(0分下载)2012考研数学必看:钻石卡学员才有的2012考研数学全程辅导书选择及复习规划
考研数学一辅导书

考研数学一辅导书
以下是一些常用的考研数学一辅导书,供参考:
1.《高等数学(上、下册)》-同济大学数学系,清华大学出版社。
2. 《线性代数及其应用》- Gilbert Strang,机械工业出版社。
3.《概率论与数理统计》-福建师范大学概率统计学教研室,高等教育出版社。
4.《数学分析》-汤家凤,高等教育出版社。
5.《数学分析习题集》-沈家骅、孙富春,高等教育出版社。
6.《代数学》-王维岳,高等教育出版社。
7.《微积分学》-刘黎平,高等教育出版社。
8.《复变函数与积分变换》-王立银,清华大学出版社。
9.《数学物理方法》-赵凤岐、马伟良,高等教育出版社。
10.《数学分析习题与解答》-赵凤岐、马伟良,高等教育出版社。
以上是一些经典的考研数学一辅导书,可以根据自己的实际情况选择合适的学习资料。
2012考研《数学》大纲解析及备考指导汇总(精)

2012考研《数学》大纲解析及备考指导汇总考试科目:微积分 . 线性代数 . 概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为 150分,考试时间为 180分钟 .二、答题方式答题方式为闭卷、笔试 .三、试卷内容结构微积分约 56%线性代数约 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题 4分,共 32分填空题 6小题,每题 4分,共 24分解答题 (包括证明题 9小题,共 94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性 . 单调性 . 周期性和奇偶性复合函数 . 反函数 . 分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 .2. 了解函数的有界性 . 单调性 . 周期性和奇偶性 .3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念 .4. 掌握基本初等函数的性质及其图形,了解初等函数的概念 .5. 了解数列极限和函数极限 (包括左极限与右极限的概念 .6. 了解极限的性质与极限存在的两个准则, 掌握极限的四则运算法则, 掌握利用两个重要极限求极限的方法 .7. 理解无穷小的概念和基本性质 . 掌握无穷小量的比较方法 . 了解无穷大量的概念及其与无穷小量的关系 .8. 理解函数连续性的概念 (含左连续与右连续 ,会判别函数间断点的类型 .9. 了解连续函数的性质和初等函数的连续性, 理解闭区间上连续函数的性质(有界性、最大值和最小值定理 . 介值定理 ,并会应用这些性质 .二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数 . 反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L´Hospital法则函数单调性的判别函数的极值函数图形的凹凸性 . 拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1. 理解导数的概念及可导性与连续性之间的关系, 了解导数的几何意义与经济意义 (含边际与弹性的概念 ,会求平面曲线的切线方程和法线方程 .2. 掌握基本初等函数的导数公式 . 导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数 .3. 了解高阶导数的概念,会求简单函数的高阶导数 .4. 了解微分的概念, 导数与微分之间的关系以及一阶微分形式的不变性, 会求函数的微分 .5. 理解罗尔 (Rolle定理 . 拉格朗日 ( Lagrange中值定理 . 了解泰勒定理 . 柯西(Cauchy中值定理,掌握这四个定理的简单应用 .6. 会用洛必达法则求极限 .7. 掌握函数单调性的判别方法, 了解函数极值的概念, 掌握函数极值、最大值和最小值的求法及其应用 .8. 会用导数判断函数图形的凹凸性 (注:在区间内,设函数具有二阶导数 . 当时,的图形是凹的 ; 当时,的图形是凸的 ,会求函数图形的拐点和渐近线 .9. 会描述简单函数的图形 .三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨 (Newton- Leibniz公式不定积分和定积分的换元积分法与分部积分法反常 (广义积分定积分的应用考试要求1. 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法 .2. 了解定积分的概念和基本性质, 了解定积分中值定理, 理解积分上限的函数并会求它的导数, 掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法 .3. 会利用定积分计算平面图形的面积 . 旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题 .4. 了解反常积分的概念,会计算反常积分 .