古典概率

合集下载

第三章 概率 第二讲 古典概率

第三章 概率 第二讲 古典概率

第三章概率第二讲古典概率【考点透视】1.基本事件:在实验中所有可能的结果都是随机事件,我们把这类随机事件称为基本事件.基本事件有两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型:将具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等3.古典概型概率计算公式P(A)=mn.m表示事件A包含的基本事件的个数,,n表示基本事件的总数。

3.古典概型的适用条件:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.4.古典概型的解题步骤:(1)求出总的基本事件数;(2)求出事件A所包含的基本事件数,然后利用公式P(A)=A包含的基本事件的个数基本事件的总数【新知探究】探究点一基本事件问题1抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?答(正,正),(正,反),(反,正),(反,反);(正,正,正),(正,正,反), (正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).问题2上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系?答由于任何两种结果都不可能同时发生,所以它们的关系是互斥关系.问题3在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?答(正,正,反),(正,反,正),(反,正,正);(正,正,正),(正,正,反),(正,反,正),(反,正,正).例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?解所求的基本事件有6个,A={a,b},B={a,c},C={a,d}, D={b,c},E={b,d},F={c,d};“取到字母a”是基本事件A、B、C的和,即A+B+C.小结基本事件有如下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.探究点二古典概型问题1抛掷一枚质地均匀的硬币,每个基本事件出现的可能性相等吗?答基本事件有两个,正面朝上和正面朝下,由于质地均匀,因此基本事件出现的可能性是相等的.问题2抛掷一枚质地均匀的骰子,有哪些基本事件?每个基本事件出现的可能性相等吗?答这个试验的基本事件有6个,正面出现的点数为1,2,3,4,5,6,由于质地均匀,因此基本事件出现的可能性是相等的.问题3上述试验的共同特点是什么?答(1) 试验中所有可能出现的基本事件只有有限个;(2) 每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.例2某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么?解不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的(为什么?),即不满足古典概型的第二个条件.小结判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.探究点三古典概型概率公式导引在古典概型下,每一基本事件的概率是多少?随机事件出现的概率如何计算?问题1在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?解出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”).由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1,因此P(“正面朝上”)=P(“反面朝上”)=1 2,即P(出现正面朝上)=12=“出现正面朝上”所包含的基本事件的个数基本事件的总数.问题2在抛掷骰子的试验中,如何求出现各个点的概率?解出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”),反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.所以P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=1 6.进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=16+16+16=12.即P(“出现偶数点”)=“出现偶数点”所包含基本事件的个数”/基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数”/基本事件的总数.P(A)=事件A所包含的基本事件的个数/基本事件的总数.问题3从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率P(A)等于什么?特别地,当A=U,A=∅时,P(A)等于什么?答P(A)=mn;当A=U时,P(A)=1;当A=∅时,P(A)=0.例3单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,则他答对的概率是多少?解由于考生随机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能,因此基本事件总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含一个基本事件,所以P(A)=1 4.小结解答概率题要有必要的文字叙述,一般要用字母设出所求的随机事件,要写出所有的基本事件及个数,写出随机事件所包含的基本事件及个数,然后应用公式求出.探究点四与顺序有关的古典概型问题1在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?答这是因为猜对的概率更小,由概率公式可知,分子上的数还是1,因正确答案是唯一的,而分母上的数即基本事件的总数增多了,有(A), (B),(C),(D),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D) ,(A,B,C),(A,B,D),(A,C,D),(B,C,D),(A,B,C,D)共15个,所以所求概率为115<14.例1同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(可由列表法得到)由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为(1,4),(2,3),(3,2),(4,1).(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=A所包含的基本事件的个数基本事件的总数=436=19.问题2为什么要把两个骰子标上记号?如果不标记号会出现什么情况?若用古典概型公式,所求的概率是多少?答如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别,这时,所有可能的结果将是(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为P(A)=A所包含的基本事件的个数基本事件的总数=2 21.问题3在例1中所求的概率和问题2中所求的概率相同吗?哪种求法不符合古典概型?为什么?答求出的概率不相同;问题2中的求法不符合古典概型;因为两个不同的骰子所抛掷出来的点构造的基本事件不是等可能事件.小结古典概型问题包含的题型较多,但都必须紧扣古典概型的定义,进而用公式进行计算.列举法是求解古典概型问题的常用方法,借助于图表等有时更实用有效.探究点五与顺序无关的古典概型例2现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1), (A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2 ),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}有18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示“A1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1) , (A1,B3,C2)}事件M有6个基本事件组成,因而P(M)=618=13.(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件N有3个基本事件组成,所以P(N)=318=16,由对立事件的概率公式得P(N)=1-P(N)=1-16=56.小结在应用古典概型概率计算公式求概率时,有些事件用文字书写较麻烦,我们常用一些字母或数字来表示事件,为解题带来方便.【知识梳理】1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是由几个基本事件组合而成的.2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数基本事件的总数,只对古典概型适用.3.求某个随机事件A包含的基本事件的个数和试验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏.4.在求概率时,通常把全体基本事件列表或用直角坐标系中的点来表示,以方便我们更直接、准确地找出某个事件所包含的基本事件的个数,然后再根据古典概型的概率公式,求出相应的概率即可.5.解题时,将所有基本事件全部列出是避免重复或者遗漏的有效方法;对于用直接方法难以解决的问题,可以求其对立事件的概率,进而求得其概率,以降低难度.