非线性规划-优化模型

合集下载

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

MATLAB优化工具箱--线性规划-非线性规划

MATLAB优化工具箱--线性规划-非线性规划
数学实验
linprog输入参数说明: f, A, b, Aeq, beq lb,ub 边界设置 说明: 如果x(i)无边界,则 lb(i) = -inf, ub(i) = inf
6
linprog 输出参数说明: x 决策变量取值 fval 目标函数最优值
exitflag > 0 成功找到最优解 0 达到最大迭代次数也没有找到最优解 < 0 该线性规划问题不可行或者linprog计
10
fmincon函数求解形如下面的有约束非线性规 划模型
一般形式:
min f ( X ) s.t. AX b
Aeq X beq l X u c(X ) 0 ceq ( X ) 0
Matlab求解有约束非线性最小化 1.约束中可以有等式约束 2.可以含线性、非线性约束均可
数学实验
输入参数语法:
例子:某农场种植两种作物A、B,需要甲、乙两种化肥。种植 每亩作物A和作物B分别需用的化肥数,可得利润及农场现有化
肥数量如下表所示:
问在现有条件下,如何安排种植,才能使利润最大?
作物
每亩所需化肥 (百公斤)
现有化肥
AB (百公斤)
化肥

23
100) 6 4
数学实验
例题建模
[x,fval,exitflag,output,lambda]=fmincon(fun,x0,...)
数学实验
输入参数的几点说明
模型中如果没有A,b,Aeq,beq,lb,ub的限制,则以空矩阵[ ]作为 参数传入; nonlcon:如果包含非线性等式或不等式约束,则将这些函数
编写为一个Matlab函数, nonlcon就是定义这些函数的程序文件名;
3

非线性最优化模型

非线性最优化模型

案例二:生产调度优化的应用
总结词
生产调度优化是利用非线性最优化模型来安排生产计划 ,以提高生产效率和降低生产成本。
详细描述
生产调度问题需要考虑生产线的配置、工人的排班、原 材料的采购等多个因素。非线性最优化模型能够综合考 虑这些因素,并找到最优的生产调度方案,提高生产效 率,降低生产成本,并确保生产计划的可行性。
04
非线性最优化模型的实例分析
投资组合优化模型
投资组合优化模型
通过非线性最优化方法,确定最佳投资组合配置,以实现预期收 益和风险之间的平衡。
目标函数
最大化预期收益或最小化风险,通常采用夏普比率、詹森指数等 作为评价指标。
约束条件
包括投资比例限制、流动性约束、风险控制等。
生产调度优化模型
01
生产调度优化模型
非线性最优化模型
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实例分析 • 非线性最优化模型的挑战与展望 • 非线性最优化模型的应用案例
01
非线性最优化模型概述
定义与特点
定义
非线性最优化模型是指用来描述具有 非线性特性的系统或问题的数学模型 。
多目标非线性优化模型
多目标
多目标非线性优化模型中存在多个目标函数,这些目标函 数之间可能存在冲突。
01
求解方法
常用的求解方法包括权重法、帕累托最 优解法、多目标遗传算法等,这些方法 通过迭代过程逐步逼近最优解。
02
03
应用领域
多目标非线性优化模型广泛应用于各 种领域,如系统设计、城市规划、经 济分析等。
通过非线性最优化方法,合理安 排生产计划和调度,以提高生产 效率和降低成本。

运筹学模型的类型

运筹学模型的类型

运筹学模型的类型运筹学模型是指通过数学方法来描述和解决复杂问题的一种工具。

根据问题的性质和要求,运筹学模型可以分为以下几种类型:1. 线性规划模型(Linear Programming Model,简称LP):线性规划是一种优化问题,它的目标是在满足一些约束条件下,使某个线性函数取得最大或最小值。

线性规划模型广泛应用于生产调度、资源分配、物流运输等领域。

2. 整数规划模型(Integer Programming Model,简称IP):整数规划是线性规划的扩展,它要求决策变量只能取整数值。

整数规划模型常用于生产调度、排产计划、网络设计等问题。

3. 非线性规划模型(Nonlinear Programming Model,简称NLP):非线性规划是一种优化问题,它的目标函数和约束条件都可以是非线性的。

非线性规划模型广泛应用于经济学、金融学、工程学等领域。

4. 动态规划模型(Dynamic Programming Model,简称DP):动态规划是一种优化方法,它将一个复杂问题分解为若干个子问题,并逐步求解这些子问题。

动态规划模型常用于生产调度、资源分配、投资决策等问题。

5. 排队论模型(Queuing Theory Model,简称QT):排队论是一种研究等待线性的数学理论,它可以用来描述和分析顾客到达、服务时间、系统容量等因素对系统性能的影响。

