vc中_bmp文件结构及存取

合集下载

BMP位图文件的存储格式

BMP位图文件的存储格式

BMP位图文件的存储格式
朱彦军
【期刊名称】《电脑编程技巧与维护》
【年(卷),期】2003(000)011
【摘要】本文简单介绍了位图文件的两种存储格式,并且在VC++6.0下实现了读取位图文件中的数据,用SetPixel()函数在窗口中重现图像,最后在程序中实现了一种存储格式到另一种存储格式的转换.
【总页数】3页(P77-79)
【作者】朱彦军
【作者单位】无
【正文语种】中文
【中图分类】TP31
【相关文献】
1.基于VC++的BMP位图文件“打开与显示” [J], 杨薇;夏春梅
2.BMP格式位图文件的分析及显示算法 [J], 宋叶未;叶建芳
3.原始图像数据向BMP位图文件的转换 [J], 刘惠敏
4.用Vc++6.0实现位图文件格式的存储 [J], 张青
5.BMP位图文件存储初探 [J], 赵柳青
因版权原因,仅展示原文概要,查看原文内容请购买。

用c语言读取并显示bmp图像1

用c语言读取并显示bmp图像1

如何在WIN-TC中或TC++3.0中把一张BMP格式的图片显示出来?下面的是<<C & C++编程实例>>随书光盘上的代码,我在TC2.0下编译通过.它是利用了抖动技术显示了8bit和24bit的位图(也就是256色和16M色位图),应该能满足你的需要.不过,我想问下,你老师教过抖动显示吗?#include <stdio.h>#include <dos.h>#include <stdio.h>#include <conio.h>#define NoError 0#define ErrorFileOpen 1#define ErrorFileType 2#define ErrorImageColor 3typedef struct tagBITMAPFILEHEADER{unsigned int bfType;unsigned long bfSize;unsigned int bfReserved1;unsigned int bfReserved2;unsigned long bfoffBits;}BITMAPFILEHEADER;typedef struct tagBITMAPINFOHEADER{unsigned long biSize;unsigned long biWidth;unsigned long biHeight;unsigned int biPlanes;unsigned int biBitCount;unsigned long biCompression;unsigned long biSizeImage;unsigned long biXPelsPerMeter;unsigned long biYPelsPerMeter;unsigned long biClrUsed;unsigned long biClrImportant;} BITMAPINFOHEADER;typedef struct tagRGBQUAD{unsigned char rgbBlue;unsigned char rgbGreen;unsigned char rgbRed;unsigned char rgbReserved;} RGBQUAD;unsigned char PalReg[17]= { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}; unsigned char StandardPal[48]= {0, 0, 0, 32, 0, 0, 0,32, 0, 32,32, 0, 0, 0,32, 32, 0,32, 0,32,32, 32,32, 32, 48, 48,48, 63, 0, 0, 0,63, 0, 63,63, 0, 0, 0,63, 63, 0,63, 0,63,63, 63,63,63, };unsigned char LightnessMatrix [16][16]= {{ 0,235,59,219,15,231,55,215,2,232,56,217,12,229,52,213},{128,64,187,123,143,79,183,119,130,66,184,120,140,76,180,116},{33,192,16,251,47,207,31,247,34,194,18,248,44,204,28,244},{161,97,144,80,175,111,159,95,162,98,146,82,172,108,156,92},{8,225,48,208,5,239,63,223,10,226,50,210,6,236,60,220},{136,72,176,112,133,69,191,127,138,74,178,114,134,70,188,124},{41,200,24,240,36,197,20,255,42,202,26,242,38,198,22,252},{169,105,152,88,164,100,148,84,170,106,154,90,166,102,150,86},{3,233,57,216,13,228,53,212,1,234,58,218,14,230,54,214},{131,67,185,121,141,77,181,117,129,65,186,122,142,78,182,118},{35,195,19,249,45,205,29,245,32,193,17,250,46,206,30,246},{163,99,147,83,173,109,157,93,160,96,145,81,174,110,158,94},{11,227,51,211,7,237,61,221,9,224,49,209,4,238,62,222},{139,75,179,115,135,71,189,125,137,73,177,113,132,68,190,126},{43,203,27,243,39,199,23,253,40,201,25,241,37,196,21,254},{171,107,155,91,167,103,151,87,168,104,153,89,165,101,149,85},};unsigned char ColorTable[2][2][2]= {{{0,12},{10,14}},{{9,13},{11,15}}}; unsigned char ColorMap[256][3];int ShowBmp(char *FileName);int GetColor(unsigned char R,unsigned char G, unsigned char B,int X,int Y); void SetVideoMode(unsigned char Mode);void SetPalReg(unsigned char *palReg);void SetDacReg(unsigned char *DacReg, int Color, int Count);void PutPixel(int X, int Y, unsigned char Color);/* 主函数*/void main (int argc, char *argv[]){if(argc!