【小露一手】古典概型练习(一)一、基础过关1.下列是古典概型的是 ( )A .任意抛掷两枚骰子,所得点数之和作为基本事件时B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币首次出现正面为止2.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.153.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( ) A.14 B.12 C.18 D .无法确定4.一袋中装有大小相同的四个球,编号分别为1,2,3,4,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于6”为事件A ,则P (A )等于( )A.14B.16C.38D.49 5.三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从球中任取两球,两球颜色为一白一黑的概率为________.7.从甲、乙、丙、丁四个人中选两名代表.求:(1)甲被选中的概率;(2)丁没被选中的概率.8.从含有两件正品a ,b 和一件次品c 的三件产品中每次任取1件,每次取出后放回,连续取两次,求取出的两件中恰好有一件次品的概率.二、能力提升9.有五根细木棒,长度分别为1,3,5,7,9(cm),从中任取三根,能搭成三角形的概率是( )A.320B.25C.15D.31010.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.11.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是________.12.某学校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加某项活动的志愿服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.三、探究与拓展13.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c;三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c.(1)正常情况下,求田忌获胜的概率;(2)为了得到更大的获胜机会,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马A,于是田忌采用了最恰当的应对策略,求这时田忌获胜的概率.答案1.C2.D3.B4.C5.13 6.257.解(1)记甲被选中为事件A,基本事件有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁共6个,事件A包含的事件有甲乙,甲丙,甲丁共3个,则P(A)=36=12.(2)记丁被选中为事件B,由(1)同理可得P(B)=12,又因丁没被选中为丁被选中的对立事件,设为B,则P(B)=1-P(B)=1-12=12.8.解有放回的连取两次取得两件,其一切可能的结果组成的样本空间是Ω={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)},∴n=9,用B表示“恰有一件次品”这一事件,则B={(a,c),(b,c),(c,a),(c,b)},∴m=4.∴P(B)=4 9.9.D 10.1411.31012.解把4名获书法比赛一等奖的同学编号为1,2,3,4;2名获绘画比赛一等奖的同学编号为5,6.从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)从6名同学中任选两名,都是书法比赛一等奖的所有可能如下:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6个.∴选出的两名志愿者都是书法比赛一等奖的概率是P1=615=2 5.(2)从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能如下:(1,5), (1,6), (2,5), (2,6), (3,5),(3,6),(4,5),(4,6),共8个.∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是P2=815.13.解比赛配对的基本事件共有6个,它们是(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Ba,Cb),(Ac,Bb,Ca).(1)经分析:仅有配对为(Ac,Ba,Cb)时,田忌获胜,且获胜的概率为1 6.(2)田忌的策略是首场安排劣马c出赛,基本事件有2个:(Ac,Ba,Cb),(Ac,Bb,Ca),配对为(Ac,Ba,Cb)时,田忌获胜且获胜的概率为1 2.答正常情况下,田忌获胜的概率为16,获得信息后,田忌获胜的概率为12.古典概型练习(二)一、基础过关1.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为( )A.150B.110C.15D.142.有100张卡片(标号为1~100),从中任取1张,取到卡片上的号码是7的倍数的概率是( )A.750B.7100C.748D.3203.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则log 2X Y =1的概率为( )A.16B.536C.112D.12 4.同时抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率等于( ) A.14B.13C.38D.125.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率是________.6.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是________.7.设袋中有a 1,a 2两支好签,b 1,b 2两支坏签,四人依次从袋中无放回地任抽一签,分别求他们抽到好签的概率.8.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率. 二、能力提升9.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.2510.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 ( )A.49B.13C.29D.1911.某人有4把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________;如果试过的钥匙不扔掉,这个概率是________.12.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率. 三、探究与拓展13.班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.答案1.C2.A3.C4.C 5.12 6.297.解设事件A1,A2,A3,A4分别表示第一人,第二人,第三人,第四人抽到好签的事件,则A1={a1a2b1b2,a1a2b2b1,a1b1a2b2,a1b1b2a2,a1b2a2b1,a1b2b1a2,a2a1b1b2,a2a1b2b1,a2b1a1b2,a2b1b2a1,a2b2a1b1,a2b2b1a1},共12个基本事件.A2={b1a1b2a2,b1a1a2b2,a2a1b1b2,a2a1b2b1,b2a1b1a2,b2a1a2b1,b1a2b2a1,b1a2a1b2,a1a2b1b2,a1a2b2b1,b2a2a1b1,b2a2b1a1},共12个基本事件.同理,我们可列举出A3,A4也都包含12个基本事件.由古典概型的计算公式,可得P(A1)=P(A2)=P(A3)=P(A4)=1224=12.8.解(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P=26=13.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=316. 故满足条件n<m+2的事件的概率为1-P1=1-316=13 16.9.C10.D11.131412.解(1)由题意可知:n1+1+n=12,解得n=2.(2)不放回地随机抽取2个小球的所有基本事件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为(0,21),(0,22),(21,0),(22,0),共4个.∴P (A )=412=13.13.解 (1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人是一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.第二次抽取第一次抽取1 2 3 4 5 1 (1,1) (1,2) (1,3) (1,4) (1,5) 2 (2,1) (2,2) (2,3) (2,4) (2,5) 3 (3,1) (3,2) (3,3) (3,4) (3,5) 4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1)(5,2)(5,3)(5,4)(5,5)试验的所有可能结果数为25,并且这25种结果出现的可能性是相同的,试验属于古典概型. 用A 表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A 的结果共有5种,因此独唱和朗诵由同一个人表演的概率P (A )=525=15=0.2.。