四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值 . 最大值和最小值二重积分的概念 . 基本性质和计算 **区域上简单的反常二重积分考试要求1. 了解多元函数的概念,了解二元函数的几何意义 .2. 了解二元函数的极限与连续的概念, 了解有界闭区域上二元连续函数的性质 .3. 了解多元函数偏导数与全微分的概念 , 会求多元复合函数一阶、二阶偏导数,会求全微分 , 会求多元隐函数的偏导数 .4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件, 会求二元函数的极值, 会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值, 并会解决简单的应用问题 .5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法 (直角坐标 . 极坐标 . 了解 **区域上较简单的反常二重积分并会计算 .五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级杰的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径 . 收敛区间 (指开区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1. 了解级数的收敛与发散 . 收敛级数的和的概念 .2. 了解级数的基本性质和级数收敛的必要条件, 掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法 .3. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系, 了解交错级数的莱布尼茨判别法 .4. 会求幂级数的收敛半径、收敛区间及收敛域 .5. 了解幂级数在其收敛区间内的基本性质 (和函数的连续性、逐项求导和逐项积分 ,会求简单幂级数在其收敛区间内的和函数 .6. 了解 ... 及的麦克劳林 (Maclaurin展开式 .六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念 .2. 掌握变量可分离的微分方程 . 齐次微分方程和一阶线性微分方程的求解方法 .3. 会解二阶常系数齐次线性微分方程 .4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式 . 指数函数 . 正弦函数 . 余弦函数的二阶常系数非齐次线性微分方程 .5. 了解差分与差分方程及其通解与特解等概念 .6. 了解一阶常系数线性差分方程的求解方法 .7. 会用微分方程求解简单的经济应用问题 .线性代数一、行列式考试内容行列式的概念和基本性质行列式按行 (列展开定理考试要求1. 了解行列式的概念,掌握行列式的性质 .2. 会应用行列式的性质和行列式按行 (列展开定理计算行列式 .二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质 .2. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式的性质 .3. 理解逆矩阵的概念, 掌握逆矩阵的性质以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵 .4. 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 .5. 了解分块矩阵的概念,掌握分块矩阵的运算法则 .三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1. 了解向量的概念,掌握向量的加法和数乘运算法则 .2. 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念, 掌握向量组线性相关、线性无关的有关性质及判别法 .3. 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩 .4. 理解向量组等价的概念,理解矩阵的秩与其行 (列向量组的秩之间的关系 .5. 了解内积的概念 . 掌握线性无关向量组正交规范化的施密特 (Schmidt方法 .四、线性方程组考试内容线性方程组的克莱姆 (Cramer法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组 (导出组的解之间的关系非齐次线性方程组的通解考试要求1. 会用克莱姆法则解线性方程组 .2. 掌握非齐次线性方程组有解和无解的判定方法 .3. 理解齐次线性方程组的基础解系的概念, 掌握齐次线性方程组的基础解系和通解的求法 .4. 理解非齐次线性方程组解的结构及通解的概念 .5. 掌握用初等行变换求解线性方程组的方法 .五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1. 理解矩阵的特征值、特征向量的概念, 掌握矩阵特征值的性质, 掌握求矩阵特征值和特征向量的方法 .2. 