=2){printf("Usage:\tSHOW Filename.BMP\n");exit(1);}ShowBmp(argv[1]);}/* 根据图像文件名,读取图像内容并利用抖动技术进行显示*/ int ShowBmp(char *FileName){FILE *Fp;BITMAPFILEHEADER FileHead;BITMAPINFOHEADER InfoHead;RGBQUAD RGB;int N, W,Y,X,C,Color;unsigned char Buffer[4096];Fp=fopen(FileName,"rb");if (Fp==NULL)return(ErrorFileOpen);fread(&FileHead,sizeof(BITMAPFILEHEADER),1,Fp);if(FileHead.bfType!='BM'){fclose(Fp);return(ErrorFileType);}fread(&InfoHead,sizeof(BITMAPINFOHEADER),1,Fp);if(InfoHead.biBitCount!=8 && InfoHead.biBitCount!=24){fclose(Fp);return(ErrorImageColor);}/* 设置显示模式和显示区域*/SetVideoMode(0x12);SetPalReg(PalReg);SetDacReg(StandardPal,0,16);/* 对两种不同色彩数的图像分别进行处理*/if(InfoHead.biBitCount==8) /* 256色*/{for (N=0;N<256;N++){fread(&RGB, sizeof(RGBQUAD),1,Fp);ColorMap[N][0]=RGB.rgbRed;ColorMap[N][1]=RGB.rgbGreen;ColorMap[N][2]=RGB.rgbBlue;}W=(InfoHead.biWidth+3)/4*4;for(Y=InfoHead.biHeight-1;Y>=480;Y--)fread(Buffer,sizeof(unsigned char),W,Fp);for(;Y>0;Y--){fread(Buffer,sizeof(unsigned char),W,Fp);for (X=0;X<InfoHead.biWidth && X<640;X++){C=Buffer[X];Color=GetColor(ColorMap[C][0],ColorMap[C][1],ColorMap[C][2],X,Y); PutPixel (X,Y,Color);}}}else /* 24bits真彩色*/{W=(InfoHead.biWidth*3+3)/4*4;for(Y=InfoHead.biHeight-1;Y>639;Y--)fread(Buffer,sizeof(unsigned char),W,Fp);for(;Y>=0;Y--){fread(Buffer,sizeof(unsigned char),W,Fp);for(X=0;X<InfoHead.biWidth && X<640;X++){C=X*3;Color=GetColor(Buffer[C+2],Buffer[C+1],Buffer[C],X,Y);PutPixel(X,Y,Color);}}}getch();fclose(Fp);SetVideoMode(0x03);return(NoError);}int GetColor(unsigned char R, unsigned char G, unsigned char B, int X, int Y) {unsigned int L=LightnessMatrix[Y & 0x0F][X & 0x0F];return(ColorTable[(unsigned int)R*256/255>L][(unsigned int)G*256/255>L][(unsigned int)B*256/255>L]); }void SetVideoMode(unsigned char Mode){_AH=0x00;_AL=Mode;geninterrupt(0x10);}void SetPalReg(unsigned char *PalReg){_ES=FP_SEG((unsigned char far*)PalReg);_DX=FP_OFF((unsigned char far*)PalReg);_AX=0x1002;geninterrupt(0x10);}void SetDacReg(unsigned char *DacReg,int Color,int Count){_ES=FP_SEG((unsigned char far*)DacReg);_DX=FP_OFF((unsigned char far*)DacReg);_AX=0x1012;_BX=Color;_CX=Count;geninterrupt(0x10);}/* 在对应位置显示像素色彩*/void PutPixel(int X, int Y, unsigned char Color){_AH=0x0C;_AL=Color;_CX=X;_DX=Y;geninterrupt(0x10);}16色位图的显示文:吴进/Luckylai对于象大家常用TC的16色图形模式编程的初学者,如果能在程序里使用图片那就会方便很多了,以前在TC256上看见吴进写的《TC的16色BMP闪电显示(66k) 》的代码,发现写的的确不错,而且绝对能在TC的initgraph()初始化的BGI模式下使用。

