3.2滑块滑板模型

合集下载

滑块—滑板模型

滑块—滑板模型

高三物理专题复习: 滑块—滑板模型典型例题:例1.如图所示,在粗糙水平面上静止放一长L质量为1的木板B ,一质量为1的物块A以速度s m v /0.20=滑上长木板B 的左端,物块与木板的摩擦因素μ1=0.1、木板与地面的摩擦因素为μ2=0.1,已知重力加速度为10m 2,求:(假设板的长度足够长)(1)物块A 、木板B 的加速度;(2)物块A 相对木板B 静止时A 运动的位移;(3)物块A 不滑离木板B,木板B 至少多长?考点: 本题考查牛顿第二定律及运动学规律考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。

解析:(1)物块A 的摩擦力:N mgf A 11==μ A 的加速度:21/1s m m f a A -=-= 方向向左木板B 受到地面的摩擦力:A g m M f f N 2)(2>=+=μ地故木板B 静止,它的加速度02=a(2)物块A 的位移:m a v S 2220=-= (3)木板长度:m S L 2=≥拓展1.在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素μ3=0.4,其余条件保持不变,(假设木板足够长)求:(1)物块A 与木块B 速度相同时,物块A 的速度多大?(2)通过计算,判断速度相同以后的运动情况;(3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热多大?考点:牛顿第二定律、运动学、功能关系考查:木板与地的摩擦力计算、是否共速运动的判断方法、相对位移和摩擦热的计算。

解析:对于物块A:N mg f A 44==μ 1分加速度:,方向向左。

24/0.4s m g m f a A A-=-=-=μ 1分 对于木板:N g m f 2)M 2=+=(地μ 1分加速度:,方向向右。

地2A /0.2s m M f f a C =-= 1分物块A 相对木板B 静止时,有:121-t a v t a C B =解得运动时间:,s t .3/11= s m t a v v B B A /3/21=== 1分(2)假设共速后一起做运动,22/1)()(s m m M g m M a -=++-=μ 物块A的静摩擦力:A A f N ma f <==1'1分 所以假设成立,共速后一起做匀减速直线运动。

牛顿运动定律巧解滑块-滑板模型

牛顿运动定律巧解滑块-滑板模型

例题三:滑块与滑板在碰撞中的运动
要点一
总结词
要点二
详细描述
碰撞中的滑块-滑板模型需要考虑动量守恒和能量守恒,通 过牛顿运动定律可以求解碰撞后的运动状态。
当滑块与滑板发生碰撞时,根据动量守恒定律,可以求出 碰撞后的速度。根据能量守恒定律,可以判断碰撞是否为 弹性碰撞。根据牛顿第二定律,可以求出碰撞后滑块和滑 板的加速度。通过分析加速度和初速度作用力和反作用力之间的关系,即作用力和反作用力大小相等、方向相反 、作用在同一条直线上。
详细描述
该定律指出,当一个物体对另一个物体施加力时,另一个物体会对施力物体施加 一个大小相等、方向相反的力。这两个力是相互作用的,并且作用在同一条直线 上。
03
CATALOGUE
滑块-滑板模型中的牛顿运动定律
THANKS
感谢观看
滑块与滑板间的相互作用力分析
01
02
03
作用力与反作用力
根据牛顿第三定律,滑块 与滑板间的作用力和反作 用力大小相等、方向相反 。
摩擦力分析
滑动摩擦力的大小与接触 面的粗糙程度和正压力有 关,方向与相对运动方向 相反。
支持力分析
支持力垂直于接触面,指 向被支持的物体,与重力 等其他外力平衡。
滑块与滑板间的动量守恒分析
以判断滑块是否从滑板上滑落。
例题二:滑块与滑板在斜面上的运动
总结词
斜面上的滑块-滑板模型需要考虑重力的影 响,通过牛顿运动定律可以求解滑块和滑板 的运动状态。
详细描述
当滑块放在滑板上,在斜面上运动时,除了 受到重力、支持力和摩擦力的作用外,还需 要考虑重力的分力。根据牛顿第二定律,可 以求出滑块和滑板的加速度。通过分析加速 度和初速度的关系,可以判断滑块是否从滑 板上滑落。

