四川省雅安市2018-2019学年高二上学期期末考试数学(理)试题
雅安市高中2018-2019学年高二上学期数学期末模拟试卷含解析

二、填空题
13.函数 f(x)=ax+4 的图象恒过定点 P,则 P 点坐标是 . 14.阅读如图所示的程序框图,则输出结果 S 的值为 .
1 1 1 PC PA2 AC 2 PA2 8 ,所以由球的体积 2 2 2
第 8 页,共 16 页
12.【答案】C 【解析】解:复数 故选;C. 【点评】本题考查了复数的运算法则、虚部的定义,属于基础题. = = =1+2i 的虚部为 2.
二、填空题
13.【答案】 (0,5) . 【解析】解:∵y=ax 的图象恒过定点(0,1), 而 f(x)=ax+4 的图象是把 y=ax 的图象向上平移 4 个单位得到的, ∴函数 f(x)=ax+4 的图象恒过定点 P(0,5), 故答案为:(0,5). 【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题. 14.【答案】
【解析】根据程序框图可知,其功能是求数列 { 【解析】 试题分析:由题意得,根据等差数列的性质,可得 a3 a7 a11 3a7 6 a7 2 ,由等差数列的求和
S13
13(a1 a13 ) 13a7 26 . 2
考点:等差数列的性质和等差数列的和.
2 16.【答案】 3,
)
6. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量 P (单位:毫克/升)与时间 t (单位: 小时) 间的关系为 P P0 e 的污染物,则需要( A. 8 B. 10
雅安市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析

第 6 页,共 17 页
雅安市实验中学 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D 【解析】解:设 F1(﹣c,0),F2(c,0),则 l 的方程为 x=﹣c, 双曲线的渐近线方程为 y=± x,所以 A(﹣c, ∵AB 为直径的圆恰过点 F2 ∴F1 是这个圆的圆心 ∴AF1=F1F2=2c ∴ c=2c,解得 b=2a ∴离心率为 = 故选 D. 【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式. 2. 【答案】C 【解析】由三视图可知该几何体是四棱锥,且底面为长 6 ,宽 2 的矩形,高为 3 ,所以此四棱锥体积为 = c)B(﹣c,﹣ c)
后所得的射线经过点 A=(cosθ,sinθ).
(Ⅱ)若向量 =(sin2x,2cosθ), =(3sinθ,2cos2x),求函数 f(x)= • ,x∈[0,
]的值域.
24.某公司春节联欢会中设一抽奖活动 : 在一个不透明的口袋中装入外形一样号码分别为 1,2,3,…,10 的 十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金 30 元,三球号码都 连号为二等奖,奖金 60 元;三球号码分别为 1,5,10 为一等奖,奖金 240 元;其余情况无奖金. (1)员工甲抽奖一次所得奖金的分布列与期望; (2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
第 9 页,共 17 页
∴x+ ≥2 ∴B={y|y≥2}, ∴B⊆A. 故选:B.
=2(当 x= ,即 x=1 时取“=”),
【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的 关系,再对比选项得出正确选项.
雅安市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

雅安市第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(2. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π3. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( ) A .﹣1 B .1C .6D .124. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 5. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 26. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 7. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=AC B .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )8. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自然数为( )A .11B .12C .13D .149. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )A .4B .4C .2D .210.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a 11.半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 312.若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4C .3D .2二、填空题13.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
雅安市二中2018-2019学年高二上学期数学期末模拟试卷含解析

雅安市二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 2. 设为虚数单位,则( )A .B .C .D .3. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .4. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣5. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°6. 抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D .7. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)8. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 9. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β10.函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A. B.C.D.11.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()A.6B.9C.12D.1812.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.20+2πB.20+3πC.24+3πD.24+3π二、填空题13.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.14.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .15.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.16.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 17.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
四川省雅安市2018学年高二上学期期末数学试卷理科 含解析

2018-2018学年四川省雅安市高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.直线x﹣2y﹣3=0在y轴上的截距是()A.3 B.C.﹣ D.﹣32.在面积为S的△ABC的边AB含任取一点P,则△PBC的面积大于的概率是()A.B.C.D.3.过点(2,1)的直线中,被圆x2+y2﹣2x+4y=0截得的最长弦所在直线的方程是()A.3x﹣y﹣5=0 B.3x+y﹣7=0 C.x+3y﹣5=0 D.x﹣3y+1=04.将960人随机编号为1,2,…,960,用系统抽样法从中抽取32人作调查,若分组后在第一组采用简单随机抽样的方法抽到的号码为9,则应在编号落入的人中抽取的人数为()A.15 B.10 C.9 D.75.与双曲线2x2﹣y2=3有相同渐近线,且过点P(1,2)的双曲线的方程为()A.2x2﹣=1 B.﹣x2=1 C.x2﹣=1 D.﹣=16.已知直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8平行,则实数m的值为()A.﹣7 B.﹣1 C.﹣1或﹣7 D.7.若点P为椭圆C: +=1上的动点,G点满足=2(O是坐标原点),则G的轨迹方程为()A. +=1 B. +y2=1C. +3y2=1 D.x2+=18.在平面内,一只蚂蚁从点A(﹣2,﹣3)出发,爬到y轴后又爬到圆(x+3)2+(y﹣2)2=2上,则它爬到的最短路程是()A.5 B.4 C. D.﹣9.设点P(x,y)在椭圆4x2+y2=4上,则x+y的最大值为()A.3 B.﹣3 C.4 D.10.已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪C.(﹣∞,﹣2]∪11.过双曲线C:﹣=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A,B,若∠AOB=120°(O是坐标原点),则双曲线C的离心率为()A.2 B.3 C.D.12.已知椭圆C: +y2=1的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点,则线段GH的长度的最小值是()A.5 B.6 C.7 D.8二、填空题(共4小题,每小题5分,满分20分)13.某程序框图如图所示,该程序运行后,输出的x值是.14.若直线l经过坐标原点,且定点A(1,0),B(0,1)到l的距离相等,则直线l的方程为.15.若某市6所中学参加中学生合唱比赛的得分用茎叶图表示如图,其中茎为十位数,叶为个位数,则这组数据的方差是.16.椭圆+=1的左焦点为F1,对定点M(6,4),若P为椭圆上一点,则|PF1|+|PM|的最大值为.三、解答题(共6小题,满分70分)17.(10分)我市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是,样本数据分组为(Ⅰ)求直方图中x的值(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若全市共有企业1300个,试估计全市有多少企业可以申请政策优惠.18.(12分)已知直线l经过直线3x+4y﹣2=0与直线x﹣y+4=0的交点P,且垂直于直线x ﹣2y﹣1=0(Ⅰ)求直线l的方程(Ⅱ)直线l与曲线y2+2x=0交于A,B两点,求|AB|19.