图像文件格式BMP文件格式详解

图像文件格式BMP文件格式详解

5.2 BMP文件格式BMP文件格式是Microsoft Windows下最常见的图像文件格式之一,它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。

BMP文件的图像深度可选lbit、4bit、8bit及24bit。

BMP文件存储数据时,图像的像素值在文件中的存放顺序为从左到右,从下到上,也就是说,在BMP文件中首先存放的是图像的最后一行像素,最后才存储图像的第一行像素,但对与同一行的像素,则是按照先左边后右边的的顺序存储的;另外一个需要关注的细节是:文件存储图像的每一行像素值时,如果存储该行像素值所占的字节数为4的倍数,则正常存储,否则,需要在后端补0,凑足4的倍数。

由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows 环境中运行的图形图像软件都支持BMP图像格式。

5.2.1典型的BMP图像文件由四部分组成:1、位图头文件数据结构主要包含文件的大小、文件类型、图像数据偏离文件头的长度等信息;2、位图信息数据结构包含图象的尺寸信息、图像用几个比特数值来表示一个像素、图像是否压缩、图像所用的颜色数等信息;3、调色板包含图像所用到的颜色表,显示图像时需用到这个颜色表来生成调色板,但如果图像为真彩色,既图像的每个像素用24个比特来表示,文件中就没有这一块信息,也就不需要操作调色板。

4、位图数据记录了位图的每一个像素值或该对应像素的颜色表的索引值,图像记录顺序是在扫描行内是从左到右, 扫描行之间是从下到上。

这种格式我们又称为Bottom_Up位图,当然与之相对的还有Up_Down形式的位图,它的记录顺序是从上到下的,对于这种形式的位图,也不存在压缩形式。

5.2.2 BMP文件结构位图文件(bitmap file, BMP)格式是Windows采用的图像文件存储格式,在Windows 环境下运行的所有图像处理软件都支持这种格式。

bmp文件格式详解

bmp文件格式详解

BMP文件格式,又称为Bitmap(位图)或是DIB(Device-Independent Device,设备无关位图),是Windows系统中广泛使用的图像文件格式。

由于它可以不作任何变换地保存图像像素域的数据,因此成为我们取得RAW数据的重要来源。

Windows的图形用户界面(graphical user interfaces)也在它的内建图像子系统GDI中对BMP格式提供了支持。

下面以Notepad++为分析工具,结合Windows的位图数据结构对BMP文件格式进行一个深度的剖析。

BMP文件的数据按照从文件头开始的先后顺序分为四个部分:bmp文件头(bmp file header):提供文件的格式、大小等信息位图信息头(bitmap information):提供图像数据的尺寸、位平面数、压缩方式、颜色索引等信息调色板(color palette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色的映射表位图数据(bitmap data):就是图像数据啦^_^下面结合Windows结构体的定义,通过一个表来分析这四个部分。

我们一般见到的图像以24位图像为主,即R、G、B三种颜色各用8个bit来表示,这样的图像我们称为真彩色,这种情况下是不需要调色板的,也就是所位图信息头后面紧跟的就是位图数据了。

因此,我们常常见到有这样一种说法:位图文件从文件头开始偏移54个字节就是位图数据了,这其实说的是24或32位图的情况。

这也就解释了我们按照这种程序写出来的程序为什么对某些位图文件没用了。

下面针对一幅特定的图像进行分析,来看看在位图文件中这四个数据段的排布以及组成。

我们使用的图像显示如下:这是一幅16位的位图文件,因此它是含有调色板的。

在拉出图像数据进行分析之前,我们首先进行几个约定:1. 在BMP文件中,如果一个数据需要用几个字节来表示的话,那么该数据的存放字节顺序为“低地址村存放低位数据,高地址存放高位数据”。

Bmp图像存储格式

Bmp图像存储格式

摘要:本文简单介绍了位图文件的两种存储格式,并且在VC++6.0下实现了读取位图文件中的数据,用SetPixel()函数在窗口中重现图像,最后在程序中实现了一种存储格式到另一种存储格式的转换。