滑块木板模型(学生版)-2024届新课标高中物理模型与方法

滑块木板模型(学生版)-2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法--滑块木板模型目录【模型归纳】1模型一光滑面上外力拉板模型二光滑面上外力拉块模型三粗糙面上外力拉板模型四粗糙面上外力拉块模型五粗糙面上刹车减速【常见问题分析】问题1.板块模型中的运动学单过程问题问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题3.板块模型中的运动学多过程问题2--抽桌布问题问题4.板块模型中的运动学粗糙水平面减速问题【模型例析】5【模型演练】13【模型归纳】模型一光滑面上外力拉板加速度分离不分离m1最大加速度a1max=μgm2加速度a2=(F-μm1g) /m2条件:a2>a1max即F>μg(m1+m2)条件:a2≤a1max即F≤μg(m1+m2)整体加速度a=F/(m1+m2)内力f=m1F/(m1+m2)模型二光滑面上外力拉块加速度分离不分离m2最大加速度a2max=μm1g/m2 m1加速度a1=(F-μm1g)/m1条件:a1>a2max即F>μm1g(1+m1/m2)条件:a2≤a1max即F≤μm1g(1+m1/m2)整体加速度a=F/(m1+m2)内力f=m2F/(m1+m2)模型三粗糙面上外力拉板不分离(都静止)不分离(一起加速)分离条件:F≤μ2(m1+m2)g 条件:a2≤a1max即μ2(m1+m2)g<F≤(μ1+μ2)g(m1+m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1条件:a2>a1max=μ1g即F>(μ1+μ2)g(m1+m2)+m2)内力f=m1a外力区间范围模型四粗糙面上外力拉块μ1m1g>μ2(m1+m2)g一起静止一起加速分离条件:F≤μ2(m1+m2)g 条件:μ2(m1+m2)g<F≤(μ1-μ2)m1g(1+m1/m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1+m2)内力f1=μ2(m1+m2)g+m2a条件:a1>a2max=[μ1m1g-μ2(m1+m2)g]/m2即F>(μ1-μ2)m1g(1+m1/m2)外力区间范围模型五粗糙面上刹车减速一起减速减速分离m1最大刹车加速度:a1max=μ1g 整体刹车加速度a=μ2g条件:a≤a1max即μ2≤μ1条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2【常见问题分析】问题1.板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 20-½a 1t 20=L 分离,位移关系:x 相对=½a 1t 20-½a 2t 20=L问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:②板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv ·(t 1+t 2)/2=L ;利用相对运动Δv =(a 2-a 1)t 1、Δv =(a 2+a 1')t 2问题3.板块模型中的运动学多过程问题2--抽桌布问题抽桌布问题简化模型过程①:分离过程:②匀减速分离,位移关系:x2-x1=L10v0多过程问题,位移关系:x1+x1'=L2问题4.板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2【模型例析】1一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。

滑块滑板模型

滑块滑板模型
(3)最后阶段小物块和木板一起匀减速直到停止, 整体加速度大小 为向a1左=运1 动m的 /s2位移为 x5=2va321=2 m 所以木板右端离墙壁最远的距离为x=x1+x3+x5=6.5 m
第二轮
假设又经历t2二者速度相等, 则有a2t2=v1-a3t2, 解得t2=0.5 s
第二轮
滑块-滑板模型
此过程中,木板向左运动的位移 x3=v1t2-12a3t22=76 m, 末速度 v3=v1-a3t2=2 m/s 小物块向左运动的位移 x4=12a2t22=0.5 m 此后小物块和木板一起匀减速运动,二者的相对位移最大, Δx=x1+x2+x3-x4=6 m 小物块始终没有离开木板, 所以木板最小的长度为6 m
F=8N
变式2:若F作用在小物块上,其它条件不变,要使两者保持相对
静止,F不能超过多少? F=4/3N
变式3:若F作用在小物体上,地面粗糙且与木板间动摩擦因数为 μ2=0.01,其它不变为使两者保持相对静止,F不能超过多少?
F=1.2N
变式4:若F作用在小物体上,地面粗糙且与木板间动摩擦因数也 为μ=0.1,其它条件不变,随F的变化小物块与木板如何运动?
大静摩擦力,故最大加速度 a=μg=1 m/s2
由牛顿第二定律对整体有 Fm=(m+M)a=4 N (2)当 F=10 N>4 N 时,两者发生相对滑动
对小物体:a1=μg=1 m/s2 对木板:F 合=F-μmg=Ma2 代入数据解得 a2=3 m/s2
由位移关系有:L=12a2t2-21a1t2
第二轮
反思总结
易错点
滑块-滑板模型
(1)不清楚滑块-滑板类问题中滑块、滑板的受力 情况, 求不出各自的加速度. (2) 画不好运动草图, 找不出位移、速度、时间等 物理量间的关系. (3) 不清楚每一个过程的末速度是下一个过程的初 速度. (4)不清楚物体间发生相对滑动的条件.