理解矩阵相似的概念, 掌握相似矩阵的性质, 了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法 .3. 掌握实对称矩阵的特征值和特征向量的性质 .六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1. 了解二次型的概念, 会用矩阵形式表示二次型, 了解合同变换与合同矩阵的概念 .2. 了解二次型的秩的概念, 了解二次型的标准形、规范形等概念, 了解惯性定理,会用正交变换和配方法化二次型为标准形 .3. 理解正定二次型 . 正定矩阵的概念,并掌握其判别法 .概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1. 了解样本空间 (基本事件空间的概念, 理解随机事件的概念, 掌握事件的关系及运算 .2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes公式等 .3. 理解事件的独立性的概念,掌握用事件独立性进行概率计算 ; 理解独立重复试验的概念,掌握计算有关事件概率的方法 .二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1. 理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率 .2. 理解离散型随机变量及其概率分布的概念, 掌握 0-1分布、二项分布、几何分布、超几何分布、泊松 (Poisson分布及其应用 .3. 掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布 .4. 理解连续型随机变量及其概率密度的概念, 掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5. 会求随机变量函数的分布 .三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1. 理解多维随机变量的分布函数的概念和基本性质 .2. 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布 .3. 理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系 .4. 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义 .5. 会根据两个随机变量的联合分布求其函数的分布, 会根据多个相互独立随机变量的联合分布求其函数的分布 .四、随机变量的数字特征考试内容随机变量的数学期望 (均值、方差、标准差及其性质随机变量函数的数学期望切比雪夫 (Chebyshev不等式矩、协方差、相关系数及其性质考试要求1. 理解随机变量数字特征 (数学期望、方差、标准差、矩、协方差、相关系数的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征 .2. 会求随机变量函数的数学期望 .3. 了解切比雪夫不等式 .五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利 (Bernoulli大数定律辛钦 (Khinchine大数定律棣莫弗 -拉普拉斯 (De Moivre-Laplace定理列维 -林德伯格 (Levy-Lindberg定理考试要求1. 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律 (独立同分布随机变量序列的大数定律 .2. 了解棣莫弗 -拉普拉斯中心极限定理 (二项分布以正态分布为极限分布、列维 -林德伯格中心极限定理 (独立同分布随机变量序列的中心极限定理 ,并会用相关定理近似计算有关随机事件的概率 .六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1. 了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念, 其中样本方差定义为2. 了解产生变量、变量和变量的典型模式 ; 了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表 .3. 掌握正态总体的样本均值 . 样本方差 . 样本矩的抽样分布 .4. 了解经验分布函数的概念和性质 .七、参数估计考试内容点估计的概念考试要求估计量与估计值矩估计法最大似然估计法 1.了解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩和最大似然估计法 2012 考研数学大纲(数三的延伸阅读——GCT 考试各科技巧小贴士 GCT 有四部分组成:英语、数学、语文、逻辑。
2012考研《数学》大纲解析及备考指导汇总