(12分)调查某高中1000名学生的肥胖情况,得如表:已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15(Ⅰ)求x的值(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取100名,问应在肥胖学生中抽多少名?(Ⅲ)已知y≥194,z≥193,求肥胖学生中男生不少于女生的概率.20.(12分)已知圆C关于y轴对称,经过抛物线y2=4x的焦点,且被直线y=x分成两段弧长之比为1:2(Ⅰ)求圆C的方程(Ⅱ)若圆C的圆心在x轴下方,过点P(﹣1,2)作直线l与圆C相切,求直线l的方程.21.(12分)平面内动点P(x,y)与两定点A(﹣2,0),b(2,0)连线的斜率之积等于﹣,若点P的轨迹为曲线E,过点Q(﹣1,0)作斜率不为零的直线CD交曲线E于点C,D(1)求曲线E的方程;(2)求证:AC⊥AD.22.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点.(I)求椭圆C的方程;(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.(i)若直线AB的斜率为,求四边形APBQ面积的最大值;(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.2018-2018学年四川省雅安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.直线x﹣2y﹣3=0在y轴上的截距是()A.3 B.C.﹣D.﹣3【考点】直线的截距式方程.【分析】通过x=0求出y的值,即可得到结果.【解答】解:直线x﹣2y﹣3=0,当x=0时,y=﹣,直线2x+y+3=0在y轴上的截距为:﹣3.故选:C.【点评】本题考查直线方程的应用,直线的截距的求法,基础题.2.在面积为S的△ABC的边AB含任取一点P,则△PBC的面积大于的概率是()A.B.C.D.【考点】几何概型.【分析】首先分析题目求在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于等于的概率,可借助于画图求解的方法,然后根据图形分析出基本的事件空间与事件的几何度量是什么.再根据几何关系求解出它们的比例即可.【解答】解:记事件A={△PBC的面积大于等于的概率},基本事件空间是线段AB的长度,(如图)因为S△PBC≥的,则有;化简记得到:,因为PE平行AD则由三角形的相似性所以,事件A的几何度量为线段AP的长度,因为AP=AB,所以P(A)==.故△PBC的面积大于等于的概率的概率为.故选C.【点评】解决有关几何概型的问题的关键是认清基本事件空间是指面积还是长度或体积,并且熟练记忆有关的概率公式.3.过点(2,1)的直线中,被圆x2+y2﹣2x+4y=0截得的最长弦所在直线的方程是()A.3x﹣y﹣5=0 B.3x+y﹣7=0 C.x+3y﹣5=0 D.x﹣3y+1=0【考点】直线与圆相交的性质.【分析】确定圆心坐标,可得过(2,1)的直径的斜率,即可求出被圆x2+y2﹣2x+4y=0截得的最长弦所在直线的方程.【解答】解:xx2+y2﹣2x+4y=0的圆心坐标为(1,﹣2)故过(2,1)的直径的斜率为k=3,因此被圆x2+y2﹣2x+4y=0截得的最长弦所在直线的方程是y﹣1=3(x﹣2),即为3x﹣y﹣5=0.故选:A.【点评】本题考查直线与圆相交的性质,考查学生的计算能力,比较基础.4.将960人随机编号为1,2,…,960,用系统抽样法从中抽取32人作调查,若分组后在第一组采用简单随机抽样的方法抽到的号码为9,则应在编号落入的人中抽取的人数为()A.15 B.10 C.9 D.7【考点】系统抽样方法.【分析】根据系统抽样的定义先确定每组人数为960÷32=30人,即抽到号码的公差d=30,然后根据等差数列的公式即可得到结论.【解答】解:根据系统抽样的定义先确定每组人数为960÷32=30人,即抽到号码的公差d=30, ∵第一组采用简单随机抽样的方法抽到的号码为9, ∴等差数列的首项为9,则抽到号码数为a n =9+30(n ﹣1)=30n ﹣29, 由450≤30n ﹣29≤750, 得16≤n ≤25,即编号落入区间的人数为10人. 故选:B .【点评】本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.5.与双曲线2x 2﹣y 2=3有相同渐近线,且过点P (1,2)的双曲线的方程为( )A .2x 2﹣=1 B .﹣x 2=1 C .x 2﹣=1 D .﹣=1【考点】双曲线的简单性质.【分析】依题意,设所求的双曲线的方程2x 2﹣y 2=3λ,将点P (1,2)的坐标代入,求得λ即可.【解答】解:依题意,设所求的双曲线的方程2x 2﹣y 2=3λ,将点P (1,2)的坐标代入可得2﹣4=3λ.解得λ=﹣,∴2x 2﹣y 2=﹣2,即﹣x 2=1,故选:B【点评】本题考查双曲线的简单性质,考查待定系数法的应用,属于中档题.6.已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .【考点】直线的一般式方程与直线的平行关系. 【分析】直接利用两条直线平行的充要条件,求解即可.【解答】解:因为两条直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8,l 1与l 2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.7.若点P为椭圆C: +=1上的动点,G点满足=2(O是坐标原点),则G的轨迹方程为()A. +=1 B. +y2=1C. +3y2=1 D.x2+=1【考点】椭圆的简单性质.【分析】设P(x0,y0),G(x,y),则=(x﹣x0,y﹣y0),=(﹣x,﹣y),由=2,即可求得,代入椭圆C: +=1,即可求得G的轨迹方程.【解答】解:设P(x0,y0),G(x,y),由=(x﹣x0,y﹣y0),=(﹣x,﹣y),由=2,即,整理得:,由P在椭圆C: +=1,则,故选C.【点评】本题考查椭圆的标准方程,考查向量与圆锥曲线的应用,考查轨迹方程的求法,属于基础题.8.在平面内,一只蚂蚁从点A(﹣2,﹣3)出发,爬到y轴后又爬到圆(x+3)2+(y﹣2)2=2上,则它爬到的最短路程是()A.5B.4C. D.﹣【考点】点与圆的位置关系.【分析】由已知求出圆心坐标和半径,它爬到的最短路程是过原点到圆心的连线的距离减去半径时,由两点间的距离公式计算即可得答案.【解答】解:由圆(x+3)2+(y﹣2)2=2,得圆心坐标(﹣3,2),半径为,它爬到的最短路程是过原点到圆心的连线的距离减去半径时,最短距离为|AC|﹣r==,故选:D.【点评】本题考查点与圆的位置关系,考查两点间的距离公式的应用,是基础题.9.设点P(x,y)在椭圆4x2+y2=4上,则x+y的最大值为()A.3 B.﹣3 C.4 D.【考点】椭圆的简单性质.【分析】将椭圆方程转化成标准方程,利用椭圆的参数方程,根据正弦函数的性质即可求得x+y的最大值.【解答】解:由椭圆4x2+y2=4,得,可设椭圆参数方程为,∴x+y=2sinθ+cosθ=sin(θ+φ),(tanφ=).由正弦函数的性质可知:x+y的最大值为,故选:D.【点评】本题考查椭圆的简单几何性质,考查了椭圆参数方程的应用,考查三角函数的最值的求法,是中档题.10.已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪C.(﹣∞,﹣2]∪【考点】直线的斜率.【分析】利用斜率计算公式、斜率与倾斜角的关系及其单调性即可得出.【解答】解:直线l:x+my+m=0经过定点P(0,﹣1),k PA ==﹣2,k PB ==﹣.∵直线l :x+my+m=0与线段AB (含端点)相交,∴k ≤﹣2,或k ≥﹣.故选:C .【点评】本题考查了斜率计算公式、斜率与倾斜角的关系及其单调性,考查了推理能力与计算能力,属于中档题.11.过双曲线C :﹣=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B ,若∠AOB=120°(O 是坐标原点),则双曲线C 的离心率为( )A .2B .3C .D .【考点】双曲线的简单性质.【分析】根据题意可先求得∠AOF 利用OF 和OA ,在直角三角形中求得的值,进而可求得双曲线的离心率【解答】解:如图,由题知OA ⊥AF ,OB ⊥BF 且∠AOB=120°, ∴∠AOF=60°,又OA=a , OF=c ,∴==cos60°=,∴e==2,故选:A【点评】本题主要考查了双曲线的简单性质.解题的过程中采用了数形结合的思想,使问题的解决更直观.12.已知椭圆C: +y2=1的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点,则线段GH的长度的最小值是()A.5 B.6 C.7 D.8【考点】椭圆的简单性质.【分析】由题意可知设直线AP的方程为y=k(x+2),代入椭圆方程由韦达定理定理求得P点坐标,即可求得直线PB的斜率为﹣.将直线PB的方程与y=3联立,即可H点坐标,求得|GH|,利用基本不等式的性质即可求得线段GH的长度的最小值.【解答】解:椭圆C: +y2=1的左顶点为A(﹣2,0),右顶点为B(2,0),直线AP的斜率k显然存在,且k>0,故可设直线AP的方程为y=k(x+2),设P(x1,y1),从而 G(﹣2,3),由,整理得(1+4k2)x2+16k2x+16k2﹣4=0.由韦达定理可知:(﹣2)x1=.则x1=,从而y1=.即P(,),又B(2,0),则直线PB的斜率为﹣.由,得,∴H(﹣12k+2,3).故|GH|=|﹣2+12k﹣2|=|+12k﹣4|.又k>0, +12k≥2=12.当且仅当=12k,即k=时等号成立.∴当k=时,线段GH的长度取最小值8.故选:D.【点评】本题考查直线与椭圆的位置关系,考查韦达定理的应用,基本不等式的性质,考查计算能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.某程序框图如图所示,该程序运行后,输出的x值是15 .【考点】循环结构.【分析】由图知,每次进入循环体后,x的值被施加的运算是乘以2加上1,故由此运算规律进行计算,经过4次运算后输出的结果.【解答】解:由图知运算规则是对x=2x+1,故第一次进入循环体后x=2×1+1=3,n=2第二次进入循环体后x=2×3+1=7,n=3第三次进入循环体后x=2×7+1=15,n=4,不满足循环条件,退出循环故答案为:15.【点评】本题主要考查了循环结构,根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.14.若直线l经过坐标原点,且定点A(1,0),B(0,1)到l的距离相等,则直线l的方程为y=±x .【考点】点到直线的距离公式.【分析】直线斜率存在,可设直线l的方程为:y=kx,再利用点到直线的距离公式即可得出.【解答】解:直线斜率存在,可设直线l的方程为:y=kx,∵定点A(1,0),B(0,1)到l的距离相等,∴=,解得k=±1.∴直线l的方程为:y=±x.故答案为:y=±x.【点评】本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.15.若某市6所中学参加中学生合唱比赛的得分用茎叶图表示如图,其中茎为十位数,叶为个位数,则这组数据的方差是.【考点】茎叶图;极差、方差与标准差.【分析】根据题意,由茎叶图分析出所给的数据,根据数据先计算出数据的平均数,进而由方差公式计算可得答案.【解答】解:根据题意,由茎叶图可得所给的数据为:87、91、93、92、90、93,其平均数==91,则其方差s2==,故答案为:.【点评】本题考查茎叶图的应用,涉及数据方差的计算,关键是由茎叶图读出数据.16.