古典概率-PPT课件

古典概率-PPT课件
3 5
C C C C C 共有: m
2 1 5 45
1 2 5 45
m P (B ) 0 .276 n
10
例4 货架上有外观相同的商品15件,其中
12件来自产地甲,3件来自地乙.现从15件商品 中随机地抽取两件,求这两件商品来自一同产 地的概率
解:
从15件商品中取出2商品,共有C215 =105 种取法,且每种取法都是等可能的.∴n=105 令A={两件商品都来自产地甲} kA= C212 =66 令B={两件商品都来自产地乙} kB= C23 =3 而事件{ 两件商品来自同一产地}=A∪B , 且 A 与 B 互斥 . ∴它包含基本事件数 =66+3=69 ∴所求概率=69/105=23/35 11
例5 有外观相同的三极管6只,按其电流放大
系数分类,4只属甲类,2只属乙类.按下列两种 方案抽取三极管两只, (1) 每次抽取一个只,测试后放回,然后再抽 取下一只(放回抽样). (2) 每次抽取一只,测试后不放回,然后在剩 下的三极管中再抽取下一只(不放回抽样) 求下列事件的概率。 设A={抽到两只甲类三极管}, B={抽到两只同类三极管}, C={至少抽到一只甲类三极管}, 12 D={抽到两只不同类三极管}.
∴ P({i})= 1/n
i=1,2,…n
3
因此若事件A包含k个基本事件,于是
1 k A 所含的样本点的个 P (A ) k n n 样本点总数
4
(III) 古典概率模型的例 例1 将一颗均匀的骰子掷两次,观察其 先后出现的点数,设A表示事件“两次掷 出的点数之和为5”,B表示事件“两次 掷出的点数中一个恰好是另一个的两 倍”,试求P(A)和P(B) 解: 样本空间为: ={(i, j)|i, j=1,2,3,4,5,6} (i, j)表示“第一次掷出的点数为i, 第二次掷出的点数为j ”这一样本点