2012考研《数学》大纲综述及备考指导2011年9月15日教育部考试中心发布了2012年全国硕士研究生入学统一考试数学考试大纲,与去年相比考试内容和考试要求上没有变化,具体如下:试卷题型结构为:单项选择题 8小题,每小题4分,共32分;填空题 6小题,每小题4分,共24分;解答题(包括证明题) 9小题,共94分.数学一高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学二高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学三2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.农学数学高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.大纲在考试要求和考试内容上没有变化,对于考生来说可以按照既定的复习计划,按部就班的进行备考了。
与此同时,同学们最好能够根据考试大纲上的知识点再系统的复习一下相应的考试点,一方面可以起到巩固提高的作用,另外一方方面,可以形成知识体系脉络。
2012年硕士研究生入学统一考试数学考试大纲70893

2012年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
2012年考研数学一真题及答案

2012年考研数学一真题及答案2012年考研数学一真题及答案2012年的考研数学一真题是考生备考过程中非常重要的资料之一。
通过对该年真题的分析和解答,考生可以更好地了解考试的难度和出题规律,从而有针对性地进行备考。
一、选择题部分选择题是考研数学一的必答题部分,也是考生们最容易得分的部分。
2012年的数学一选择题主要涉及到了微积分、线性代数和概率统计等内容。
在微积分部分,有一道题目要求求解函数f(x) = 2x^3 - 3x^2 - 12x + 1的最大值和最小值。
通过对函数求导并令导数为零,可以求得函数的驻点。
进一步分析函数的二阶导数可以确定这些驻点是极大值还是极小值。
在线性代数部分,有一道题目要求判断矩阵A = [1 2 3; 4 5 6; 7 8 9]是否可逆。
通过计算矩阵的行列式,可以得到矩阵的秩。
如果矩阵的秩等于矩阵的阶数,那么该矩阵是可逆的。
在概率统计部分,有一道题目要求计算某事件的概率。
通过使用概率的定义公式,可以计算出事件发生的可能性。
二、解答题部分解答题是考研数学一的开放性题目部分,也是考生们需要发挥自己数学思维和解题能力的部分。
2012年的数学一解答题主要涉及到了微积分、线性代数和概率统计等内容。
在微积分部分,有一道题目要求求解定积分∫[0,1] (x^2 + 1)dx。
通过对被积函数进行积分运算,可以得到结果为5/3。
在线性代数部分,有一道题目要求求解线性方程组Ax = b。
通过使用矩阵的逆运算,可以得到方程组的解x。
在概率统计部分,有一道题目要求计算某事件的概率。
通过使用条件概率和全概率公式,可以计算出事件发生的可能性。
三、备考建议备考考研数学一需要掌握扎实的数学基础知识和解题技巧。
在备考过程中,考生可以通过以下几点来提高备考效果。
首先,要熟悉各个知识点的概念和公式。
数学一的考试内容较为广泛,需要考生掌握微积分、线性代数和概率统计等多个学科的知识。
熟悉各个知识点的概念和公式,可以帮助考生更好地理解题目和解题思路。
2012年考研数学试题详解及评分参考

P{X < Y} =
(A)
1 5
(B)
1 3
(C)
2 3
(D)
4 5
【答】 应选 (A) .
【解】 由题设,知 X 与Y 的概率密度分别为
f
X
(
x)
=
ìe- x
í î
0,
,
x > 0, x£0
fY
(
y)
=
ì4e-4
í î
0,
y
,
又 X 与Y 相互独立,所以 X 与 Y 的联合密度函数为
y >0, y£0
æ1 0 0ö
(A)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
æ1 0 0ö
(B)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(C)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(D)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
【答】 应选 (B) .
【解法一】 显然 Q 是将 P 的第 2 列加到第 1 列得到的,所以有 Q = PE(1)+(2) ,因而
(A) a1,a2 ,a3
(B) a1,a2 ,a4
(C) a1,a3,a4
(D) a2 ,a3,a4
【答】 应选 (C) .
【解】 由 a1,a2 ,a3 = - c1 ,知 c1 ¹ 0 时,a1,a2 ,a3 线性无关,故排除(A);
同理,由 a1,a2 ,a4 = c1 ,知 c1 ¹ 0 时,a1,a2 ,a4 线性无关,故排除(B);
2012考研数学大纲解析线性代数

2012考研数学大纲解析线性代数1. 12年的数学考题难度较今年会有比较大的变化吗?从发布的的2012年考研新大纲可以推测,12年试卷难度会保持整体平稳。
因为大纲明确规定要保持历年试题难度的相对稳定性,试卷难度系数一般控制在0.5左右,也就是普通高等学校优秀本科毕业生参加考试的话要考到100或100以上的分数,这是命题的原则和标准,从11年的试卷难度来看,跟前两年相比,即使降低了一点儿难度,但可以看到数一和数二的分数线,不加单科分数线,提高了,一个是4分,一个是5分,数三的试卷比去年更容易一点,所以今年数三的分数线提高了14分,据此判断12年数学试卷的难度应该跟今年相当,而且个人觉得比今年稍微难一点,这样的话出来的学生的平均分和最后的录取分数线最后都比较平稳。