椭圆+=1的左焦点为F1,对定点M(6,4),若P为椭圆上一点,则|PF1|+|PM|的最大值为15 .【考点】椭圆的简单性质.【分析】由椭圆+=1可得:a2=25,b2=16,c=3.由|PM|+|PF1|=2a+|PM|﹣|PF2|≤2a+|MF2|,当且仅当三点M、F2、P共线时取等号.【解答】解:由椭圆+=1焦点在x轴上,可得:a2=25,b2=16.∴a=5,b=4,c=3.∴F2(3,0),|MF2|=5.∴|PM|+|PF1|=2a+|PM|﹣|PF2|≤2×5+|MF2|=15,当且仅当三点M、F2、P共线时取等号.故答案为:15.【点评】本题考查了椭圆的定义标准方程及其性质、最大值问题的转化为三角形的三边关系,属于中档题三、解答题(共6小题,满分70分)17.(10分)(2018秋•雅安期末)我市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是,样本数据分组为(Ⅰ)求直方图中x的值(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若全市共有企业1300个,试估计全市有多少企业可以申请政策优惠.【考点】频率分布直方图.【分析】(Ⅰ)根据频率和为1,列出方程求出x的值;(Ⅱ)计算缴税收不少于60万元的企业对应的频率与频数即可.【解答】解:(Ⅰ)根据频率和为1,得;20×(x+0.185+0.0185+0.018+0.018)=1,解得x=0.0125;(Ⅱ)可申请政策优惠企业的频率为20×0.018=0.12,且1300×0.12=156,故全市1300个企业中,估计有156个企业可申请政策优惠.【点评】本题考查了频率分布直方图的应用问题,是基础题目.18.(12分)(2018秋•雅安期末)已知直线l经过直线3x+4y﹣2=0与直线x﹣y+4=0的交点P,且垂直于直线x﹣2y﹣1=0(Ⅰ)求直线l的方程(Ⅱ)直线l与曲线y2+2x=0交于A,B两点,求|AB|【考点】待定系数法求直线方程.【分析】(Ⅰ)求出P的坐标,利用直线l垂直于直线x﹣2y﹣1=0求直线l的方程(Ⅱ)直线l与曲线y2+2x=0交于A,B两点,求出A,B的坐标,即可求|AB|.【解答】解:(Ⅰ)直线l经过直线3x+4y﹣2=0与直线x﹣y+4=0的交点P,可得P(﹣2,2),∵直线l垂直于直线x﹣2y﹣1=0,∴k l=﹣2,∴直线l的方程为2x+y+2=0;(Ⅱ)直线l与曲线y2+2x=0联立,可得y2﹣y﹣2=0,∴y=﹣1或2,∴A(﹣,﹣1),B(﹣2,2)∴|AB|==.【点评】本题考查直线方程,考查直线与直线,直线与抛物线的位置关系,考查学生的计算能力,属于中档题.19.(12分)(2018秋•雅安期末)调查某高中1000名学生的肥胖情况,得如表:已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15(Ⅰ)求x的值(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取100名,问应在肥胖学生中抽多少名?(Ⅲ)已知y≥194,z≥193,求肥胖学生中男生不少于女生的概率.【考点】列举法计算基本事件数及事件发生的概率;简单随机抽样.【分析】(Ⅰ)由题意可知,由此能求出x的值.(Ⅱ)由题意知肥胖学生人数为y+z=400人,设应在肥胖学生中抽取m人,按比例列方程,能求出应在肥胖学生中抽多少名.(Ⅲ)由题意知y+z=400,y≥194,z≥193,利用列举法能求出肥胖学生中男生不少于女生的概率.【解答】解:(Ⅰ)由题意可知,解得x=150(人).(Ⅱ)由题意知肥胖学生人数为y+z=400(人),设应在肥胖学生中抽取m人,则,解得m=40(人).∴应在肥胖学生中抽40名.(Ⅲ)由题意知y+z=400,y≥194,z≥193,满足条件的(y,z)有:(194,218),(195,218),(196,218),(197,218),(198,218),(199,201),(200,200),(201,199),(218,198),(218,197),(218,196),(218,195),(218,194),(218,193),共有14组,设事件A表示“肥胖学生中男生不少于女生”,即y≤z,y≤z包含听基本事件有:(194,218),(195,218),(196,218),(197,218),(198,218),(199,201),(200,200),共有7组,∴肥胖学生中男生不少于女生的概率P(A)=.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.20.(12分)(2018秋•雅安期末)已知圆C关于y轴对称,经过抛物线y2=4x的焦点,且被直线y=x分成两段弧长之比为1:2(Ⅰ)求圆C的方程(Ⅱ)若圆C的圆心在x轴下方,过点P(﹣1,2)作直线l与圆C相切,求直线l的方程.【考点】抛物线的简单性质.【分析】(Ⅰ)根据题意设出圆的标准方程,圆c关于y轴对称,经过抛物线y2=4x的焦点,被直线y=x分成两段弧长之比为1:2,写出a,r的方程组,解方程组得到圆心和半径;(Ⅱ)圆C的方程为x2+(y+1)2=2.设直线l方程为y﹣2=k(x+1),利用过点P(﹣1,2)作直线l与圆C相切,建立方程,即可求直线l的方程.【解答】解:(Ⅰ)设圆C的方程为x2+(y﹣a)2=r2∵抛物线y2=4x的焦点F(1,0)∴1+a2=r2 ①又直线y=x分圆的两段弧长之比为1:2,可知圆心到直线y=x的距离等于半径的;∴②解①、②得a=±1,r2=2∴所求圆的方程为x2+(y±1)2=2;(Ⅱ)圆C的方程为x2+(y+1)2=2.设直线l方程为y﹣2=k(x+1),即kx﹣y+k+2=0,则=,∴k=﹣1或7,∴直线l的方程为x+y﹣1=0或7x﹣y+9=0.【点评】本题考查求圆的标准方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.21.(12分)(2018秋•雅安期末)平面内动点P(x,y)与两定点A(﹣2,0),b(2,0)连线的斜率之积等于﹣,若点P的轨迹为曲线E,过点Q(﹣1,0)作斜率不为零的直线CD交曲线E于点C,D(1)求曲线E的方程;(2)求证:AC⊥AD.【考点】轨迹方程;直线与圆锥曲线的关系.【分析】(1)设动点P坐标为(x,y),当x≠±2时,由条件得:=﹣,化简得曲线E的方程;(2)设CD方程与椭圆联立,利用数量积为0,证明AC⊥AD.【解答】(1)解:设动点P坐标为(x,y),当x≠±2时,由条件得:=﹣,化简得+=1,故曲线E的方程为: +=1(x≠±2).(2)证明:CD斜率不为0,所以可设CD方程为my=x+1,与椭圆联立得:(m2+3)y2﹣2my﹣3=0,设C(x1,y1),D(x2,y2),所以y1+y2=,y1y2=﹣.(x1+2,y1)•(x2+2,y2)=(m2+1)y1y2+m(y1+y2)+1=(m2+1)(﹣)+m•+1=0,所以AC⊥AD.【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,属于中档题.22.(12分)(2018•临沂二模)已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点.(I)求椭圆C的方程;(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.(i)若直线AB的斜率为,求四边形APBQ面积的最大值;(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(I)设椭圆C的方程为+=1(a>b>0),由条件利用椭圆的性质求得b和a的值,可得椭圆C的方程.(Ⅱ)(i)设AB的方程为y=x+t,代入椭圆C的方程化简,由△>0,求得t的范围,再利用利用韦达定理可得 x1+x2以及x1+x2的值.再求得P、Q的坐标,根据四边形APBQ的面积S=S△APQ+S△BPQ=•PQ•|x1﹣x2|,计算求得结果.(ii)当∠APQ=∠BPQ时,PA、PB的斜率之和等于零,PA的方程为y﹣1=k(x﹣2),把它代入椭圆C的方程化简求得x2+2=.再把直线PB的方程椭圆C的方程化简求得x2+2 的值,可得 x1+x2以及x1﹣x2的值,从而求得AB的斜率K的值.【解答】解:设椭圆C的方程为+=1(a>b>0),由题意可得它的一个顶点恰好是抛物线x2=4y的焦点(0,),∴b=.再根据离心率===,求得a=2,∴椭圆C的方程为+=1.(Ⅱ)(i)设A( x1,y1),B( x2,y2),AB的方程为y=x+t,代入椭圆C的方程化简可得 x2+2tx+2t2﹣4=0,由△=4t2﹣4(2t2﹣4)>0,求得﹣2<t<2.利用韦达定理可得 x1+x2=﹣2t,x1 •x2=2t2﹣4.在+=1中,令x=2求得P(2,1),Q(2,﹣1),∴四边形APBQ的面积S=S△APQ+S△BPQ=•PQ•|x1﹣x2|=×2×|x1﹣x2|=|x1﹣x2|===,故当t=0时,四边形APBQ的面积S取得最大值为4.(ii)当∠APQ=∠BPQ时,PA、PB的斜率之和等于零,设PA的斜率为k,则 PB的斜率为﹣k,PA的方程为y﹣1=k(x﹣2),把它代入椭圆C的方程化简可得(1+4k2)x2+8k(1﹣2k)x+4(1﹣2k)2﹣8=0,∴x1+2=.同理可得直线PB的方程为y﹣1=﹣k(x﹣2),x2+2=,∴x1+x2=,x1﹣x2=,∴AB的斜率K=====【点评】本题主要考查求圆锥曲线的标准方程,圆锥曲线的定义、性质的应用,直线和圆锥曲线相交的性质,直线的斜率公式、韦达定理的应用,属于难题.。
雅安市外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析

雅安市外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假2. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <03. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内4. 对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( )A .(﹣∞,﹣2)B . D .上是减函数,那么b+c ( )A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣5. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C .D .7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.8. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]9. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==10.函数的定义域是( )A .(﹣∞,2)B .[2,+∞)C .(﹣∞,2]D .(2,+∞)11.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .24012.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣2二、填空题13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .14.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.15.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .16.