关键字:BMP、灰度位图、24位真彩色位图、存储格式一、前言BMP(Bitmap的缩写)图像是指文件名后缀为BMP的位图图像。

位图图像在计算机中使用很广泛,例如在windows中,记事本、写字板中的文字就是用位图图像表示出来的。

许多以其它格式存储的图像,就是在位图图像的基础上,进行优化处理后得到的,例如JPEG图像等。

在数字图像处理中,许多算法就是针对24位真彩色位图或灰度位图设计的。

因此,很有必要介绍一下位图文件的这两种存储格式。

二、24位真彩色图像存储格式把下图的24位真彩色图像格式在16位编辑器(例如VC编辑器)中打开,可以看到图像的二进制数据。

24位真彩色的二进制数据为:这是24位真彩色位图文件数据一部分。

这一部分数据包括位图文件头、位图信息头和位图阵列三部分。

(一)位图文件头位图文件头用来记录标志文件大小的一些信息,在文件中占14个字节,存储的内容如下:字节 1 2 3 4 5 6 7 8 9 10 11 12 13 14 000000 42 4D CC B4 02 00 00 00 00 00 36 00 00 00 其中:42 4D 为位图的标志,即ASCII码为BMCC B4 02 表示位图文件的总字节数,换算成十进制为(02B4CC)H=(177356)10,即这副图像的大小为177356字节。

00 00 00 00 00 为保留字节,用来存储文件大小的数据。

36 00 00 00 00 表示位图阵列的起始位置,(36)H=(54)10即54字节开始为位图阵列。

(二) 位图信息头位图信息头记录和位图相关的一些信息,在文件中占40个字节,存储的内容如下:字节 1 2 3 4 5 6 7 8 9 10 11121314151600000 0 2800001 6 02C1C511800003 2 012B12B00004 8 0其中:28 00 00 00 表示信息头的长度,(28)H=(40)10,即位图信息头占40个字节。

BMP图像存储格式

BMP图像存储格式

维基百科的BMP定义BMP取自位图BitMaP的缩写,也称为DIB(与设备无关的位图),是微软视窗图形子系统(Graphics Device Interface)内部使用的一种位图图形格式,它是微软视窗平台上的一个简单的图形文件格式。

图像通常保存的颜色深度有2(1位)、16(4位)、256(8位)、65536(16位)和1670万(24位)种颜色(其中位是表示每点所用的数据位)。

8位图像可以是索引彩色图像外,也可以是灰阶图像。

表示透明的alpha通道也可以保存在一个类似于灰阶图像的独立文件中。

带有集成的alpha通道的32位版本已经随着Windows XP出现,它在视窗的登录和主题系统中都有使用。

文件大小计算BMP文件通常是不压缩的,所需存储空间比较大。

一个像素所占的字节数为n∕8字节,n是位深。

文件大小可以根据以下公式近似计算:BMP文件大小≈54+4*2n+(width*height*n)∕8;54是位图文件的文件头,4*2n是调色板的大小(对于没有调色板的位图文件,则不存在这一项),最后一项是像素数据。

由于存储算法决定的因素,实际文件大小和计算值可能有细微差别;因此使用的≈符号而不是等于号。

文件存储格式BMP图像自推出以后,几经演进,存储格式也有所变化。

下表详细描述了位图文件可能包含的数据。

结构体名称可选大小用途备注位图文件头否14字节存储位图文件通用信息仅在读取文件时有用DIB头否固定(存在7种不同版本)存储位图详细信息及像素格式紧接在位图文件头后附加位掩码是3或4 DWORD(12或16字节)定义像素格式仅在DIB头是BITMAPINFOHEADER时存在调色板见备注可变定义图像数据(像素数组)所用颜色色深≤ 8时不能省略填充区A是可变结构体对齐位图文件头中像素数组偏移量的产物像素数组否可变定义实际的像素数值像素数据在DIB头和附加位掩码中定义。

像素数组中每行均以4字节对齐填充区B 是可变结构体对齐DIB头中ICC色彩特性数据偏移量的产物ICC色彩特性数据是可变定义色彩特性可以包含外部文件路径,由该文件来定义色彩特性Remark:像素数组每行均以4字节对齐,这会影响我们怎么读取像素数据。

bmp原理

bmp原理BMP是一种图像文件格式,最早由Microsoft在Windows3.0中引入,是非常广泛应用的一种图像格式。

BMP的全称是Bitmap,中文名为位图,它是一种基于像素的编码方法。

1. 图像数据的存储BMP图像数据实际上就是一堆像素点的颜色信息,按照一定的编码方式存储在文件中。

对于每个像素点,BMP文件都会记录它的颜色值。

颜色值可以用RGB方式记录,也可以用索引值的方式来记录。

2. 文件格式的结构BMP文件格式是由文件头、位图信息头以及像素数组等几部分构成的,其中文件头负责文件的一些基本信息,位图信息头记录了图像的一些重要信息,像素数组则存储了图像的所有像素点的颜色值。