排队论模型广泛应用于交通运输、通信网络、医疗卫生等领域。

6. 决策树模型(Decision Tree Model,简称DT):决策树是一种分类和回归的方法,它可以将一个问题分解为若干个子问题,并逐步求解这些子问题。

决策树模型常用于金融风险评估、医学诊断、市场营销等领域。

总之,不同类型的运筹学模型适用于不同的问题领域和求解目标,选择合适的模型可以帮助我们更好地解决实际问题。

第6讲整数规划、非线性规划模型

第6讲整数规划、非线性规划模型

一、模型准备 该问题是在原料数量一定的限制条件下,求商店生产三种口味 蛋糕各多少时,可获得最大收益. 二、模型假设 1.假设在生产过程中没有材料的浪费. 2. 假设生产的面包能全部售出, 且不考虑影响销售价格的因素. 三、变量假设 设商店生产草莓、蓝莓、柠檬三种口味的蛋糕的数量分别为
x1 , x2 , x3 ,获得的总收益为 R 元.
x=intvar(1,2); C=[240 378]; a=[1 0;0 1;1 1];b=[8 6 10]; f=C*x'; F=set(0<=x<=inf); F=F+set(a*x'<=b')+set(96*x(1)+120*x(2)>=720); solvesdp(F,f) double(f)
double(x)




最优化问题中的所有变量均为整数时,这类 问题称为整数规划问题。
如果线性规划中的所有变量均为整数时,称 这类问题为线性整数规划问题。 整数规划可分为线性整数规划和非线性整数 规划 ,以及混合整数规划等。 如果决策变量的取值只能为0或1,则这样的 规划问题称为0-1规划。
double(f)
double(x)
非线性规划
非线性规划问题的一般数学模型:
min
f ( x) h j ( x) 0, j 1, 2, , l.
s.t. gi ( x) 0, i 1, 2,, m,
其中, x E n ,
f (x) 为目标函数,
g i ( x), h j ( x) 为约束函数,这些函数中至少有
最优化模型(2)
一、一般的线性规划模型 二、整数规划模型

非线性规划模型

非线性规划模型

进行分配,因而存在部分 DVD 的两次被租赁,但因为是处理 同一份订单,因而不存在会员的第二次租赁.
基于这个假设,为了最小化购买量,我们在允许当 前某些会员无法被满足租赁要求,让其等待,利用部分 会员还回的 DVD 对其进行租赁.
根据问题一,我们认为,一个月中每张 DVD 有 0.6 的概率被租赁两次,0.4 的概率被租赁一次。即在二次 租赁的情况下,每张 DVD 相当于发挥了0.6 2 0.4 1.6张 DVD 的作用.
hi
第i种油的每单位的存储费用
ti
第i种油的每单位的存储空间
T
总存储公式
由历史数据得到的经验公式为 :
min
f
(x1, x2 )
a1b1 x1
h1x1 2
a2b2 x2
h2 x2 2
s.t. g(x1, x2 ) t1x1 t2x2 T
且提供数据如表5所示:
表5 数据表
石油的
例 8.(生产计划问题)某厂生产三种布料 A1, A2, A3, 该厂两班生产,每周生产时间为 80h,能耗不得超过 160t 标准煤,其它数据如下表:
布料 生产数量( m/ h ) 利润( 元 / m)
A1
400
0.15
A2
510
0.13
A3
360
0.20
最大销售量( m / 周) 40000 51000 30000
种类
ai
bi
hi
ti
1
9
3
0.50
2
2
4
5
0.20
4
已知总存储空间 T 24
代入数据后得到的模型为:
min
f
(x1, x2 )

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模:第五章 运筹与优化模型

数学建模:第五章 运筹与优化模型

max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于M/M/S排队论的病床安排模型
(获2009年大学生数学建模赛全国二等奖)
数学与计算科学学院雷蕾
信息科学与计算学院黄缨宁
信息科学与计算学院丁炜杰
指导老师:王其如教授
摘要
就医排队是一种我们非常熟悉的现象。

在眼科医院的病床安排中,主要从医院高效工作和患者满意度两方面来考虑安排方法。

本文通过确定两方面的权重,确立评价标准。

针对问题二,本文确定了从医院和患者两方面综合考虑的目标函数,医院各种诊疗规则的限制下进行线性规划,使得目标函数值(背离度)最小,得到问题二的解决方案。

用问题一的标准评价,确实优于医院的FCFS模型。

问题三中对每一类病人术后恢复时间做统计,由计算机按照概率给出术后恢复的时间,运用第二问模型的选择方式,对近一段时间内的出入院人数作出合理预测,并根据M的排序确定患者入院的时间区间。