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.17.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.18.已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为.三、解答题19.已知点F(0,1),直线l1:y=﹣1,直线l1⊥l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H.设点H的轨迹为曲线r.(Ⅰ)求曲线r的方程;(Ⅱ)过点P作曲线r的两条切线,切点分别为C,D,(ⅰ)求证:直线CD过定点;(ⅱ)若P(1,﹣1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由.阿啊阿20.已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4.(Ⅰ)椭圆C的标准方程.(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.21.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.22.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)16 14 12 8每小时生产有缺陷的零件数y(件)11 9 8 5(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=,=﹣x.23.已知a>b>0,求证:.24.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.雅安市外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵命题“p∧q”为假,且“¬q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题.2.【答案】B【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a>1,a0﹣b﹣1<0,即a>1,b>0,故选:B3.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.4.【答案】B【解析】解:由f(x)在上是减函数,知f′(x)=3x2+2bx+c≤0,x∈,则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.5. 【答案】A【解析】解:由“a >b ,c >0”能推出“ac >bc ”,是充分条件,由“ac >bc ”推不出“a >b ,c >0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac >bc ,但是a <b ,c <0, 故选:A .【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题6. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
雅安市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
雅安市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π2. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π3. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β4. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .35. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)6. 正方体的内切球与外接球的半径之比为( )A .B .C .D .7. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .8. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .5 9. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行10.已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A . B . C . D .11.已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)12.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 13.sin 15°sin 5°-2sin 80°的值为( )A .1B .-1C .2D .-214.已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]15.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到 D .向左右平移个单位得到二、填空题16.不等式()2110ax a x +++≥恒成立,则实数的值是__________.17.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.18.的展开式中的系数为 (用数字作答).19.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .三、解答题20.已知函数f (x )的定义域为{x|x ≠k π,k ∈Z},且对定义域内的任意x ,y 都有f (x ﹣y )=成立,且f (1)=1,当0<x <2时,f (x )>0. (1)证明:函数f (x )是奇函数;(2)试求f (2),f (3)的值,并求出函数f (x )在[2,3]上的最值.21.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角 的正弦值; (2)证明:B 1F ∥平面A 1BE .22.已知函数f (x )=x|x ﹣m|,x ∈R .且f (4)=0 (1)求实数m 的值.(2)作出函数f (x )的图象,并根据图象写出f (x )的单调区间 (3)若方程f (x )=k 有三个实数解,求实数k 的取值范围.A 1B 1C 1DD 1 C BA E F23.(本小题满分12分)∆的内角,,ABCa b c,(sin,5sin5sin)A B C所对的边分别为,,=+,m B A C(5sin6sin,sin sin)=--垂直.n B C C A(1)求sin A的值;∆的面积S的最大值.(2)若a=ABC24.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.25.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A 到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.雅安市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C.【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.2.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.3.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.4.【答案】A【解析】试题分析:()()()()2224(22)2225ai iai a a ii i i+-+++-==++-,对应点在第四象限,故40220aa+>⎧⎨-<⎩,A选项正确.考点:复数运算.5.【答案】【解析】选C.f(x)的定义域为x∈R,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(e x -e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.6. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C7. 【答案】C【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m 可以取:0,1,2. 故答案为:C 8. 【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]9. 【答案】D【解析】解:当α内有无穷多条直线与β平行时,a 与β可能平行,也可能相交,故不选A .当直线a ∥α,a ∥β时,a 与β可能平行,也可能相交,故不选 B .当直线a ⊂α,直线b ⊂β,且a ∥β 时,直线a 和直线 b 可能平行,也可能是异面直线,故不选 C .当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行, 故选 D .【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.10.【答案】C【解析】解:设g (x )=xe x ,y=mx ﹣m , 由题设原不等式有唯一整数解, 即g (x )=xe x 在直线y=mx ﹣m 下方, g ′(x )=(x+1)e x ,g (x )在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g (x )min =g (﹣1)=﹣,y=mx ﹣m 恒过定点P (1,0), 结合函数图象得K PA ≤m <K PB ,即≤m <,,故选:C .【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.11.【答案】A【解析】解:∵f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,∴f (x )<0的解集为(﹣b ,﹣a 2),g (x )<0的解集为(﹣,﹣),则不等式f (x )g (x )>0等价为或,即a 2<x <或﹣<x <﹣a 2,故不等式的解集为(﹣,﹣a 2)∪(a 2,),故选:A . 【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f (x )<0和g (x )<0的解集是解决本题的关键.12.【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.13.【答案】【解析】解析:选A.sin 15°sin 5°-2 sin 80°=sin (10°+5°)sin 5°-2cos 10°=sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5°sin 5°=sin 10°cos 5°-cos 10°sin 5°sin5 °=sin (10°-5°)sin 5°=1,选A.14.【答案】B【解析】解:设x 1∈{x|f (x )=0}={x|f (f (x ))=0}, ∴f (x 1)=f (f (x 1))=0, ∴f (0)=0, 即f (0)=m=0, 故m=0;故f (x )=x 2+nx ,f (f (x ))=(x 2+nx )(x 2+nx+n )=0,当n=0时,成立;当n ≠0时,0,﹣n 不是x 2+nx+n=0的根, 故△=n 2﹣4n <0,故0<n <4;综上所述,0≤n+m <4; 故选B .