3. 像素点的编码对于每个像素点,BMP文件会记录它的颜色值。

颜色值可以用RGB方式记录,也可以用索引值的方式来记录。

在RGB方式下,每个像素点的颜色可以用三个字节来描述,分别代表红色(R)、绿色(G)和蓝色(B)三种颜色的亮度值,这三个字节合起来就可以表示一个颜色。

在索引值方式下,每个像素点的颜色是由调色板来管理的,像素点用一个字节表示对应调色板中的索引值。

4. 文件大小的计算BMP文件的大小受到图像分辨率、像素位数等因素的影响。

通常情况下,BMP文件的大小可以按照以下公式计算:文件大小 = 像素行大小 * 行数 + 文件头大小其中,像素行大小为每行像素的字节数,可以通过以下公式计算:像素行大小 = (像素宽度 * 像素位数 + 31) / 32 * 45. 简单使用BMP文件被广泛应用于各种场合,比如图像处理、图案制作等等。

对于初学者来说,可以通过各类图像处理软件,比如Photoshop、GIMP等来创建和编辑BMP文件。

此外,在计算机科学领域中,BMP图像也常常被用来作为图像处理算法的样例,比如常用的边缘检测算法、图像平滑算法等。

总之,BMP原理是非常基础而又重要的一门知识,对于初学者来说,了解BMP的工作原理有助于更好地理解图像处理算法。

bmp的知识点

bmp的知识点BMP的知识点BMP(Bitmap)是一种图像文件格式,它以像素为基本单位来描述图像。

下面将介绍BMP文件的结构、特点以及常见的应用。

一、BMP文件结构BMP文件由文件头、位图信息头、调色板和图像数据组成。

1. 文件头(14字节):包含文件类型(2字节)、文件大小(4字节)、保留字段(4字节)和图像数据偏移量(4字节)等信息。

2. 位图信息头:包含位图信息头大小(4字节)、图像宽度(4字节)、图像高度(4字节)、颜色平面数(2字节)、每个像素所占位数(2字节)等信息。

3. 调色板(可选):用于存储图像的颜色信息,包括调色板项数、颜色索引和颜色值等。

4. 图像数据:按行存储的像素数据,每个像素用指定的位数来表示。

二、BMP文件特点1. BMP文件格式简单,易于解析和处理,适用于各种平台和应用程序。

2. BMP文件支持多种色彩深度,如1位、4位、8位、16位、24位和32位等,可以满足不同图像质量和存储空间需求。

3. BMP文件保留了图像的原始数据,不进行压缩,因此不会损失图像的质量,但文件大小相对较大。

4. BMP文件支持灰度图像和彩色图像,灰度图像每个像素只有一个亮度值,彩色图像每个像素有红、绿、蓝三个分量的值。

三、BMP文件的应用1. 图像处理:BMP文件是常用的图像处理格式,可以通过读取、修改和保存BMP文件来实现各种图像处理操作,如图像旋转、缩放、灰度化、边缘检测等。

2. 图像显示:BMP文件可以被各种图像显示软件和设备所支持,如画图工具、图片浏览器、数码相框、打印机等。

3. 图像转换:BMP文件可以通过转换工具将其转换为其他图像格式,如JPEG、PNG、GIF等,以满足不同应用场景的需求。

4. 图像分析:BMP文件中的像素数据可以被提取和分析,用于图像处理算法的开发、图像识别和图像分析等领域。

5. 图像存储:BMP文件可以作为图像的原始存储格式,用于长期保存和备份,以保证图像质量和数据的完整性。

位图文件(BMP)格式分析以及程序实现

inf.read((char*)&header, sizeof(header));if(header.bfType != 0x4D42)return false;这个很简单,没有什么好说的。

2、加载位图信息头//Load the image information headerBITMAPINFOHEADER infoheader;memset(&infoheader, 0, sizeof(infoheader));inf.read((char*)&infoheader, sizeof(infoheader));m_iImageWidth = infoheader.biWidth;m_iImageHeight = infoheader.biHeight;m_iBitsPerPixel = infoheader.biBitCount;这里我们得到了3各重要的图形属性:宽,高,以及每个像素颜色所占用的位数。