专题04+动力学中典型模型-高考物理必考经典专题集锦+Word版含解析

专题04+动力学中典型模型-高考物理必考经典专题集锦+Word版含解析

考点分类:考点分类见下表考点一:“滑块—滑板”模型1.模型概述(1)滑块、滑板是上、下叠放的,分别在各自所受力的作用下运动,且在相互的摩擦力作用下相对滑动.(2)滑块相对滑板从一端运动到另一端,若两者同向运动,位移之差等于板长;若反向运动,位移之和等于板长.(3)一般两者速度相等为“临界点”,要判定临界速度之后两者的运动形式.2.常见情形动,且v板<v块,则两者加速度不同,x板<x块,Δ-x板,最后分离或相对静止考点二“传送带”模型1.模型概述:传送带模型包含水平传送带和倾斜传送带,求解的关键在于对物体所受的摩擦力进行正确的分析判断.物体的速度与传送带速度相等时,物体所受摩擦力可能发生突变.2.常见情形:(1)v0>v时,可能一直减速,也可能先减速再匀速送带较短时,滑块一直减速到左端传送带较长时,滑块还要被传一直加速可能先加速后匀速可能一直加速可能先加速后匀速可能先减速后反向加速典例精析★考点一:“滑块—滑板”模型◆典例一:(2018·湖北武汉模拟)如图所示,水平传送带足够长,传送带始终顺时针匀速运动,长为1 m的薄木板A的正中央放置一个小木块B,A和B之间的动摩擦因数为0.2,A和传送带之间的动摩擦因数为0.5,薄木板A的质量是木块B质量的2倍,轻轻把A,B整体放置在传送带的中央,设传送带始终绷紧并处于水平状态,取g=10 m/s2.在刚放上很短的时间内,A,B的加速度大小分别为( )A.6.5 m/s2,2 m/s2B.5 m/s2,2 m/s2C.5 m/s2,5 m/s2D.7.5 m/s2,2 m/s2【答案】A◆典例二:如左图所示,粗糙的水平地面上有一块长木板P,小滑块Q放置于长木板上最右端。

现将一个水平向右力F作用在长木板的右端,让长木板从静止开始运动。

滑块、长木板的速度图象如右图所示,己知物块与木板的质量相等,滑块Q始终没有从长木板P上滑下。

重力加速度g=10m/s2。

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。

2020年高考物理素养提升专题02 动力学中的“滑块-滑板”模型(解析版)

2020年高考物理素养提升专题02 动力学中的“滑块-滑板”模型(解析版)

素养提升微突破02 动力学中的“滑块-滑板”模型——构建模型,培养抽象思维意识“滑块-滑板”模型“滑块-滑板”模型涉及两个物体,并且物体间存在相对滑动。

叠放在一起的滑块和木板,它们之间存在着相互作用力,在其他外力作用下它们或加速度相同,或加速度不同,无论哪种情况受力分析和运动过程分析都是关键,特别是对相对运动条件的分析。

本模型深刻体现了物理运动观念、相互作用观念的核心素养。

【2019·新课标全国Ⅲ卷】如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。

t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力。

细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示。

木板与实验台之间的摩擦可以忽略。

重力加速度取g=10 m/s2。

由题给数据可以得出A.木板的质量为1 kgB.2 s~4 s内,力F的大小为0.4 NC.0~2 s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2【答案】AB【解析】结合两图像可判断出0~2 s物块和木板还未发生相对滑动,它们之间的摩擦力为静摩擦力,此过程力F等于f,故F在此过程中是变力,即C错误;2~5 s内木板与物块发生相对滑动,摩擦力转变为滑动摩擦力,由牛顿运动定律,对2~4 s和4~5 s列运动学方程,可解出质量m为1 kg,2~4 s内的力F 为0.4 N,故A、B正确;由于不知道物块的质量,所以无法计算它们之间的动摩擦因数μ,故D错误。