古典概型概率

古典概型概率

古典概型概率
古典概型概率是由法国数学家保罗·科尔贝于1812年提出,是有限随机实验中计算概率的一种理论。

它认为随机实验的可能性取决于该实验所包含的样本空间无外乎两个:实验成功或失败。

对于一个有限的样本空间来说,如果注意到其中某些成功的情况数量(即S1),则失败情况的数量也就已经定义好了(即F=N-S1)。

因此,可以将该随机实验的成功概率表述为S1/N。

古典概型概率通常用来估计一件特定事件发生的几率。

例如在随机试验中用一个面值为6的正方体来代表6个不同情况时,如果要估计在这6 个情况中出现特定情况的几率,则可以使用古典概型概率估计这一特征情况出现的几率是1/6.
总之,古典概型概率是利用样本量少但是样本数量单一、容易数量化的情况来估计特征情况出现的几���;考量到不同因子影响、分布开展大量样本测得、不易数量化时对此理论进行扩展使之通用性加强.。

古典型概率

古典型概率

(1)试验的基本事件;8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11、袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。

12、口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。

12、为积极配合深圳2011年第26届世界大运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.(1)求当选的4名同学中恰有1名男同学的概率;(2)求当选的4名同学中至少有3名女同学的概率.【参考答案】1-5:DDBBC 6-10:BCCBD11、(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)(1)34 (2)14 (3)1212、把四人依次编号为甲、乙、丙、丁,把两白球编上序号1、2,把两黑球也编上序号1、2,于是四个人按顺序依次从袋内摸出一个球的所有可能结果,可用树形图直观地表示出来如下:从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二个人摸到白球”为事件A ,则121()242P A ==。

古典概率

古典概率
事件, ∴P(D)=1-P(B)=8/15
15
例6 将n个球随机地放入N(N≥n)个盒子中,
若盒子的容量无限制. 求:事件
A ={每个盒子中至多有一个球}的概率.
解: ∵每个球都可以放入N个盒子中的任何
一个, ∴每个球有N种放法.由乘法原理,将n 个球放入N个盒子中共有Nn种不同的放法.
每个盒子中至多有一个球的放法由乘法 原理有N(N-1)…(N-n+1)=ANn种.
注意:这种分析方法使用的是中学学过的
乘法原理 13
即n=36且每个基本事件发生的可能性相同. ∵第一次取一只甲类三极管共有4种可能的取 法,第二次再取一只甲类三极管还是有4种可 能的取法.
∴取两只甲类三极管共有44=16种可能的 取法, 即:kA=16 ∴P(A)=16/36=4/9
令E={抽到两只乙类三极管},kE=22=4 ∴P(E)=4/36=1/9 而C是E的对立事件, ∴P(C)=1-P(E)=8/9; ∵B= A∪E ,且A与E互斥, ∴P(B)=P(A)+P(E)=5/9;D是B的对立事件, ∴P(D)=1-P(B)=4/9
共有:
m
C53
C52C
1 45
C51C
2 45
P(B)
m n
0.276
10
例4 货架上有外观相同的商品15件,其中
12件来自产地甲,3件来自地乙.现从15件商品 中随机地抽取两件,求这两件商品来自一同产 地的概率
解: 从15件商品中取出2商品,共有C215 =105
种取法,且每种取法都是等可能的.∴n=105 令A={两件商品都来自产地甲} kA= C212 =66 令B={两件商品都来自产地乙} kB= C23 =3 而事件{两件商品来自同一产地}=A∪B ,且 A与B互斥. ∴它包含基本事件数=66+3=69 ∴所求概率=69/105=23/35