3、行对齐由于Windows在进行行扫描的时候最小的单位为4个字节,所以当图片宽X 每个像素的字节数!= 4的整数倍时要在每行的后面补上缺少的字节,以0填充(一般来说当图像宽度为2的幂时不需要对齐)。

位图文件里的数据在写入的时候已经进行了行对齐,也就是说加载的时候不需要再做行对齐。

但是这样一来图片数据的长度就不是:宽X 高X 每个像素的字节数了,我们需要通过下面的方法计算正确的数据长度://Calculate the image data sizeint iLineByteCnt = (((m_iImageWidth*m_iBitsPerPixel) + 31) >> 5) << 2;m_iImageDataSize = iLineByteCnt * m_iImageHeight;4、加载图片数据对于24位和32位的位图文件,位图数据的偏移量为sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER),也就是说现在我们可以直接读取图像数据了。

详解用VC实现bmp位图的打开-fengqing888的日志-网易博客

详解用VC实现bmp位图的打开-fengqing888的日志-网易博客详解用VC实现bmp位图的打开技术_图片编程 2009-12-18 13:59:17 阅读262 评论0 字号:大中小我最近在学VC++数字图像处理,作为一个初学者,万里长征的第一步当然是打开一幅图像,这几天一直在看怎么实现这一功能,虽说简单,但是如果这一步不能做到,那么下面也就无法进行了,所以我总结了一下这个过程,写出来供大家参考。

也希望大家多多批评啊。

这里我就不想介绍关于位图的理论内容了,只是写一下实现的部分。

0.准备工作创建一个SDI,工程名Test,“隐藏工具栏”和“打印和打印预览”取消了,不用那么复杂,简单点就行1.创建菜单创建两个菜单:Caption: 打开 ID: ID_FILE_OPENCaption: 显示原图 ID: IDM_YUANTU2.对打开菜单进行响应右键打开菜单,建立类向导,在CTestDoc类中,进行COMMAND响应,生成OnFileOpen函数,代码如下:void CTestDoc::OnFileOpen(){// TODO: Add your command handler code hereCFileDialog fileDlg(TRUE);//创建一个CfileDialog类对象fileDlg,第一个参数TRUE为打开对话框,若为FALSE,则为另存为fileDlg.m_ofn.lpstrTitle="图片打开对话框";//设置打开对话框的标题fileDlg.m_ofn.lpstrFilter="BMP Files(*.bmp)\0*.bmp\0\0";//设置打开的文件类型if(IDOK==fileDlg.DoModal ())//这个语句有两层意义,第一是dlg.DoModal()作用是弹出CPortDlg对话框,第二层是dlg.DoModal()==IDOK是你点击了对话框上的OK按钮就是说你同时做了上述两件事时就执行if语句后面的程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2BMP文件结构及其存取数字图像在外存储器设备中的存储形式是图像文件,图像必须按照某个已知的、公认的数据存储顺序和结构进行存储,才能使不同的程序对图像文件顺利进行打开或存盘操作,实现数据共享。

图像数据在文件中的存储顺序和结构称为图像文件格式。

目前广为流传的图像文件格式有许多种,常见的格式包括BMP、GI F、JPEG、TIFF、PSD、DICOM、MPEG等。

在各种图像文件格式中,一部分是由某个软硬件厂商提出并被广泛接受和采用的格式,例如BMP、GIF和PSD格式;另一部分是由各种国际标准组织提出的格式,例如JPEG、TIFF和DICOM,其中JP EG是国际静止图像压缩标准组织提出的格式,TIFF是由部分厂商组织提出的格式,DICOM是医学图像国际标准组织提出的医学图像专用格式。

BMP文件是Windows操作系统所推荐和支持的图像文件格式,是一种将内存或显示器的图像数据不经过压缩而直接按位存盘的文件格式,所以称为位图(b itmap)文件,因其文件扩展名为BMP,故称为BMP文件格式,简称BMP文件。

本书对图像的算法编程都是针对BMP图像文件的,因此在本章中我们详细介绍B MP文件结构及其读写操作,以加深对图像数据的理解。

1.2.1 BMP文件结构如图1-7所示,BMP图像文件被分成4个部分:位图文件头(Bitmap File Header)、位图信息头(Bitmap Info Header)、颜色表(Color Map)和位图数据(即图像数据,Data Bits或Data Body)。

