有限元法理论及其应用第一次作业

合集下载

有限单元法课后习题全部解答_王勖成

有限单元法课后习题全部解答_王勖成

d 2w dx2
δ
dw dx

d 3w dx3
δ
w
L 0
= 0
∫ 1.5 如有一问题的泛函= 为 Π(w)
L
EI
0 2
d 2w dx2
2
+
kw2 2
+ qwdx ,其中 E,
I,
k 是常数,q
是给定函数,w 是未知函数,试导出原问题的微分方程和边界条件.
∫ = δΠ(w)
L 0
x3 L2
)
+
a2 (x2

x3 L
)
+
x3 L3
(1)
x3 上式中的最后一项 L3 前面没有待定系数,这是由于使用了在 x=L 处φ=1 的强制边界条件。
从物理意义上说,相当于给定边界条件的解为齐次方程的通解加一个特解的缘故。将(1)
式代入教材(1.2.26)式,得到残量:
R(
x)
=
a1 (−6
x L2
+
Q
δφ
dΩ
+
Γ−Γq
k
∂φ ∂n
δφ
dΩ

Γq
αφ

q

k
∂φ ∂n
δφ d
Γ
欧拉方程: k
∂2φ ∂x2
+
k
∂2φ ∂y 2
+
Q
=0
Γφ
自然边界: αφ

q

k
∂φ ∂n
=0
Γ

Γq
强制边界:
k
∂φ ∂n
=0
习题 1.8: 板弯曲问题的平衡方程为:

有限元法在机械设计中的应用

有限元法在机械设计中的应用

有限元法在机械设计中的应用
有限元法是一种常用于机械设计中的数值分析方法,它通过将连续物体离散化成有限数量的单元,再针对每个单元进行力学分析,最终得到整个物体的应力、应变和变形等结果。

以下将介绍有限元法在机械设计中的应用。

有限元法可以用于机械结构的强度分析。

在机械设计中,往往需要根据物体所受的外力来确定其结构是否能够满足强度要求。

有限元法通过建立物体的有限元模型,并施加合适的边界条件和载荷条件,可以计算出每个单元的应力分布,进而得到整个物体的应力分布情况。

通过比较得到的应力值和材料的强度极限,可以评估物体是否满足强度要求,从而指导设计优化。

有限元法在机械设计中的应用广泛。

通过有限元法进行强度分析、刚度分析、疲劳寿命分析和动力分析等,可以评估物体的性能和可靠性,从而指导设计的改进和优化,提高机械产品的质量和可靠性。

“有限元法原理及应用”讲义-2012

“有限元法原理及应用”讲义-2012

二、最小总势能原理
一个“系统”是一个结构加上作用与其上的力。 对于保守系统,系统总势能定义为: 总势能 = 应变能 - 已知外力所作的功 为什么是减去“已知外力所作的功”?一种理解就是,把外力在结构变形前构形上的势 能定义为 0,则在任何可能的构形上任何一部分外力的势能就是“0 - 外力所作的功” 。 如何对系统总势能进一步理解? 系统总势能用符号 p 表示, 它是系统位移的泛函, 对于系统每一个 “可能位移” (场) , 系统有一个总势能与之对应。它是系统的一个状态函数。 “可能位移”—— 满足内部连续性和位移边界条件的位移场。 举例:对于一个图 1-1 所示,一端受集中力 P,具有刚度 k 的单自由度线性弹簧。
d p kDeq dD PdD 0
2
所以: Deq
P k
该结果与静力学求出的结果相同! 2、多自由度系统、矩阵形式 如果决定一个系统的构形需要 n 个独立的量, 那么这个系统就具有 n 个自由度, 称为广 义坐标。 对于有限自由度(离散系统)问题,势能 p 是广义坐标的函数。广义坐标记为 Di 。 势能表达式为: p p ( D1 , D2, ..., Dn ) 它的全微分为:
位移是可能的待定参数必须满足一定约束关系因此该问题的独立参量广义坐标只里兹解往往是过刚的除非假定场包含了精确由于前面两点经典里兹法在解决实际问题时尤其是几何形状复杂的二三维问题解决的办法下面以一维直杆的分析为例子研究基于里兹法考虑图21a所示的结构长度改为3l把杆分为三个部分
“有限元法原理及应用”讲义
对于图 1-3 所示的多自由度弹簧系统,其总势能为:
p
1 1 1 2 k 1 D1 k 2 ( D 2 D1 ) 2 k 3 ( D 3 D 2 ) 2 P1 D1 P2 D 2 P3 D 3 2 2 2