概率论-古典概率模型

概率论-古典概率模型

所以
P(e ) 1 ,i 1,2,,n
i
n
若事件 A 包含 k 个基本事件 ,即
A ei1 ei2 eik
则有
P(A) P ei1 P ei2 P eik
k n
A包含的基本事件数 S中的基本事件总数
例1 将一枚硬币抛掷三次.
i 设事件 A1 为 "恰有一次出现正面 " ,求 PA1 . ii 设事件 A2 为 "至少有一次出现正面 " ,求 PA2 .
因为抽取时这些球是完
10个球中的任一个被取 出的机会都是1/10
全平等的,我们没有理由认
为10个球中的某一个会比另
一个更容易取得 . 也就是说,
10个球中的任一个被取出的
机会是相等的,均为1/10.
85 1946 7 2 3 10
二、古典概型中事件概率的计算
记 A={摸到2号球}
2
P(A)=?
P(A)=1/10
2
1 7
98345106
定义 1 若随机试验满足下述两个条件 (1) 它的样本空间只有有限多个样本点
(2) 每个样本点出现的可能性相同 称这种试验为等可能随机试验或古典概型.
记 B={摸到红球} , P(B)=6/10
静态
这里实际上是从“比例” 转化为“概率” 动态
当我们要求“摸到红球”的概 率时,只要找出它在静态时相应的 比例.
Ca1 Ca1b
a
a b
(2)作不放回抽样
k个人各人取一只球,每种取法是一个基本事件.
由乘法原理知,k个人各人取一只球有
(a
b)(a
b
1)
(a
b
k
1)

古典概率


1 有放回选取: 称为有重复的排列,其总数共有 nr 个
2 不放回选取: 称为选排列,其总数共有
P A n ( n 1) ... ( n r 1)
r n r n
n! ( n r )!
当 n = r 时,称为全排列
Pn n!
常见的三种组合:
1 从 n 个元素中取出 r 个元素,且不考虑其顺序。 其方法总数为
解:
设B "前 2次抽得次品,后 3次取得正品"
(1)放回抽样下,每次抽取都在相同的条件下进行,故 基本事件总数与重排列有关,于是:
基本事件总数为 n 30
2 3
5
事件 B包括的基本事件总数为
7 23 P( B) 0.0245 5 30
m 72233
(2)不放回抽样下,每次抽取都在不相同的条件下进 行,故基本事件总数与排列有关,于是:
k
(1 i1 i2 ... ik n )
P ({e i j }) k A包含的基本事件数 n S中基本事件的总数 j 1
上式即为等可能概型中事件A的概率的计算公式。
二、基本原理及排列组合公式
原理 1
乘法原理:
乘法原理:若完成一件事情要经过两个 步骤,其中第一步中有 n1种不同的方法,第
由 2000 =250
8
P(A)= 333 2000 250 P(B)= 2000
83 2000 由83< <84 P(AB)= 2000 24
P( A B) P( A B) 1 P ( A B)
1 [( P ( A) P ( B ) P ( AB )]
=1-( 333 + 250 2000 2000 =0.75

古典概率的

古典概率的
(原创实用版)
目录
1.什么是古典概率
2.古典概率的特点
3.古典概率的应用举例
4.学习古典概率的重要性
正文
一、什么是古典概率
古典概率,又称为事前概率,是一种概率计算方法。

它是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。

古典概率强调的是等可能性,即各基本事件发生的可能性相等。

二、古典概率的特点
古典概率的主要特点是等可能性,也就是说,在所有可能发生的事件中,每个事件发生的概率是相等的。

这意味着,如果我们知道每个事件的可能性,就可以很容易地计算出每个事件发生的概率。

三、古典概率的应用举例
以下是一个古典概率应用的例子:
假设有一个罐子,里面有 100 个饼干,其中狮子形状的有 30 个,小猪形状的有 40 个,兔子形状的有 30 个。

