高考文科数学立体几何三视图问题分类解答
高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。
高中数学立体几何之空间几何体的三视图,含答案

空间几何体的三视图(讲义)知识点睛一、三视图主要类型分为:棱锥类、残缺类、组合类.1.棱锥类特征:俯视图多边形内部或边上有一点呈发散状,并与其他顶点相连,正、侧视图有尖顶.处理步骤:①观察俯视图,结合正、侧视图,判断顶点的位置;②确定线、面位置关系;③根据结构,找数据的对应关系;④计算.2.残缺类特征:有斜线、缺口等.处理步骤:①观察俯视图,结合正、侧视图,判断几何体的类型;②根据图形尝试切割;③根据结构,找数据的对应关系;④计算.3.组合类特征:中间有横线,曲线与直线结合等.处理步骤:①观察特征,从有曲面的图形入手,分离出几何体类型;若没有,根据分割线判断每部分几何体的类型;②确定几何体的位置关系;③根据结构,找数据的对应关系;④计算.二、球经过球面上两点和球心作截面,得到球的一个大圆,大圆上两点之间劣弧的长叫做这两点的球面距离.2.球与多面体的位置关系(1)外接球:多面体的各个顶点都在球面上;(2)内切球:多面体的各个面都与球相切.精讲精练1.某几何体的三视图如图所示,则这个几何体的体积为()2222俯视图正视图 侧视图A.4 B.203C.263D.82.某几何体的三视图如图(单位为m),则该几何体的体积为_____________.俯视图正视图 侧视图1332223.某三棱锥的三视图如图所示,则该三棱锥的表面积是()4俯视图正视图 侧视图A.28+65B.30+65C.56+ 125D.60+1254.如图,网格纸上小正方形的边长为1,粗实线画的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.B.6 C.D.45.一个棱锥的三视图如图,则该棱锥的表面积为()俯视图正视图 侧视图A.B.C.D.6.如图是一个几何体的三视图,则这个几何体的体积是()33俯视图正视图 侧视图A.26 B.27 C.572D.287.若某多面体的三视图如图所示,则此多面体的体积是()俯视图正视图 侧视图12--211112-2112--21A .12B .23C .56D .788.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为( )俯视图正视图 侧视图A .4B .C .D .89.若某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图2422A .8π3B .3πC .10π3D .6π10.某几何体的三视图如图所示,则该几何体的体积为( )俯视图正视图 侧视图4442222A .16+8πB .8+8πC .16+16πD .8+16π11.已知某几何体的三视图如图,则该几何体的体积为( )俯视图正视图 侧视图211222322A .5π42+B .3π42+C .π42+ D .4π+12.如图是某简单组合体的三视图,则该组合体的体积为( )正视图 侧视图俯视图1212121212 A.π+ B.π2)+C.D.2)+13.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于___________cm 3.俯视图正视图 侧视图335414.如图,O 是半径为1的球心,点A ,B ,C 在球面上,OA ,OB ,OC 两两垂直,E ,F 分别是大圆弧AB ,AC 的中点,则点E ,F 的球面距离是( )432415.如图,在半径为3的球面上有A ,B ,C 三点,∠ABC =90°,BA =BC ,球心O 到平面ABC 的距离是2,则B ,C 两点的球面距离是( )A .π3B .πC .4π3D .2π16.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B .73πa 2C .113πa 2D .5πa 2回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________ 【参考答案】1.A2.4 m33.B4.B5.A 6.C7.D8.D9.B10.A 11.A12.B13.5014.B15.B 16.B空间几何体的三视图(随堂测试)1.已知某几何体的三视图如图所示,则该几何体的体积为()2221 11正视图 侧视图俯视图A.233B.223C.203D.1432.已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.2π3B.4πC.2πD.4π3【参考答案】1.A 2.D空间几何体的三视图(作业)例1:已知几何体的三视图如图所示,可得这个几何体的体积为______________.123某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2正视图 侧视图俯视图443333364343⑤ 计算1433335243482S =⨯+⨯+⨯+⨯⨯⨯=左,2(464363)108S =⨯⨯+⨯+⨯=右,2248108233138 (cm )S S S S =+-=+-⨯⨯=左右重表. 故选D .例2: 如图,正四棱锥P -ABCD 的顶点都在同一球面上,若该棱锥的高PO 为4,底面边长为2,则该球的表面积为( )A .81πB .16πC1122俯视图正视图 侧视图17.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的表面积为( )A .13 B.2 C .16D.2+正视图 侧视图俯视图第1题图 第2题图18.某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为( )A .3B .2CD .119.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD的四个侧面中的最大面积是_________________.2222433俯视图正视图 侧视图第3题图 第4题图20.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为___________.11112222侧视图俯视图21.一几何体的三视图如图所示,该几何体的体积为_________.第5题图 第6题图22.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( ) AB.(4π+ CD23.