所以我觉得12年考生面对的真题难度跟今年相当。
2.有网友说他考数二,二重积分很重要,那复习这一章该侧重哪几个方面呢?二重积分对于考研来说确实很重要。
除了数一不敢保证以外,数二和数三一定每年一个大题一个小题,但是数一也是经常在考二重积分的大题目。
如果我们把历年考研真题拿过来归纳总结,二重积分的题目考察重点有三个方面①二重积分的对称性问题。
它可以从填空题或小的选择题来考对称性,考研二重积分的大题目里面的计算过程中要用到对称性,如果不用,计算工作量很大,甚至算不出来,通过对称性处理后计算工作量明显减少,比较简单。
②交换积分次序的问题。
交换积分次序在考研的真题里面出现了几个小的选择题,大的题目还没考过;所以如果复习得比较全面的话,交换积分次序的四种类型应该全部搞清楚。
③分区域函数的二重积分。
这也是二重积分大题目出得最多的地方。
简单一点讲,它类似于定积分里面分段函数的定积分。
分区域函数的二重积分从原理上来讲给人的感觉比较简单,就是背一些函数,在一些区域有一个具体的表达,在另外的一个区域又有另外一种表达。
但是作为考研来讲是变化多样的。
3. 线性代数的复习应该把握哪些重点?因为线性代数在考研的试卷上最近几年整个的分值一直没有改变,它是两个选择题,每个4分,后面是一个填空题,4分,紧跟着后面是两个大题目,每个11分,这个分值一直没有改变。
2012考研数学真题+答案

x2 y 2 2
1 x x2 cos x 1 1 x 2
……10 分
的极值.
x2 y2 2
f y xye
x2 y2 2
, ……3 分
令
f x 0, 得驻点(1,0)和(-1,0). f 0 , y
2 x2 y2 2
x( x 3)e 记 A f xx
(C)
2
(D)
3Байду номын сангаас
(A)
n (D) ( 1) n !
(2) 设函数 f ( x) (e x 1)(e2 x 2) (en x n) ,其中 n 为正整数,则 f (0)
n 1 (A) ( 1) ( n 1)! n (B) ( 1) ( n 1)! n 1 (C) ( 1) n !
1 a 0 0
解: (I) A
0 1 a 0 0 0 1 a a 0 0 1
1 a4.
……3 分
(II)若方程组 Ax 有无穷多解,则 A 0. 由(I)可得 a 1 或 a 1 .
郝海龙:考研数学复习大全·配套光盘·2012 年数学试题答案和评分参考
1 x2 1 1 x ln , 又 S ( 0) 3 , 所以和函数 S ( x ) (1 x 2 ) 2 x 1 x 3,
(18)(本题满分 10 分) 已知曲线 L:
0 x 1,
(3) 如果函数 f ( x, y ) 在 (0, 0) 处连续,那么下列命题正确的是 (A) 若极限 lim
x 0 y 0
(B)
f ( x, y ) 存在,则 f ( x, y ) 在 (0, 0) 处可微 x y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学 全程复习 权威资料 书及用书 时间安排
(状元必备)
时间
把课本细看一遍,例题自己做,并研究例题 思路记好笔记。 课后题都做一遍, 把不会的、 第 一 阶 做错的或者虽然做对但思路不清的做好记 段 : 基 础 号。 复习阶段 第二次看课本, 这次是简略回顾基础知识的 1 月—6 月 情况下, 重点解决第一阶段没有弄清的知识 点,最重要的是把第一阶段做了记号的例 题、课后题解决。 做一下课本配套的习题 用记号对题目进行标识: A:自己会做的 B:有正确思路,但不能完全写出来 第 二 阶 C:没有思路或思路错误的。 段 : 强 化 李永乐《复习全书》或原教育部命题组组长 阶段 王式安《考研数学复习标准全书》里面的所 7 月—9 月 有题目都自己动手做,B/C 做好记号,并这 过程中做好笔记, 对冲刺阶段查缺补漏极为 重要。 比对课本,分析大纲。看看有没有新要求的 知识点,回到全书批注,对新增、变知识点 重点加强理解。李永乐《基础过关 660 题》 或原教育部命题组组长王式安 《基础经典习 题 600 题》里面的所有题目都自己动手做, B/C 做好记号。并这过程中做好笔记。
于是
f ( x)
求极限 lim
2
x
x l n (x 1)
特训题 2、 解: lim
sin x sin sin x sin x 4 x 0 x
(sin x sin sin x)sin x sin x sin sin x cos x cos(sin x) cos x lim lim 4 3 x 0 x 0 x0 x x 3x 2 cos x(1 cos(sin x)) sin(sin x) cos x lim lim 2 x0 x0 3x 6x sin x 1 lim x 0 6 x 6
Generated by Unregistered Batch DOC TO PDF Converter 2011.3.124.1481, please register!