【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.15.【答案】C【解析】解:y=sin2x+cos2x=sin (2x+),y=sin2x ﹣cos2x=sin (2x ﹣)=sin[2(x ﹣)+)],∴由函数y=sin2x ﹣cos2x 的图象向左平移个单位得到y=sin (2x+),故选:C .【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.二、填空题16.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题. 17.【答案】 ②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误; 对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),可以认为是圆(x ﹣1)2+(y ﹣2)2=1的切线系,故②正确;对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,如圆C :(x ﹣1)2+(y ﹣2)2=100,故③正确;对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.18.【答案】20【解析】【知识点】二项式定理与性质 【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:19.【答案】 6 .【解析】解:∵ =(2x ﹣y ,m ),=(﹣1,1).若∥, ∴2x ﹣y+m=0, 即y=2x+m ,作出不等式组对应的平面区域如图: 平移直线y=2x+m ,由图象可知当直线y=2x+m 经过点C 时,y=2x+m 的截距最大,此时z 最大.由,解得,代入2x ﹣y+m=0得m=6.即m 的最大值为6. 故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.三、解答题20.【答案】【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.又f(x﹣y)=,所以f(﹣x)=f[(1﹣x)﹣1]======,故函数f(x)奇函数.(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,∵f(x﹣2)==,∴f(x﹣4)=,则函数的周期是4.先证明f (x )在[2,3]上单调递减,先证明当2<x <3时,f (x )<0, 设2<x <3,则0<x ﹣2<1,则f (x ﹣2)=,即f (x )=﹣<0,设2≤x 1≤x 2≤3,则f (x 1)<0,f (x 2)<0,f (x 2﹣x 1)>0,则f (x 1)﹣f (x 2)=,∴f (x 1)>f (x 2),即函数f (x )在[2,3]上为减函数,则函数f (x )在[2,3]上的最大值为f (2)=0,最小值为f (3)=﹣1.【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.21.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,a BG 25=,a GE BG BE 2322=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=θsin 32=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =21C 1D ,B 1H ∥C 1D ,而EF =21C 1D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1BE 且EH ⊆平面A 1BE ,∴B 1F ∥平面A 1BE . ……12分 22.【答案】【解析】解:(1)∵f (4)=0, ∴4|4﹣m|=0 ∴m=4,(2)f (x )=x|x ﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减. (3)方程f (x )=k 的解的个数等价于函数y=f (x )与函数y=k 的图象交点的个数, 由图可知k ∈(0,4).23.【答案】(1)45;(2)4. 【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直, ∴2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,考点:向量的数量积,正弦定理,余弦定理,基本不等式.111]24.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.25.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.。
雅安市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
雅安市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()2. 函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .3. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.65 4. 设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 5. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>06. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.7. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )A .B .C .D .8. 若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )A .0B .1C .﹣1D .29. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-10.如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③11.已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .20152212.给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错二、填空题13.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .14.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)17.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .18.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题19.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,). (1)求a 的值;(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a (x ≥0)的值域.20.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.21.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x=+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.22.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.23.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.24.定义在R 上的增函数y=f (x )对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ),则 (1)求f (0); (2)证明:f (x )为奇函数;(3)若f (k •3x )+f (3x ﹣9x﹣2)<0对任意x ∈R 恒成立,求实数k 的取值范围.雅安市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.2.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.3.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.4.【答案】D【解析】考点:函数导数与不等式.1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.5. 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x ∈R ,x 2﹣2x+3>0的否定是:∀x ∈R ,x 2﹣2x+3≤0.故选:C .6. 【答案】15 【解析】7. 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C 63=20种,其中恰有两个球同色C 31C 41=12种,故恰有两个球同色的概率为P==,故选:B . 【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.8. 【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.9. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 10.【答案】 A【解析】解:如图所示,连接AC 、BD 相交于点O ,连接EM ,EN . 在①中:由异面直线的定义可知:EP 与BD 是异面直线,不可能EP ∥BD ,因此不正确; 在②中:由正四棱锥S ﹣ABCD ,可得SO ⊥底面ABCD ,AC ⊥BD , ∴SO ⊥AC .∵SO ∩BD=O ,∴AC ⊥平面SBD , ∵E ,M ,N 分别是BC ,CD ,SC 的中点, ∴EM ∥BD ,MN ∥SD ,而EM ∩MN=M ,∴平面EMN ∥平面SBD ,∴AC ⊥平面EMN ,∴AC ⊥EP .故正确. 在③中:由①同理可得:EM ⊥平面SAC ,若EP ⊥平面SAC ,则EP ∥EM ,与EP ∩EM=E 相矛盾, 因此当P 与M 不重合时,EP 与平面SAC 不垂直.即不正确. 在④中:由②可知平面EMN ∥平面SBD , ∴EP ∥平面SBD ,因此正确.故选:A .【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.11.【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 12.【答案】C【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确. 故选C .【点评】考查特称命题,全称命题,和逆否命题的概念.二、填空题13.【答案】.【解析】解:∵抛物线C 方程为y 2=4x ,可得它的焦点为F (1,0), ∴设直线l 方程为y=k (x ﹣1),由,消去x得.