如果你从罐子中随机取出一个饼干,那么取出狮子形状饼干的概率是多少?
根据古典概率的计算方法,我们可以知道,取出狮子形状饼干的概率是 30/100,即 3/10。

四、学习古典概率的重要性
古典概率是概率论的基础,它在我们的日常生活中有着广泛的应用。

学习古典概率可以帮助我们更好地理解和应对各种随机事件,提高我们决策的准确性。

同时,学习古典概率也能够为我们提供一种思考问题的方法,帮助我们更好地理解世界。

高中古典概型的概率公式

高中古典概型的概率公式
在高中数学中,我们学习了很多概率相关的知识,其中古典概型是最基础的一种。

古典概型是指在一次试验中,每个基本事件的概率相等的概率模型。

在这种模型中,我们可以通过概率公式来计算事件发生的概率。

古典概型的概率公式为:P(A) = m/n,其中P(A)表示事件A发生的概率,m表示事件A中有多少种有利的基本事件,n表示试验中所有基本事件的总数。

例如,我们抛一枚硬币,事件A为正面朝上,那么事件A发生的概率就是1/2,因为硬币正反面各一种基本事件,有利的基本事件只有一种。

再例如,我们从一副扑克牌中随机抽取一张牌,事件A为抽到红桃A,那么事件A发生的概率就是1/52,因为一副扑克牌中有52张牌,其中红桃A只有一张。

在实际应用中,古典概型的概率公式可以帮助我们计算各种事件的概率。

例如,在赌场中,我们可以通过古典概型的概率公式来计算各种赌博游戏的胜率,从而决定是否参与游戏。

古典概型的概率公式还可以帮助我们理解一些概率谬论。

例如,大数定律就是指在独立重复试验中,随着试验次数的增加,事件发生
的频率趋近于事件的概率。

这个定律的实际意义是,当我们进行足够多次的试验时,古典概型的概率公式才能真正反映出事件发生的概率。

古典概型的概率公式是高中数学中最基础的概率计算方法之一,它可以帮助我们计算各种事件的概率,理解概率谬论,以及在实际应用中做出正确的决策。

古典概率


8 5 1 9 4 6 7 2 3 10
我们用 i 表示取到 i号球, i =1,2,…,10 . 则该试验的样本空间 S={1,2,…,10} , 且每个样本点(或者说 基本事件)出现的可能 性相同 。
如i =2
2
5 8 19 4 6 7 3 10
古典概型中的概率(概率的古典定义):
设试验的样本空间共有 N个等可能的基本事件, 其中有且仅有 M个基本事件包含于随机事件 A, 则A的概率为:
( N 1) P ( A) NK
K 1
1 K 1 1 (1 ) N N
K 1,2, ~ N
PNK11 1 P( B) K PN N
故抽签与顺序无关
例:袋中有a只白球与b只黑球,除颜色不同其它方面 无差别,现在把球随机地一只只摸出来,求第 k次 摸出的球是白球的概率。 分析:把a只白球与b只黑球看作是不同的,对它们进 行编号,若把摸出的球依次放在排列成一直线的 a+b个位置上,则可能的排法为(a+b)!,把它们作 为样本点全体,第k次摸得白球有a种取法,而另外 (a+b-1)次摸球相当于对a+b-1只球进行全排列。 解:
g的测度 P( Ag ) G的测度
例:(会面问题)两人相约7点到8点在某地会面,先到 者等候另一个人15分钟,过时就可离去,求两人能谋面 的概率。 例:在区间(0,1)中随机抽取2个数,求下列事件的概 率。(1)两数之和小于6/5(2)两数之积小于1/4 解:设x,y表示(0,1)中的2个数,则Ω为正方形区域: 0≤x≤1,0≤y≤1
M P ( A) N