【素养解读】本题以木板为研究对象,通过f-t与v-t图像对运动过程进行受力分析、运动分析,体现了物理学科科学推理的核心素养。

一、水平面上的滑块—滑板模型水平面上的滑块—滑板模型是高中参考题型,一般采用三步解题法:【典例1】如图所示,质量m=1 kg 的物块A放在质量M=4 kg的木板B的左端,起初A、B静止在水平地面上。

高中物理模型法解题-滑板-木块模型

高中物理模型法解题-滑板-木块模型

高中物理模型法解题——滑板木块模型【模型概述】滑块-滑板问题往往涉及两个物体,并且常常是叠放在一起的,有时也成为“叠放问题”。

两个物体间由某种力联系在一起,并且存在相对运动,牵涉到摩擦力的分析和突变、极值问题,与运动学、受力分析、动力学、功和能都有密切的联系。

既可单独考其中单个知识点,也可以出综合性的大题。

分析过程复杂,综合性极强,并且需要较强的数学计算能力,是高中物理教学和学习的难点。

鉴于“滑板-滑块模型”的特点,板块问题能够较好的考查学生对知识的掌握程度和学生对问题的分析综合能力,是增强试卷区分度的有力题目。

因此,板块问题不论在平时的大小模考中,还是在高考试卷中都占据着非常重要的地位。

【知识链接】一、滑板-滑块模型1)解题思路:分析滑块和滑板的受力情况——应用牛顿第二定律分别求出速度——对二者进行运动情况分析——找出位移关系或速度关系建立方程并求解。

2)位移关系:滑块从滑板的一端运动到另一端的过程中,若滑块和滑板向同一方向运动,则滑块的位移与滑板的位移之差等于滑板的长度;若滑块和滑板向相反方向运动,则滑块的位移和滑板的位移之差等于滑板的长度。