设A (x 1,y 1),B (x 2,y 2), 可得y 1+y 2=,y 1y 2=﹣4①. ∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22=﹣4, 消去y 2得k 2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.14.【答案】 ±(7﹣i ) . 【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.又ω===,|ω|=,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i).故答案为±(7﹣i).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.15.【答案】.【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.16.【答案】①④【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);①f(x)在R递增,符合题意;②f(x)在R递减,不合题意;③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;④f(x)在R递增,符合题意;故答案为:①④.17.【答案】300.【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.18.【答案】7【解析】三、解答题19.【答案】【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),∴a2=,∴a=(2)∵f (x )=()x在R 上单调递减, 又2<b 2+2, ∴f (2)≥f (b 2+2), (3)∵x ≥0,x 2﹣2x ≥﹣1,∴≤()﹣1=3∴0<f (x )≤(0,3]20.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l 的方程; (2)当弦AB 被点P 平分时,求出直线的斜率,即可写出直线l 的方程;【解答】解:(1)已知圆C :(x ﹣1)2+y 2=9的圆心为C (1,0),因为直线l 过点P ,C ,所以直线l 的斜率为2,所以直线l 的方程为y=2(x ﹣1),即2x ﹣y ﹣2=0. (2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为,即x+2y ﹣6=0.21.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,.【解析】试题分析:(1)由1a =⇒()22111'x f x x x x -=-+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和单调区间;(2)求导并令()'0f x =⇒1x a =,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a=<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]①若1e a≤,则()'0f x ≤对(0]x e ∈,成立,所以()f x 在区间(0]e ,上单调递减, 则()f x 在区间(0]e ,上的最小值为()11ln 0f e a e a e e=+=+>,显然,()f x 在区间(0]e ,的最小值小于0不成立. ②若10e <<,即1a >时,则有所以()f x 在区间(0]e ,上的最小值为ln f a a a a ⎛⎫=+ ⎪⎝⎭,由()11ln 1ln 0f a a a a a a ⎛⎫=+=-< ⎪⎝⎭,得1ln 0a -<,解得a e >,即()a e ∈+∞,,综上,由①②可知,()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,符合题意.……………………………………12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用. 22.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭所以()max 2F x =,所以a ≥2 ……………………………………10分 (3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x x x x=--+==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分 3241-e)(1+e+2e )(=0e m e -<() ,8424812(21))0e e e m e e -++-=>(4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 23.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-.(4分)24.【答案】【解析】解:(1)在f(x+y)=f(x)+f(y)中,令x=y=0可得,f(0)=f(0)+f(0),则f(0)=0,(2)令y=﹣x,得f(x﹣x)=f(x)+f(﹣x),又f(0)=0,则有0=f(x)+f(﹣x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),即有k•3x<﹣3x+9x+2,得,又有,即有最小值2﹣1,所以要使f(k•3x)+f(3x﹣9x﹣2)<0恒成立,只要使即可,故k的取值范围是(﹣∞,2﹣1).。
四川省雅安市高二上学期期末检测数学理试题扫描含答案
雅安市2019—2020学年上期期末检测高中二年级数学试题(理科)答案一、选择1、A2、B 3 、C 4、D 5、D 6、B 7、C 8、D 9、B 10、A 11、C 12、D二、填空题13、5 14、81 15、61 16. x 26y ±= 三、解答题17. 解: (1)BC 边所在直线的方程为:y ﹣1=2-2-1-3(x ﹣2), 化为:x+2y ﹣4=0. ------------------------------------------5分 (2) k k BCAD 1-==2.∴BC 边的高线AD 的方程为:)3(2+=x y ,即 62+=x y ---------------------------------------------------10分18.(1)解:圆的半径为54322=+=OC 从而圆C 的方程为 253-y )4(22=+-)(x ---------------------------6分(2) 设方程为043=+-c y x ,ΘC(4,3),534-434322=++⨯⨯c ∴25=c ,25±=c ,方程为02543=±-y x ----------------------------12分19.(1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数. 2508.02= ---------------------------2分 分数在[80,90)之间的频数为25-2-7-10-2=4, 频率为254=0.16, ------------------------------------------------------4分 所以频率分布直方图中[80,90)间的矩形的高为100.16=0.016. ---------------6分 (2)设“至少有1人分数在[90,100]之间”为事件A ,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6), 共15个.------------------------------------------------------8分其中,至少有1人分数在[90,100]之间的基本事件有9个, -------------10分 根据古典概型概率的计算公式,得53159)(==A P .-----------------------12分20. (1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:,ABM ∆ABP ABN ∆∆,,AMP AMN ∆∆,,,,BMN ANP ∆∆MNP BNP BMP ∆∆∆,,, 其中是直角三角形的只有ABP ABN ∆∆,,ABM ∆3个,所以组成直角三角形的概率为 103=P --------------------------------6分 (2)连接MP ,取线段MP 的中点D ,则MP OD ⊥,22=OD当S 点在MP 上时,2882221=⨯⨯=∆S ABS所以只有当S 点落在阴影部分时,△SAB 面积才能大于28, 而842122144S 22-=⨯-⨯⨯=-=∆ππS S OMP MOP 扇形阴影所以由几何概型的概率公式得△SAB 的面积大于28的概率为 P=ππππ22884-=- ---------------------------------------------------12分21.(1)因为双曲线的渐近线方程为0=±ay bx ,则点F 2到渐近线距离为b c a b =+±220b (其中c 是双曲线的半焦距),所以由题意知b a 2c =+又因为c b a 222=+, 解得,a 34b =故所求双曲线的渐近线方程是034=±y x ----------------------5分 (2)因为6021︒=∠F F P 定理得由余弦F F F F F P F P P P 21cos 2212212260=-+ο 即 c F F F P F P P P 22122421=-+ -------------------------------7分 又由双曲线的定义得,a P P F F221=- 平方得, a F F F P F P P P 221224221=-+ --------------------------9分 相减得.b a c F F P P 22221444=-= 根据三角形的面积公式得3483443sin .21222160====︒b b F F P P S得482=b 再由上小题结论得2716922==b a , 故所求双曲线方程是1482722=-y x ----------------------------------12分22..(1)由题意知c abb a =+-2243,即.)4)(()4(3222222222b a b a b ac b a +-=+= 化简得b a 222=,所以22=e ----------------------------------------------4分 (2)因为F PQ 2∆的周长为24,所以4a =24,得a =2,由(1)知12=b ,所以椭圆C 的方程为1222=+y x , 且焦点为),(,01)0,1(21F F -, ---------------------------------------6分 ①若直线l 斜率不存在,方程为x=-1,解方程组⎪⎩⎪⎨⎧=+-=12122y x x 可得或 )22,1(),22,1(---Q P )22,2(2-=P F ,)22,2(2--=Q F 故 27.22=Q P F F ------------------8分② 若直线l 斜率存在,设l 方程为)1(+=x k y 由⎪⎩⎪⎨⎧=++=12)1(22y x x k y 解得0224)122222=-+++k k x k x (设),(),,(2211y x y x Q P ,则1242221+-=+k k x x ,12222221x +-=k k x , Q P F F 22.=y y x x y x y x 21212211)1)(1(),1).(,1+--=--( =1))(1()1(2212212+++-++k x x k x x k=1)124)(1(1222)12222222+++--++-+k k kk k k k (=121722+-kk =)1229-272+k (由02>k 可得)27,1(.22-∈Q P F F . 综上所述,]27,1(.22-∈Q P F F 所以Q P F F 22.最大值是27. ----12分。