2012 考研数学必看:很详细的考研数学全程辅导书选择及复习规划
1、课本:同济大学第六版《高等数学》+同济大学第四版《线性代数》+浙江大学第 三版《概率论与数理统计》 (用书时间:2011 年 1 月——2011 年 6 月) 2、高分辅导书:李永乐《复习全书》或原教育部命题组组长王式安《考研数学复习 标准全书》 李永乐《基础过关 660 题》或原教育部命题组组长王式安《基础经典习题 600 题》 (时间:2011 年 3 月——2011 年 9 月) 3、 辅导班讲义: 中国考研数学辅导界顶级辅导名师讲义 (时间: 2011 年 7 月——2011 年 9 月) 4、大纲:最新考试大纲,主要是里面的样卷,很重要 (时间:2011 年 8 月——2011 年 9 月) 5、真题解析:李永乐《考研数学历年真题解析》或原教育部命题组组长王式安《考 研数学历年真题权威解析》 (时间:2011 年 10 月——2011 年 12 月) 6、模拟题:原教育部命题组组长王式安王式安《最后冲刺 8 套卷》或李永乐《考研 数学经典模拟 400 题》 (时间:2011 年 11 月——2011 年 12 月) 复习内容 注意事项 1.把基础的基础一定掌握,尤其是公式 要记牢 2.看概念和知识要点的时候,要把一些 重点词句划出来;对于开始不太懂的, 理解之后一定也把自己的理解写出来。 主要是找出为什么当时不会或者思路不 清,并相应解决相关知识点。
2012 考研数学寒假学习计划明细
日期 第一天 第二天 第三天 第四天 第五天 第六天 第七天 第八天 第九天 第十天 第十一天 第十二天 第十三天 第十四天 第十五天 第十六天 第十七天 第十八天 第十九天 第二十天 用时 7 小时 5 小时 6 小时 5 小时 9 小时 《高等数学》课本 第一章:函数与极限(第一节、第二节) 第一章:函数与极限(第三节、第四节) 第一章:函数与极限(第五节、第六节) 第一章:函数与极限(第七节、第八节) 第一章:函数与极限(第九节、第十节、总复习) 《寒假配套 100 题》 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 1—20 题 21—40 题 41—60 题 61—80 题 81—100 题
x 0
x 3 1 x
2Байду номын сангаас
1 x 1 x
3
1 x
3
1 x
3
1 x
2
2 3
解二 解三
类似(1)中解二用等价无穷小量代换 类似(1)中解三用洛必达法则
(2) lim 1
n
1 1 1 1 2 1 2 2 2 3 n 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 n n
求 lim
特训题 3、 解
3n 1 2n . n 2n 1 3n
分子、分母用 3n 除之,
Generated by Unregistered Batch DOC TO PDF Converter 2011.3.124.1481, please register!