对于问题四,先确立白内障双眼手术的方案(调查支持可以任意不同两天手术),按照问题二的算法,先算出周二四做白内障手术的最小M值及入院前等待时间和术前等待时间。

用计算机模拟出在手术时间可调整情况下M可能的最小值,得到周三五为最佳手术时间。

尤其术前人均等待时间的优化减少使医院病床的有效使用率增加。

模型改进率达到18.11%。

问题五要求确定病床固定分配使人均等待时间最短。

病床的分配使整个排队系统变成了五个M/M/N模型,N为各类病床的数量。

根据排队论中M/M/1模型的条件演化得到服务强度小于1及病床数固定不变。

采取整数规划,在此限制条件下使得平均等待时间最小。

从而算出各类病床的分配比例。

关键词:M/M/S模型泊松(Poisson)分布非线性规划优化模型病人满意度病床有效利用率
一.问题的重述
有某医院眼科门诊每天开放,住院部有病床79张。

眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。

白内障手术较简单且没有急症。

目前只在周一、三做白内障手术,此类病人的术前准备时间只需1、2天。

如果要做双眼是周一先做一只,周三再做另一只。

外伤疾病通常属于急症,病床有空时立即安排住院,第二天便会安排手术。

其他眼科疾病情况不同,住院后2-3天就可接受手术,但术后观察时间较长。

这类疾病手术时间可根据需要安排,一般不安排在周一、周三。

医院眼科手术条件较充分,可不考虑手术条件的限制,但考虑到医生的安排问题,通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做。

当前该住院部对全体非急症病人是按照FCFS规则安排住院,但等待病人越来越多。

故要优化其模型
问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型的优劣。

问题二:试就该住院部当前的情况,建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院。

并对你们的模型利用问题一中的指标体系做出评价。

问题三:作为病人,自然希望尽早知道自己何时能住院。

能否根据当时住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区间。

问题四:若该住院部周六、周日不安排手术,请你们重新回答问题二,医院的手术时间安排是否应做出相应调整?
问题五:有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,试就此方案,建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型。

二.模型条件的假设
1.假设如有空床位,优先安排外伤病人;
2.设有一患者当天出院,则立即可以安排另外的人入院;
3.设定做白内障手术的两天不做其他手术;
4.假设除了外伤无其他急症;
5.白内障病人手术准备时间是1-2天的任意值,不是因人而异,青光眼和视网
膜疾病手术准备时间是2-3天的任意值。

三.符号的定义及说明
1.B
i
:各类患者从入院到手术所花费的平均时间(手术准备时间);
2.θ

2
θ
3
:分别为M
1
M
2
M
3
的权值;
3.K
1i K
2i
:分别表示第i个病人在第一阶段的等待时间和该病人在术前住院时
间;
4.S:某一天出院的病人数;
5.W:等待病床的总人数;
6.W
1W
2
W
3
W
4
:分别等待病床的人中白双、白单、青光眼和视网膜疾病、外伤的
人数;
7.P (i,j):第i类第j号的人;
8.M(i,j):第i类第j号人的M;
9.P
k
:泊松分布中k个病人到达的概率;
10.λ

2
λ
3
λ
4
λ
5
λ
6
:分别表示白双、白单、青光眼、视网膜疾病,外伤以及
出院人数的平均到达率;
11.P
n
(t):时间t内有n个患者在排队的概率;
12.ρ
i
:各类病床系统的服务强度;
13.μ
i
:各类患者的平均服务率;
14.n1 n2 n3 n4 n5:五类病人各应该分配的病床数;
15.D1,D2:选择两天做白内障手术的星期数;
16.x1 x2 x3 x4 x5 x6 a1 a2 a3 a4 a5 a6:各种病情的等待人数及其系数
四.模型的分析及求解
问题一:
1.确定评价指标:
从病人和医院两方面对模型进行分析,病人方面以花费时间,住院费用和公平性作为满意程度的指标,医院方面以病床利用率和病床有效利用率为作为评价指标。

同时还有一些客观条件有可能影响到评价指标,如所有病者是否一致对待还是有优先考虑。

花费时间是指从门诊到出院的时间,费用则根据入院到出院的时间计算,公平性是根据是否先门诊先入院来进行评判,床位利用率是指住有病人的床位与所有床位的比,有效的床位利用是指床位上所住病人属于必须住院日期与所住的所有日期的比,如白内障术前准备时间2-3天,术后恢复时间3-4天,超过此时间则属于床位的无效利用,需要避免。

将患者就医分为三个过程:门诊到入院为第一阶段,入院到进行手术为第二阶段,手术完毕到出院为第三阶段。

得出如下评价指标可能的构成因素:
1.第一阶段等待时间
1.花费时间
2.第二阶段等待时间
3.第三阶段的住院时间
患者(满意度) 1第二阶段准备时期费用
2.住院的费用 2 第三阶段住院费用
3手术费用
可能构成因素
3.公平性
医院(效率) 1.床位利用率
2.床位有效利用率
客观条件:1.病者类别。

相关文档
最新文档