雅安市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
雅安市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条2. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )3. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a4. 函数f (x )=lnx ﹣的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,)D .(e ,+∞)5. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .6. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .7. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x8. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .49. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .10.已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >811.函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .12.执行如图所示的程序框图,则输出结果S=( )A .15B .25C .50D .100二、填空题13.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.14.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆外接圆的标准方程为_________.15.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数;④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 . 16.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________17.设函数f (x )=若f[f (a )],则a 的取值范围是 .18.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 三、解答题19.已知椭圆的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.(I )求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于,求直线OP (O 是坐标原点)的斜率的取值范围.20.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);Ⅱ10n(单位:元),求X的分布列及数学期望.21.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)22.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.23.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++24.已知函数f (x )=ax 3+bx 2﹣3x 在x=±1处取得极值.求函数f (x )的解析式.雅安市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.2.【答案】B【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},∴∁U M={0,1},∴N∩(∁U M)={0,1},故选:B.【点评】本题主要考查集合的子交并补运算,属于基础题.3.【答案】C【解析】解:∵a=ln2<lne即,b=5=,c=xdx=,∴a,b,c的大小关系为:b<c<a.故选:C.【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.4.【答案】B【解析】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.又∵f(2)﹣ln2﹣1<0,f(3)=ln3﹣>0∴f(2)•f(3)<0,∴函数f(x)=lnx﹣的零点所在的大致区间是(2,3).故选:B.5.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.6.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.7.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p :∃x >0,lnx <x ”,则¬p 为∀x >0,lnx ≥x .故选:B .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.8. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 9. 【答案】D【解析】解:∵函数f (x )=(x ﹣3)e x, ∴f ′(x )=e x +(x ﹣3)e x =(x ﹣2)e x,令f ′(x )>0,即(x ﹣2)e x>0,∴x ﹣2>0, 解得x >2, ∴函数f (x )的单调递增区间是(2,+∞).故选:D .【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.10.【答案】C 【解析】解:由f ′(x )=3x 2﹣3=3(x+1)(x ﹣1)=0得到x 1=1,x 2=﹣1(舍去)∵函数的定义域为[0,2] ∴函数在(0,1)上f ′(x )<0,(1,2)上f ′(x )>0, ∴函数f (x )在区间(0,1)单调递减,在区间(1,2)单调递增,则f (x )min =f (1)=m ﹣2,f (x )max =f (2)=m+2,f (0)=m由题意知,f (1)=m ﹣2>0 ①; f (1)+f (1)>f (2),即﹣4+2m >2+m ②由①②得到m >6为所求.故选C 【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值11.【答案】D【解析】解:∵f (x )=y=2x 2﹣e |x|,∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|,故函数为偶函数,当x=±2时,y=8﹣e 2∈(0,1),故排除A ,B ; 当x ∈[0,2]时,f (x )=y=2x 2﹣e x, ∴f ′(x )=4x ﹣e x=0有解,故函数y=2x 2﹣e |x|在[0,2]不是单调的,故排除C ,故选:D12.【答案】C【解析】解:根据程序框图,S=(﹣1+3)+(﹣5+7)+…+(﹣97+99)=50,输出的S 为50. 故选:C .【点评】本题主要考查了循环结构的程序框图,模拟执行程序框图,正确得到程序框图的功能是解题的关键,属于基础题.二、填空题13.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.14.【答案】()2212x y -+=或()2212x y ++=【解析】试题分析:由题意知()0,1F ,设2001,4P x x ⎛⎫⎪⎝⎭,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2212x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()2212x y ++=.1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质.15.【答案】 3个 .【解析】解:∵定义在(﹣∞,+∞)上的偶函数f (x ),∴f (x )=f (﹣x );∵f (x+1)=﹣f (x ),∴f (x+1)=﹣f (x ),∴f (x+2)=﹣f (x+1)=f (x ),f (﹣x+1)=﹣f (x ) 即f (x+2)=f (x ),f (﹣x+1)=f (x+1),周期为2,对称轴为x=1 所以①②⑤正确, 故答案为:3个16.【答案】【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:17.【答案】 或a=1 .【解析】解:当时,.∵,由,解得:,所以;当,f (a )=2(1﹣a ),∵0≤2(1﹣a )≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a )]=4a ﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.18.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫'< ⎪⎝⎭来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭.1三、解答题19.【答案】【解析】解:(I )∵椭圆的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.∴点在椭圆G 上,又离心率为,∴,解得∴椭圆G的方程为.(II)由(I)可知,椭圆G的方程为.∴点F的坐标为(﹣1,0).设点P的坐标为(x0,y0)(x0≠﹣1,x0≠0),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.20.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X21.【答案】【解析】(1)解:不等式f(x)+f(x+1)≤2,即|x﹣1|+|x﹣2|≤2.|x﹣1|+|x﹣2|表示数轴上的点x到1、2对应点的距离之和,而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,∴不等式的解集为[0.5,2.5].(2)证明:∵a<0,f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2﹣ax|≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a﹣2),∴f(ax)﹣af(x)≥f(2a)成立.22.【答案】【解析】解:(1)当a=1时,Q={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2}则P∩Q={1}(2)∵a≤a+1,∴Q={x|(x﹣a)(x﹣a﹣1)≤0}={x|a≤x≤a+1}∵x∈P是x∈Q的充分条件,∴P⊆Q∴,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型.23.