第1部分为位图文件头BITMAPFILEHEADER,是一个结构体类型,该结构的长度是固定的,为14个字节。

其定义如下:typedef struct tagBITMAPFILEHEADER{WORD bfType;DWORD bfSize ;WORD bfReserved1;WORD bfReserved2;DWORD bfOffBits;} BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER; BITMAPFILEHEADER 结构的各个域详细说明如下: — bfType :位图文件类型,必须是0x424D ,即字符串“BM”,也就是说,所有的“*.bmp”文件的头两个字节都是“BM”。

— bfSize :位图文件大小,包括这14个字节。

— bfReserved1, bfReserved2:Windows 保留字,暂不用。

— bfOffBits :从文件头到实际的位图数据的偏移字节数,图1-7中前3个部分的长度之和。

图1-7 BMP 文件结构示意图第2部分为位图信息头BITMAPINFOHEADER ,也是一个结构体类型的数据结构,该结构的长度也是固定的,为40个字节(WORD为无符号16位整数,DWORD 为无符号32位整数,LONG 为32位整数)。

其定义如下:typedef struct tagBITMAPINFOHEADER{DWORD biSize;LONG biWidth;LONG biHeight;WORD biPlanes;WORD biBitCountDWORD biCompression;DWORD biSizeImage;LONG biXPelsPerMeter;LONG biYPelsPerMeter;DWORD biClrUsed;DWORD biClrImportant;} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;BITMAPINFOHEADER结构的各个域的详细说明如下:—biSize:本结构的长度,为40个字节。

—biWidth:位图的宽度,以像素为单位。

—biHeight:位图的高度,以像素为单位。

—biPlanes:目标设备的级别,必须是1。

—biBitCount:每个像素所占的位数(bit),其值必须为1(黑白图像)、4(16色图)、8(256色)、24(真彩色图),新的BMP格式支持32位色。

—biCompresssion:位图压缩类型,有效的值为BI_RGB(未经压缩)、BI_RLE8、BI_RLE4、BI_BITFILEDS(均为Windows定义常量)。

这里只讨论未经压缩的情况,即biCompression=BI_RGB。

—biSizeImage:实际的位图数据占用的字节数,该值的大小在第4部分位图数据中有具体解释。

—biXPelsPerMeter:指定目标设备的水平分辨率,单位是像素/米。

—biYPelsPerMeter:指定目标设备的垂直分辨率,单位是像素/米。

—biClrUsed:位图实际用到的颜色数,如果该值为零,则用到的颜色数为2的biBitCount次幂。

—biClrImportant:位图显示过程中重要的颜色数,如果该值为零,则认为所有的颜色都是重要的。

第3部分为颜色表。

颜色表实际上是一个RGBQUAD结构的数组,数组的长度由biClrUsed指定(如果该值为零,则由biBitCount指定,即2的biBitCount次幂个元素)。

RGBQUAD结构是一个结构体类型,占4个字节,其定义如下:typedef struct tagRGBQUAD{BYTE rgbBlue;BYTE rgbGreen;BYTE rgbRed;BYTE rgbReserved;}RGBQUAD;RGBQUAD结构的各个域的详细说明如下:—rgbBlue:该颜色的蓝色分量;—rgbGreen:该颜色的绿色分量;—rgbRed:该颜色的红色分量;—rgbReserved:保留字节,暂不用。

有些位图需要颜色表;有些位图(如真彩色图)则不需要颜色表,颜色表的长度由BITMAPINFOHEADER结构中biBitCount分量决定。

对于biBitCount值为1的二值图像,每像素占1bit,图像中只有两种(如黑白)颜色,颜色表也就有21=2个表项,整个颜色表的大小为个字节;对于biBitCount值为8的灰度图像,每像素占8bit,图像中有28=256种颜色,颜色表也就有256个表项,且每个表项的R、G、B分量相等,整个颜色表的大小为个字节;而对于biBitCount=24的真彩色图像,由于每像素3个字节中分别代表了R、G、B三分量的值,此时不需要颜色表,因此真彩色图的BITMAPINFOHEADER结构后面直接就是位图数据。