有限元法作业

有限元法作业

考核科目:有限元法程序设计及应用题目:数值分析方法在电机磁场分析中的应用永磁电机磁场有限元分析数值分析方法在电机磁场分析中的应用有限元法作为一种强有力的工程分析方法被广泛应用于航空航天、汽车、电子电气、船舶、压力容器、核能、生物医药等众多领域。

对于机电工程领域,有限元法同样极为重要,在各类机械设计分析、机械和电子工程问题定量分析与优化设计中有限元是最主要的数值方法,并且无一例外地是构成各种先进、有效的计算软件包的基础。

目前,有限元分析己成为计算机辅助设计的一个重要组成部分。

在机电工程中,电机的设计、制造、应用是极为重要的一环,几乎所有的机电产品都设计到电机的应用。

电机不仅是工业自动化的源动力,而且是人类现代化动力支柱极重要之一,所以电机的设计和工业现代化息息相关。

而电机设计与制造一个极重要的环节就是电机电磁场的分析和应用。

磁场的稳定、强度、分布等直接关系到电机的设计和性能。

而且在实际应用中,由于电机设计缺陷而导致的工业事故也是频频发生。

但是鉴于电磁场问题的复杂性,即各类电磁装置在其结构、几何形状以及材料性质变化上的复杂性,使得我们需要解决的电磁场问题的规模越来越大、难度越来越深。

而有限元法是目前电气工程中解决电磁场边值问题的强有力手段,它有效地解决了电磁场计算中的通用性与精确性的问题,在工程中获得了广泛应用。

研究电机暂态行为的最有效方法之一便是时步有限元法早在上世纪70年代初期P. Sylvester和M.V.K. Chari 就把有限元法引入到电磁计算中这是电磁场数值分析中的一个重要转折点。

有限元法以变分原理为基础,用剖分插值的办法建立各自由度间的相互关系,把二次泛函的极值问题转化为一组多元代数方程组来求解。

它能使复杂结构、复杂边界情况的边值问题得到解答。

近20年,由于数值处理技术的提高,例如采用不完全Cholesky 分解法、ICCG法、自适应网格剖分等方法,使得有限元法在电磁场数值计算中,越来越占据主导地位。

有限元课后习题答案

有限元课后习题答案

有限元课后习题答案1.1有限元法的基本思想和基本步骤是什么首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。

其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。

步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。

1.2有限元法有哪些优点和缺点优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。

缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。

对无限求解域问题没有较好的处理办法。

1.3有限元法在机械工程中有哪些具体的应用静力学分析模态分析动力学分析热应力分析其他分析2.1杆件结构划分单元的原则是什么?1)杆件的交点一定要取为节点2)阶梯形杆截面变化处一定要取为节点3)支撑点和自由端要取为节点4)集中载荷作用处要取为节点5)欲求位移的点要取为节点6)单元长度不要相差太多2.2简述单元刚度矩阵的性质。

单元刚度矩阵是描述单元节点力与节点位移之间关系的矩阵。

2.3有限元法基本方程中每一项的意义是什么?{Q}---整个结构的节点载荷列阵(包括外载荷、约束力);{}---整个结构的节点位移列阵;[K]---结构的整体刚度矩阵,又称总刚度矩阵。

2.4简述整体刚度矩阵的性质和特点。

对称性奇异性稀疏性主对角上的元素恒为正2.5位移边界条件和载荷边界条件的意义是什么由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。

2.6写出平面刚架问题中单元刚度矩阵的坐标变换式2.7推导平面刚架局部坐标系下的单元刚度矩阵。

2.8简述整体坐标的概念。

单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’O’Y’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。

有限元热分析第1次大作业(16-17)

有限元热分析第1次大作业(16-17)

课程名称:有限元与热分析数值仿真
2016—2017学年第二学期
第一次大作业(任课教师:钱作勤)
1、简述工程热力学的三大基本定律,并深刻阐述其重要意义和应用领域。