2 3 3 3 原式= lim n n 2 2 1 3
n 1 n 1 n 1 1 lim n 2n n n 2
解
原式= lim 1
n
= lim 特训题 5、 求下列极限
x 10
1 3 2 4 n 2 2 3 3
2 (1) lim 1 x x
1 x x (2) lim x 0 1 x
1.定时(3h/套) 2 打分 清楚地了解自己的情况。 3.全面、系统、详细的总结.切忌草草看 一遍答案,说声“原来如此” 4.每做几套,回头总结在哪些知识点, 哪些章节,哪种类型的题目中容易出问 题,分析原因,制订对策。 此阶段是查缺不漏的阶段,千万别再陷 入题海里!常规题型一定要会做。
1.不要过分强调做题数量:做题,尤其 是做套题,是训练考试速度和准确度的 有效手段,做套题后,必须好好总结, 这样才可能使你做过的题目成为你掌握 了的题目。 2.不要过分强调难题、偏题:真正的考 题并不困难,绝大多数(甚至全部)都 是常规题目。因此,我们在复习中需要 提高的是常规题目的快速解题能力
(注:主要用当 r 1 时, lim r 0 )
n n
n
特训题 4、 (1) lim
x 0
求下列各极限
1 x 1 x x
原式= lim
x 0
3
(2) lim
x 0
1 x 3 1 x x
解
(1)解一
解二
1 x 1 x 1 x 1 1 x 1 原式= lim
发现仍存在的问题 1.对基础知识和概念一定用心领会和理 解,不懂的回课本搞清楚。 2.对每道例题和习题,先动手做一遍, 然后再对照书上的答案和解题思路总结 和反省,好好把感受写在旁边。 3.做题时,对于第 B\C 种情况记下自己 当时为什么做不出来,今后看到何种典 型题目,应该具备何种反应和思路。
这一阶段一定要解决前面所有留下的问 题。 辅导班讲义:中国考研数学辅导界顶级 辅导名师讲义一定要再亲自做 2 遍,这 样增强复习效果。辅导班老师特别是有 命题阅卷背景的名师总结的辅导资料极 为重要,直接洞穿了命题规律和命题陷 阱、考生弱点。 真题模拟考场:李永乐《考研数学历年真题 争取 3 天一套,严格按照时间来做。定 第 三 阶 解析》或原教育部命题组组长王式安《考研 时(3h/套)
Generated by Unregistered Batch DOC TO PDF Converter 2011.3.124.1481, please register!
段 : 真 题 数学历年真题权威解析》 研究及冲 刺 模 拟 阶 做模拟题,强化记忆。选一本模拟题即可。 原教育部命题组组长王式安王式安 《最后冲 段 刺 8 套卷》 ,此书与真题同源,强烈推荐! 10 月—12 月 所有题都是原命题人员命制的,直击考题, 整体难度比真题难一些。 李永乐《考研数学经典模拟 400 题》 ,此书 以常规题为主,难度方面,整体上比真题稍 微难一些。 课本+大纲+笔记 第 四 阶 自己看书,每看到一节,争取自己能回忆起 段 : 状 态 相关知识点以及延伸, 并在笔记上找出当初 保持阶段 做错的题目 为了保持考场状态:要作题,不断的作题。 2012 年 1 月 原教育部命题组组长王式安王式安 《最后冲 刺 8 套卷》或李永乐《考研数学经典模拟 400 题》可再重新做一遍 熟练程度要求:就是看到题目就有思路,就 能快速地写出来。
x
x 0
1 x 1 x
2 1 2
x
1 x x 2 等价无穷小量代换 2 1 lim x 0 x
解三 用洛必达法则 1
1 1 2 1 x 2 1 x 原式= lim 1 x 0 1
(2)解一 原式= lim
Generated by Unregistered Batch DOC TO PDF Converter 2011.3.124.1481, please register!
2012 考研数学寒假学习重要指导思想
标题 具体要求
1、同济大学第五/ 六版《高等数学》上册 2、海文考研《寒假配套特训 100 题》 1、 《高等数学》上册的一元微分学,即前三章 2、海文考研《寒假配套特训 100 题》 1、通过对教材《高等数学》上册的一元微分学,即前三章的复习理解大纲中要求 的三基——基本概念、基本理论、基本方法。 2、通过学习海文考研《寒假配套特训 100 题》进一步巩固课本基础知识,练习 考研基本题型。 1、 把课本细看一遍,例题自己做,并研究例题思路记好笔记。课后题都做一遍, 把不会的、做错的或者虽然做对但思路不清的做好记号。为下一阶段的复习