3)速度关系:当滑块和滑板的速度相同,二者距离往往最大或最小。

4) 何时开始运动:判断两个接触面间摩擦力的大小关系,根据两接触面间摩擦力的大小判断谁先运动。

5) 何时开始相对运动:二者加速度相同是发生相对运动的转折点,隔离法求出该加速度,然后整体法求解外力。

6) 摩擦力做功问题:A )叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如下图所示),A 、B 之间无摩擦力作用.B )如图所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f·s 相.二、 运动学相关知识1) 匀速直线运动:匀速直线运动指速度大小和方向均不变的直线运动叫做匀速直线运动,涉及的公式是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑块滑板模型
1、如图所示,质量M=8kg的小车放在水平光滑的平面上,在 小车左端加一水平推力F=8N,当小车向右运动的速度达到 1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m= 2kg的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长 (g取10m/s2)。求: (1)放上小物块瞬间,小物块与小车的加速度各为多大? (2)经多长时间两者达到相同的速度?
【例】如图所示,物块A、木板B的质量均为m=10 kg, 不计A的大小,B板长L=3 m。开始时A、B均静止。现使 A以某一水平初速度从B的最左端开始运动。已知A与B、 B与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.2, g取10 m/s2。
问:若物块A刚好没有从B上滑下来,则A的初速度多大? (答案可带根号表示)
解: (1 )当 1 mg 2 m M g , A 静止不动,所受摩擦力 当 1 mg 2 m M g , A 所受摩擦力 ( 2 )由牛顿第二定律 对 A 有, 1 mg - 2 m M g M a A 对 B 有, F 1 mg ma B B 相对 A 滑动有 a B a A 代入数据解得, F 40N 为零。
5、(多选)如图所示,A、B两物块的质量分别为2m和m, 静止叠放在水平地面上。A、B间的动摩擦因数为 μ,B 1 与地面间的动摩擦因数为 2 。最大静摩擦力等于滑 动摩擦力,重力加速度为g。现对A施加一水平拉力F, 则 ( BCD ) A.当F<2μmg时,A、B都相对地面静止
5 1 B.当F= mg 时,A的加速度为 g 2 3
总结升华 叠加体系统临界问题的求解思路
4、 如图所示,两物体叠放在水平桌面上,m1=5 kg,m2=10
kg,m1和m2间的最大静摩擦力fm=20 N,m2和水平桌面间的动摩 擦因数μ=0.1.试问:(g取10 m/s2) (1)当m2受到F=36 N的水平拉力时,两物体的加速度各多大? (2)要使m1、m2不发生相对滑动,作用于m2的水平拉力的取值范 围是多少?
(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移 大小?
1.模型特征 (1)上、下叠放的两个物体分别在各自所受力的作用下完成各自 的运动,且两者之间还有相对运动。 (2)该模型存在判断是否存在速度相等的“临界点”,来判定临 界速度之后两者的运动形式。 (3)两种位移关系,滑块由滑板的一端运动到另一端的过程中, 若滑块和滑板同向运动,位移之差等于板长; 反向运动时,位移之和等于板长。 2.思维模板
f 1 mg - 2 m M g
7、如图,质量为M的木板A静止在水平地面上。一质
量为m,可视为质点的B物体放在木板的左端,在一拉
力的作用下由静止开始运动。已知A、B间的动摩擦因
数为μ1,A与地面之间的动摩擦因数μ2,重力加速度为
g=10m/s2。试求:
(3)若拉力F=60N,木板A长L=1m,m=M=10Kg, μ1=0.3,μ2=0.1,求A运动的时间。
2 2 v2 - v v 0 位移关系:L= - 2a1 2a2
2、如图所示,物块A、木板B的质量均为m=10 kg,不 计A的大小,B板长L=3 m。开始时A、B均静止。现使A 以某一水平初速度从B的最左端开始运动。已知A与B、 B与水平面之间的动摩擦因数分别为μ1=0.3和μ2= 0.1,g取10 m/s2。 (2)若把木板 B放在光滑水平面上,让A仍以(1)问中的 初速度从B的最左端开始运动,则A能否与B脱离?最终 A和B的速度各是多大?
(1)货物在车厢内滑动时加速度的大小和方向;
(2)制动坡床的长度。
解:( 1)设货物质量为 m,货车质量为 4m 货物受重力沿坡面向下 的分量和摩擦力由牛顿 第二定律有: mgsin mgcos ma1,解得:a1 5m / s ,沿坡面向下
2
(2)货车受力分析可得: f 4mgsin - mgcos 4ma2 11 2 其中f 0.44 5mg,解得:a 2 m / s 2 则车从坡底运动到距顶 端x 0 38m过程中有 1 2 1 2 对货物:x1 v 0 t - a1t ,对货车:x 2 v 0 t - a 2 t 2 2 其中货物在车厢内滑动 4m,有x x1 - x 2 解得:t 4s,x 2 48m 货车长度l0 12m,则制动坡床的的长度 L l0 x 0 x 2 98m
2 v2 - v ′ 0 A 的位移 xA= =3 m 2a1