2、一台小型化工装置采用水蒸汽再热循环。

透平蒸汽进口参数为8.5Mpa和480
度。

再热参数为1.2Mpa和440度。

凝汽压力为7kPa.。

透平和泵的效率分别为0.92和0.80。

画出该循环的T-S图。

并确定:1)每千克工质的净功;2)再热占总吸热量的百分比;3)循环热效率。

3、一稳定运行的理想蒸汽压缩制冷系统采用R134a作为工作流体,压缩机进口
是压力为0.16Mpa的饱和蒸汽。

冷凝器出口参数为0.9Mpa和32度。

质量流量为5kg/min。

压缩机等熵效率为80%。

试确定:1)压缩机功率;2)冷吨;
3)性能系数。

南京理工大学研究生 有限元方法理论及应用考试 个人答案

南京理工大学研究生 有限元方法理论及应用考试 个人答案

目录1等参单元及其应用 (1)1.1概述 (1)1.1.1等参单元的概念、原理 (1)1.1.2等参单元对有限元法工程应用的意义 (1)1.2等参单元的数值积分方法 (1)1.2.1等参单元刚度矩阵的数值积分方法 (1)1.2.2确定积分阶的原理 (2)1.2.3全积分单元与减缩积分单元讨论和评价 (3)1.3线性等参单元 (3)1.3.1全积分、减缩积分线性等参单元有关问题的分析讨论 (3)1.4等参单元的应用 (5)2分析与计算 (6)2.1四节点平面等参单元的收敛协调性 (6)2.2八节点平面等参单元 (8)2.33节点平面三角形单元 (9)2.420节点六面体等参单元 (10)2.520节点六面体等参单元 (11)3上机实验 (15)3.1实验一 (15)3.1.1实验题目 (15)3.1.2实验目的 (15)3.1.3建模概述 (15)3.1.4计算结果分析与结论 (16)3.1.5实验体会与总结 (32)3.2实验二 (33)3.2.1实验题目 (33)3.2.2实验目的 (33)3.2.3建模概述 (33)3.2.4计算结果分析与讨论 (34)3.2.5实验体会与总结 (36)3.3实验三 (36)3.3.1实验题目 (36)3.3.2实验目的 (36)3.3.3建模概述 (37)3.3.4计算结果分析与结论 (37)3.3.5实验体会与总结 (44)1 等参单元及其应用1.1 概述1.1.1 等参单元的概念、原理普通单元受到两个方面的限制:(1)单元的精度。

单元的节点数越多,单元精度越高;(2)单元几何上的限制。

普通矩形和六面体单元都不能模拟任意形状几何体,所有几种普通单元都是直线边界,处理曲边界几何体误差较大。

为了解决上述矛盾,方法就是突破矩形单元和六面体单元几何方面的限制,使其成为任意四边形和任意六面体单元,这类单元位移模式和形函数的构造和单元列式的导出不能沿用构造简单单元的方法,必须引入等参变换,采用相同的插值函数对单元的节点坐标和节点位移在单元上进行插值。

有限元法原理

有限元法原理

有限元法原理
有限元法是一种工程计算方法,主要用于求解连续介质的力学问题。

它的基本原理是将连续介质离散成有限个小单元,然后利用有限元的形状函数对每个小单元进行近似,最终利用这些近似解来求解整个连续介质的力学问题。

有限元法的主要思想是将问题的解表示为一个有限个数的基函数的线性组合。

这些基函数与小单元的形状函数相联系,通过对小单元的形状函数进行合适的选取和调整,可以确保解在小单元内满足边界条件。

然后,通过将所有的小单元的解进行组合,就可以得到整个连续介质的解。

在实际的计算中,有限元法通常分为以下几个步骤:首先,需要根据实际问题确定合适的有限元模型,包括选择适当数量和类型的有限元单元。

然后,需要确定边界条件,即确定整个连续介质的边界约束条件。

接下来,根据小单元的形状函数和基函数,可以建立刚度矩阵和荷载向量。

最后,通过求解线性方程组,可以得到整个连续介质的解。

有限元法具有广泛的应用范围,在工程领域中可以用于求解各种静力学、动力学、热力学、流体力学等问题。

它不仅能够提供精确的解,同时也具有较高的计算效率和灵活性。

因此,有限元法已经成为工程计算领域中一种非常重要的数值分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 证明3节点三角形单元的插值函数满足
(,)i j j i j N x y δ= 及1i j m N N N ++=
2、如图1所示3节点直角三角形单元,厚度为t,弹性模量是E ,泊松比ν=0。

设坐标原点在节点3。

试求:形函数矩阵N ,应变矩阵B ,应力矩阵S ,单元刚度矩阵e K 。

验证e
K 的性质。


从T3单元刚度矩阵公式来分析为什么e K 元素与单元大小和在坐标系中的位置无关?
图1
3、如图2所示单元在jm 边作用有线性分布的面载荷(x 方向),试求:单元等效节点载荷向量。

图2
4、如图3所示一根直杆,长度2L ,截面积A ,弹性模量E ,杆受到轴向的线分布力:q cx =。

试用2个2节点一维杆单元求解其位移、应力。

要求推导详细的有限元求解列式,设置合理的参数将求解结果绘制成曲线,并与精确解进行对比分析。

图3。

相关文档
最新文档