第4部分是位图数据,即图像数据,其紧跟在位图文件头、位图信息头和颜色表(如果有颜色表的话)之后,记录了图像的每一个像素值。

对于有颜色表的位图,位图数据就是该像素颜色在调色板中的索引值;对于真彩色图,位图数据就是实际的R、G、B值(三个分量的存储顺序是B、G、R)。

下面分别就2色、16色、256色和真彩色位图的位图数据进行说明:—对于2色位图,用1位就可以表示该像素的颜色,所以1个字节能存储8个像素的颜色值。

—对于16色位图,用4位可以表示一个像素的颜色。

所以一个字节可以存储2个像素的颜色值。

—对于256色位图,1个字节刚好存储1个像素的颜色值。

—对于真彩色位图,3个字节才能表示1个像素的颜色值。

需要注意两点:第一,Windows规定一个扫描行所占的字节数必须是4的倍数,不足4的倍数则要对其进行扩充。

假设图像的宽为biWidth个像素、每像素biBitCount个比特,其一个扫描行所占的真实字节数的计算公式如下:DataSizePerLine = (biWidth * biBitCount /8+ 3) / 4*4那么,不压缩情况下位图数据的大小(BITMAPINFOHEADER结构中的biSizeI mage成员)计算如下:biSizeImage = DataSizePerLine * biHeight第二,一般来说,BMP文件的数据是从图像的左下角开始逐行扫描图像的,即从下到上、从左到右,将图像的像素值一一记录下来,因此图像坐标零点在图像左下角。

1.2.2 BMP图像文件的读写分析了BMP文件结构后,让我们用简单的C程序实现一个给定BMP位图文件的读写操作,来进一步巩固对图像数据的理解,这也是我们后续图像可视化编程的基础。

此部分的代码以及后面两节所讲述的代码在工程chap1-1中的bmpRead Write.cpp文件中,读者可以查阅。

1.BMP文件的读入BMP文件分为4个组成部分,那么BMP文件的读入也要按照4个组成部分依次进行处理,即先处理BITMAPFILEHEADER结构,然后是BITMAPINFOHEADER结构、颜色表,最后是位图数据。

首先,有关BITMAPFILEHEADER、BITMAPINFOHEADER、RGBQUAD等结构的定义包含在头文件“Windows.h”中,应把其包含进来。

#include "Windows.h"其次,为了后面对图像进行修改及存盘方便,我们定义了几个全局变量,用来存放读入图像的位图数据、宽、高、颜色表及每像素位数等信息。

所定义的全局变量如下:unsigned char *pBmpBuf;//读入图像数据的指针int bmpWidth;//图像的宽int bmpHeight;//图像的高RGBQUAD *pColorTable;//颜色表指针int biBitCount;//图像类型,每像素位数根据BMP文件结构,BMP文件读入操作的基本流程如图1-8所示。

图1-8 BMP文件读入操作流程图readBmp()函数实现了BMP文件的读取操作,下面的代码是对readBmp()函数的说明和实现。

/*********************************************************************** * 函数名称:* readBmp()**函数参数:* char *bmpName -文件名字及路径**返回值:* 0为失败,1为成功**说明:给定一个图像文件名及其路径,读图像的位图数据、宽、高、颜色表及每像素* 位数等数据进内存,存放在相应的全局变量中***********************************************************************/ bool readBmp(char *bmpName){//二进制读方式打开指定的图像文件FILE *fp=fopen(bmpName,"rb");if(fp==0) return 0;//跳过位图文件头结构BITMAPFILEHEADERfseek(fp, sizeof(BITMAPFILEHEADER),0);//定义位图信息头结构变量,读取位图信息头进内存,存放在变量head中BITMAPINFOHEADER head;fread(&head, sizeof(BITMAPINFOHEADER), 1,fp);//获取图像宽、高、每像素所占位数等信息bmpWidth = head.biWidth;bmpHeight = head.biHeight;biBitCount = head.biBitCount;//定义变量,计算图像每行像素所占的字节数(必须是4的倍数)int lineByte=(bmpWidth * biBitCount/8+3)/4*4;//灰度图像有颜色表,且颜色表表项为256if(biBitCount==8){//申请颜色表所需要的空间,读颜色表进内存pColorTable=new RGBQUAD[256];fread(pColorTable,sizeof(RGBQUAD),256,fp);}//申请位图数据所需要的空间,读位图数据进内存pBmpBuf=new unsigned char[lineByte * bmpHeight];fread(pBmpBuf,1,lineByte * bmpHeight,fp);//关闭文件fclose(fp);return 1;}2.BMP文件的存盘给定图像路径名以及图像的数据,对图像的写操作也是按照BMP文件4个组成部分进行分别处理的。

相关文档
最新文档