P(A)具有如下性质
(1) 0 P(A) 1;
(2) P()=1; P( )=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时 古典概率
2.理解古典概型;
3.了解几何概型;
4.了解互斥事件及其发生的概率。

二 复习要求
在具体情境中了解随机事件发生的不确定性和频率的稳定性,进而知道概率的统计定义的意义以及概率和频率的区别;了解互斥事件、对立事件的概念,能判断两个事件是否是互斥事件,是否是对立事件,了解互斥事件的概率加法公式,了解两对立事件概率之和为1的结论,会用相关公式进行简单概率计算;理解古典概型及其计算公式,会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率;体会几何概型的几何意义,理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

在复习这一部分内容时,要能把这一章中所蕴含的主要思想方法贯穿于平常的教学实践中去,如利用树形图去确定基本事件数中的数形结合思想,利用互斥事件去求概率中的分类讨论思想,把实际问题转化为几何概型去求解中的转化与化归的思想,以达到培养学生数学思维的目的。

三 重难注意点
1.概率与频率,概率的频率定义是和一定的实验相联系的,频率反映了一个随机事件发生的频繁程度,频率是随机的,随着实验次数的改变而改变,而概率是确定的,是客观存在的,与实验的次数无关。

概率是频率的稳定值,它从数量上反映了随机事件发生的可能性大小。

2.互斥事件与对立事件,判断事件是互斥还是对立,应主要抓住定义,不可能同时发生的事件称为互斥事件,必有一个要发生的两互斥事件称为对立事件,互斥事件是对立事件的必要而不充分条件,将所给事件转化为互斥事件和对立事件去处理,体现了化整为零,正难则反的思想。

3.古典概型,判断一个试验是否为古典概型,主要看试验结果的两个特征,一是有限
性,二是等可能性,在利用古典概型计算公式 ()n
m A P =时,应首先完成古典概型的判断,而后进行相关计算,其中n 是试验所包含的所有基本事件数,m 是事件A 包含的基本事件数。

4.几何概型,判断一个概型是否为几何概型,主要看三个特征,一是试验结果的无限性,二是试验结果的等可能性,三是可以转化为求某个几何图形的测度的问题。

在几何概型中,一个随机事件A 发生应理解为取到区域D 内的某个指定区域d 中的点,
该事件A 发生的概率()的测度
的测度D d A P =,测度可以是长度、角度、面积、体积。

几何概型和古典概型最本质的区别是试验结果是否有限。

【基础自测】
1. 在所有的两位数中,任取一个数,则这个数能被2或3整除的概率为 .
2. 设{},4,3,2,1,∈c b 则方程02=++c bx x 有实数根的概率是 ______________.
3.若连续投掷两枚骰子分别得到的点数m 、n 作为点P 的坐标()n m 、,求点P 落在圆1622=+y x 内的概率为 .
4 将一骰子连续抛掷三次,它落地时向上的点数依次..
成等差数列的概率为__________
[典型例析]
例1:设有关于x 的一元二次方程0222=++b ax x .若a 是从3,2,1,0四个数中任取的一
个数,b 是从2,1,0三个数中任取的一个数,求上述方程有实根的概率.
例2甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。

()1设()j i ,分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况; ()2若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?
()3甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,否则,则乙胜。

你认为此游戏是否公平,说明你的理由。

例3把一颗均匀的骰子投掷两次,记第一次出现的点数为a ,第一次出现的点数为b ,
试就方程组,2
23⎩⎨⎧=+=+y x by ax 解答下列问题:
()1求方程组只有一解的概率;
()2求方程组只有正数解的概率3.
[基础自测]
.1从5,4,3,2,1中任取3个,组成没有重复数字的三位数,则三位数是5的倍数的概率为__________.
.2若将一颗质地均匀的骰子先后投掷两次,则出现向上的点数之和为4的概率是 .
.3在平面直角坐标系中,从五个点:()()0,2,0,0B A ,()()2,0,1,1D C ,()2,2E 中任取三个,这三点能构成三角形的概率是_____________.
.4在某地的奥运火炬传递活动中,有编号为12318,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为____________.。

相关文档
最新文档