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.X的分布列为:()51515190123E X=⨯+⨯+⨯+⨯= (12)282856568分24.【答案】【解析】解:(1)f'(x)=3ax2+2bx﹣3,依题意,f'(1)=f'(﹣1)=0,即,解得a=1,b=0.∴f(x)=x3﹣3x.【点评】本题考查了导数和函数极值的问题,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 四川省雅安市2018-2019学年高二上学期期末考试数学(理)试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.直线1l :2230x y +-=和2l :30x ay ++=垂直,则实数(a = ) A .1- B .1 C .1-或1 D .3 2.若命题p :0x R ∃∈,20010x x ++<,则p ¬为( ) A .x R ∀∈,210x x ++< B .x R ∀∈,210x x ++> C .x R ∀∈,210x x ++≥ D .x R ∃∈,210x x ++≥ 3.ABC ∆中,若(2,4,3)A ,(4,1,9)B ,(10,1,6)C -,则该三角形的形状是:( )A .锐角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 4.“ ”是“ ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.执行如图所示的程序框图,输出的s 值为………外…………○订…………○…………线…………○……内※※答※※题※※ ………内…………○订…………○…………线…………○…… A .12 B .56C .76 D .7126.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A .22(2)(2)1x y ++-=B .22(2)(2)1x y -++=C .22(2)(2)1x y +++=D .22(2)(2)1x y -+-=7.如图,将矩形ABCD 沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上,则BC 与1A D 所成角是( )A .30°B .45︒C .60︒D .90︒8.某校高三年级共有学生900人,编号为1,2,3,⋯,900,现用系统抽样的方法抽间[]479,719的人数为( ) A .10 B .11 C .12 D .13 9.三棱锥P ABC -中,AC BC ⊥,PA ⊥平面ABC ,2AC BC ==,4PA =,则PC 和平面PAB 所成角的正切值为( ) A .1 B .13 C .10 D 10.已知直线60l x +=:与圆2212x y +=相交于A 、B 两点,则AOB ∠大小为( ) A .30 B .45 C .60 D .150 11.已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( ) A B C .3 D .3 12.已知圆221(2)4C x y -+=:,()222(25cos )(5sin )1C x y R θθθ--+-=∈:,过圆2C 上一点P 作圆1C 的两条切线,切点分别是E 、F ,则PE PF ⋅的最小值是( ) A .6 B .5 C .4 D .3 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 13.若直线1l :30ax y -+=和2l :()210x a y +--=平行,则实数a =______. 14.若直线y x b =+在x 轴上的截距在[]3,3-范围内,则该直线在y 轴上的截距大于1的概率是______. 15.已知命题p :x R ∀∈,210ax ax ++>为真命题,则实数a 的取值范围是__________. 16.正三角形ABC 边长为其所在平面上有点P 、Q 满足:1AP =,PQ QC =,则2BQ 的最大值为__________.………○…………………○…………订…※※请※※不※在※※装※※订※※线※※内※※………○…………………○…………订…三、解答题17.已知三角形的三个顶点()2,0A-,()4,4B-,()0,2C,()1求AC边所在直线方程;()2求线段BC的中垂线所在直线方程.18.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.()1根据频率分布直方图,估计这50名同学的数学平均成绩;()2用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在[)105,115中的概率.19.如图所示,四棱锥P ABCD-中,,PD DC PD AD⊥⊥,底面ABCD中,AB DC,AB AD⊥,又6CD=,3AB AD PD===,E为PC中点.(1)求证:BE平面PAD;(2)求异面直线PA与CB所成角.20.对某城市居民家庭年收入x(万元)和年“享受资料消费”y(万元)进行统计分析,得数据如表所示.………订………___________考号:______………订………(1)请根据表中提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+$$$. (2)若某家庭年收入为18万元,预测该家庭年“享受资料消费”为多少? (参考公式:1221n i i i n i i x y nx y b x nx ==-=-∑∑,a y bx =-$$)21.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,ABCD 是平行四边形,45BCD ∠=︒,平面ABCD ⊥平面CDEF ,FB FC =. (1)求证:BF CD ⊥; (2)若22AB EF ==,BC =BF 与平面ABCD 所成角为45︒,求该五面体的体积. 22.已知圆O :222x y +=,直线l :2y kx =-. ()1若直线l 与圆O 交于不同的两点A 、B ,当AOB ∠为锐角时,求k 的取值范围; ()2若12k =,P 是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,则直线CD 是否过定点?若是,求出定点,并说明理由. ()3若EF 、GH 为圆O 的两条相互垂直的弦,垂足为1,2M ⎛ ⎝⎭,求四边形EGFH 的面积的最大值.参考答案1.A【解析】【分析】本题可以根据直线1l 与直线2l 的解析式以及两直线垂直的相关性质列出算式,然后通过计算得出结果。
【详解】由2120a ⨯+⨯=,解得1a =-,故选A 。
【点睛】本题考查两直线之间的位置关系,主要考查两直线垂直的相关性质,有直线1110A x B y C ++=和直线2220A x B y C ++=垂直,则有12120A A B B +=,考查计算能力,是简单题。
2.C【解析】【分析】本题首先可以判断出命题是特称命题,然后根据特称命题的否定是全称命题,分别对量词和结论进行否定即可得出结果。
【详解】命题是特称命题,则命题的否定是:x R ∀∈,210x x ++≥,故选C 。
【点睛】本题考查命题的否定,主要考查了全称命题与特称命题的否定的应用,特称命题的否定是全称命题,需要对量词和结论进行否定,是简单题。
3.D【解析】【分析】利用空间向量模的公式求出三角形三边的长,从而可得结果.【详解】因为()2,4,3A ,()4,1,9B ,()10,1,6C -,所以,7AB ==,AC ==7BC ==, 所以222AB BC AC +=,且AB BC =,ABC ∆是等腰直角三角形,故选D.【点睛】本题主要考查空间向量的线性运算以及空间向量模的公式的应用,意在考查灵活运用所学知识解答问题的能力,属于中档题.4.A【解析】【分析】先得出,由子集关系可得解。
【详解】 ⇒ ,但由 包含了 ,得 是 充分不必要条件。
故选A【点睛】在判断充分不必要条件,必要不充分条件,充分必要条件时转化为集合的关系。
等价于 是 的子集。
5.B【解析】分析:初始化数值1,1k s ==,执行循环结构,判断条件是否成立,详解:初始化数值1,1k s ==循环结果执行如下:第一次:1111(1),2,2322s k k =+-⋅===≥不成立; 第二次:2115(1),3,33236s k k =+-⋅===≥成立, 循环结束,输出56s =,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.6.B【解析】试题分析:在圆2C 上任取一点(),x y ,则此点关于直线10x y --=的对称点()1,1y x +-在圆()()221:111C x y ++-=上,所以有()()2211111y x +++--=,即()()22221x y -++=,所以答案为()()22221x y -++=,故选B. 考点:曲线关于直线的对称曲线方程的求法.7.D【解析】【分析】 由线面垂直的性质可得1A O ⊥BC ,由矩形的性质可得BC ⊥CD ,由此可得BC ⊥平面1 A CD ,从而可得BC ⊥1 A D ,进而可得结果.【详解】因为1A 在平面BCD 上的射影O 恰好在CD 上,所以1A O ⊥平面BCD ,因为BC 在平面BCD 内,所以1A O ⊥BC ,又因为BC ⊥CD ,1A O 与CD 在平面1 A CD 内相交, 所以,BC ⊥平面1A CD ,1 A D 在平面1 A CD 内, 所以BC ⊥1A D ,BC 、1 A D 成的角为90︒,故选D. 【点睛】本题主要考查异面直线所成的角,以及线面垂直的判定与性质,属于中档题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.8.C【解析】【分析】本题首先可以通过总量以及样本数量计算出样本组距,然后根据区间[]479719,的间距以及系统抽样的性质即可得出结果。
【详解】900人中抽取样本容量为45的样本,样本组距为:9004520÷=; 则编号落在区间[]479719,的人数为()71947912012-+÷=, 故选C 。
【点睛】本题考查的是系统抽样的相关性质,牢记系统抽样的定义与性质并正确求出样本间距是解决本题的关键,考查计算能力,是简单题。
9.B【解析】【分析】在平面ABC 内过C 作CD AB ⊥,垂足为D ,连接PD ,可证明CD ⊥平面PAB ,CPD ∠即是PC 和平面PAB 所成的角,利用等腰三角形的性质与勾股定理求出CD ,PD 的值,从而可得结果.【详解】在平面ABC 内过C 作CD AB ⊥,垂足为D ,连接PD ,因为2AC BC ==,所以D 是AB 的中点,且CD =,PD ==PA ⊥平面,ABC PA CD ∴⊥,,CD AB CD ⊥∴⊥平面PAB ,CPD ∴∠即是PC 和平面PAB 所成的角,1tan 3CD CPD PD ∴∠===,PC 和平面PAB 所成角的正切值是13,故选B.【点睛】本题主要考查直线与平面所成的角,属于与中档题. 求线面角的方法:1、根据图形正确作出线面角是解决问题的关键,但这要求学生必须具有较强的空间想象能力,同时还应写出必要的作、证、算过程;2、对于特殊的几何体,如长方体、正方体等当比较容易建立空间直角坐标系时,也可采用向量法求解. 10.C 【解析】 【分析】本题首先可以通过圆的方程得出圆心O 的坐标以及半径,然后利用点到直线距离公式求出圆心到直线AB 的距离,接下来通过圆心到直线AB 的距离以及圆的半径就可以求出线段AB 的长,最后得出AOB 的形状以及AOB ∠大小。