17 .
用向量法求点面距的步骤 (1)建系:建立恰当的空间直角坐标系; (2)求点坐标:写出(求出)相关点的坐标; (3)求向量:求出相关向量的坐标; (4)利用公式即可求得点到平面的距离.