由 xA-xB=2 m 可知 A 没有与 B 脱离,最终 A 和 B 的速度相 等,大小为 6 m/s。
3、如图,在光滑水平面上有一质量为m1的足够长的木板,其上 叠放一质量为m2的木块。假定木块和木板之间的最大静摩擦力和 滑动摩擦力相等。现给木块施加一随时间t增大的水平力F=kt(k 是常数),木板和木块加速度的大小分别为a1和a2。下列反映a1和 a2变化的图线中正确的是( A )
解:因为1mg 2 m m g,所以B静止不动 达B右端速度恰好为零 A做匀减速直线运动,到
1mg ma,解得a 3m/s 由牛顿第二定律有:
v L ,解得v 0 3 2 m / s 由运动学公式有: 2a
2 0
2
2、如图所示,物块A、木板B的质量均为m=10 kg,不 计A的大小,B板长L=3 m。开始时A、B均静止。现使A 以某一水平初速度从B的最左端开始运动。已知A与B、B 与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1, g取10 m/s2。
A. 当F=17N时,物体A的加速度为0.5m/s2
B. 当F=21N时,物体A的加速度为3m/s2
C. 当F=22N时,A相对B滑动
D. 当F=39N时,B的加速度为9m/s2
7、如图,质量为M的木板A静止在水平地面上。一质量 为m,可视为质点的B物体放在木板的左端,在一拉力的 作用下由静止开始运动。已知A、B间的动摩擦因数为μ1, A与地面之间的动摩擦因数μ2,重力加速度为g=10m/s2。 试求: (1)当木板A相对物体B运动时,木板所受到摩擦力大小。 (2)在题中m=M=10Kg,μ1=0.3,μ2=0.1,要使物体B相 对于木板A运动,所需拉力的大小。
8、如图甲所示,在水平地面上有一长木板B,其上叠 放木块A。假定木板与地面之间、木块和木板之间的最 大静摩擦力都和滑动摩擦力相等。用一水平力F作用于 B,A、B的加速度与F的关系如图乙所示,重力加速度g 取10 m/s2,则下列说法中正确的是( AC )
Hale Waihona Puke A.B与地面间的动摩擦因数为0.2
B.A、B间的动摩擦因数为0.2 C.A的质量为0.5 kg
(1)若物块A刚好没有从B上滑下来,则A的初速度多大? (答案可带根号表示)
解析
(1)A 在 B 上向右匀减速运动,加速度大小
a1=μ1g=3 m/s2 木板 B 向右匀加速运动,加速度大小 μ1mg-μ2· 2mg 2 a2= = 1 m/s m 由题意知,A 刚好没有从 B 上滑下来, 则 A 滑到 B 最右端时和 B 速度相同,设为 v,得 v0-v v 时间关系:t= = a1 a2 解得 v0=2 6 m/s。
12 、 如 图所示,甲、乙两物体质量分别为 m1 = 2 kg , m2 = 3 kg,叠放在水平桌面上,已知甲、乙间的动摩擦因数为μ1= 0.6,物体乙与平面间的动摩擦因数为μ2=0.5,现用水平拉力 F 作用于物体乙上,使两物体一起沿水平方向向右做匀速直 线运动,如果运动中 F 突然变为零,则物体甲在水平方向上 的受力情况(g取10 m/s2,最大静摩擦力等于滑动摩擦力)( D )
C.当F>3μmg时,A相对B滑动
1 g D.无论F为何值,B的加速度不会超过 2
6、如图所示,A、B两物体的质量分别为2kg和1kg,静 止叠放在水平面上,A、B间的动摩擦因数为0.8,B与 地面间的动摩擦因数为0.4,最大静摩擦力等于滑动摩 擦力,重力加速度为 g=10m/s2 ,现对A施加一水平拉 力F,不计空气阻力,则( B )
C.当水平拉力F增大时,小滑块的加速度一定增大 D. 当水平拉力F=7 N时,长木板的加速度大小为3 m/s2
10、如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其 中 两个质量为 m的木块间用一不可伸长的轻绳相连,木块间的最大
静摩擦力是 μmg.现用水平拉力F拉其中一个质量为2m的木块,使四
D.B的质量为1.5 kg
9(多选)如图甲所示,一质量为M的长木板静置于光滑水平面 上,其上放置一质量为m的小滑块。木板受到水平拉力F作用时, 用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示, 重力加速度g=10m/s 2,下列说法正确的是( AD )
A.小滑块的质量m=2 kg
B.小滑块与长木板之间的动摩擦因数为0.1
(3)设 B 在 A 上运动时间为 t 1 把数据代入以上两式解 得: a A 1m/s 2, a B 3m/s 2 1 1 2 2 由运动学公式有 L a B t 1 - a A t 1 2 2 解得 t 1 1s B 离开木板 A 瞬间, A 的速度 v a A t 1 1m/s 随后 A 做匀减速运动,有 2 Mg Ma 解得 t 2 1s 综上可知 A 运动总时间为 t t 1 t 2 2 s v at 2
解析
本题考查的是牛顿第二定律的应用。本题中开
始阶段两物体一起做匀加速运动有 F=(m1+m2)a,即 a= F kt = ,两物体加速度相同且与时间成正比。当 m1+m2 m1+m2 两物体间的摩擦力达到 μm2g 后,两者发生相对滑动。对 m2 有 F-f=ma2,在相对滑动之前 f 逐渐增大,相对滑动 F-f kt 后 f=μm2g 不再变化,a2= = -μg,故其图象斜率 m2 m2 增大;而对 m1,在发生相对滑动后,有 μm2g=m1a1,故 μm2g a 1= 为定值。故 A 选项正确。 m1
相关文档
最新文档