一几何体的三视图如图所示,则该几何体的体积为( )A .200+9πB .200+18πC .196+15πD .140+18π俯视图正视图 侧视图21152632第7题图 第8题图24.一个几何体的三视图如图所示,则该几何体的体积为( )ABCD122俯视图正视图 侧视图5566俯视图正视图 侧视图6俯视图正视图 侧视图3111125.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13第9题图 第10题图26.某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .π82-D .π84-27.已知某几何体的三视图如图所示,则该几何体的体积是__________.俯视图正视图 侧视图第11题图 第12题图28.一个几何体的三视图如图所示,则该几何体的体积为_________.12211俯视图正视图 侧视图俯视图正视图 侧视图111121129.已知三棱柱ABC-A1B1C1的六个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.2B.C.132D.30.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.6B.6C.3D.1231.如图,已知三点A,B,C在球心为O,半径为3的球面上,且几何体OABC 为正四面体,那么A,B两点的球面距离为_________,点O到平面ABC的距离为____________.【参考答案】1.B2.D3.64.5.2454π6.D7.A8.A9.C10.B11.8π12.22 313.C14.A15.π。
高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.B.C.D.【答案】B【解析】由三视图知,原几何体是由一个长方体与一个三棱柱组成,其体积为,故选B.【考点】根据三视图还原几何体,求原几何体的体积,容易题.3.若某多面体的三视图(单位: cm)如图所示, 则此多面体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】C【解析】由三视图可得,该几何体相当于一个正方体切去一个三个侧棱长为1的三棱锥.所以该几何体的体积为.故选C.【考点】1.三视图.2.空间想象力.3.几何体的体积.4. (2014·孝感模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的表面积是( )A.16πB.14πC.12πD.8π【答案】A【解析】由三视图可知,该几何体是球挖去半球.其中两个半圆的面积为π×22=4π.个球的表面积为×4π×22=12π,所以这个几何体的表面积是12π+4π=16π.5.如图,某几何体的三视图都是等腰直角三角形,则几何体的体积是()A.8B.7C.9D.6【答案】C【解析】由三视图可知,几何体是底面为等腰直角三角形,有一侧棱与底面垂直(垂足在非直角处)的三棱锥,其底面面积为×6×3=9,三棱锥的高为3,所以三棱锥的体积=×9×3=9.6.已知某几何体的三视图(如图),正视图和侧视图均为两个相等的等边三角形,府视图为正方形,则几何体的体积为()A.B.4C.9D.9【答案】C【解析】由三视图可知,几何体由两个同底之正四棱锥组成所以其体积为V=2××32×3×=9 7.一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图中x的值为( )A.5B.4C.3D.2【答案】C【解析】三视图,由正四棱锥和圆柱组成,故选C.8.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题意,棱锥的高为,底面面积为,∴.【考点】三视图,体积.9.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.10.―个几何体的三视图如图所示(单位:),则该几何体的体积为.【答案】18+9【解析】由三视图可知,此几何体为两个相切的球上方放了一个长方体组成的组合体,所以其体积为:V=3×6×1+2××=18+911.一个空间几何体的三视图如图所示,该几何体的表面积为__________.【答案】152【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,腰长为5.棱柱的高为8.因此表面积为【考点】三视图12.某三棱锥的三视图如图所示,则这个三棱锥的体积为;表面积为.【答案】;.【解析】由三视图知几何体如下图,为一个三棱锥,且三棱锥的一个侧面与底面垂直,底面三角形的一条边长为,该边上的高为,∴几何体的体积.它的表面积为.【考点】由三视图求面积、体积.13.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_______.【答案】【解析】由题意可得该几何体是一个三棱锥,体积.【考点】1.三视图的知识.2.立几中的线面关系.3.三棱锥的体积公式.14.一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是【答案】【解析】由三视图,可知该几何体是三棱锥,并且侧棱,,,则该三棱锥的高是,底面三角形是直角三角形,所以这个几何体的体积==.【考点】由三视图求几何体的体积.15.一个几何体的三视图如图所示,则该机合体的体积为( )A.B.C.D.【答案】B【解析】分析可得该几何体是底面为菱形的四棱锥,则高底面面积,所以.故选B【考点】三视图四棱锥体积16.一个几何体的三视图如图所示,则该几何体的体积是【答案】【解析】通过三视图的观察可得,该几何体是一个四棱柱,底面是一个直角梯形,其上下底分别为2,3,梯形的高为2.四棱柱的高为2.所以几何体的体积为.【考点】1.三视图的知识.2.几何体的体积.3.空间想象力.17.某长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.4C.6D.8【答案】D【解析】割补可得其体积为2×2×2=8.18.某几何体的三视图如图所示,则该几何体的体积是________.【答案】16π-16【解析】由三视图知,该几何体是由一个底面半径为2,高为4的圆柱内挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,∴V=(π×22-22)×4=16π-16.19.已知正方体ABCD-A1B1C1D1,M为棱A1B1的中点,N为棱A1D1的中点.如图是该正方体被M,N,A所确定的平面和N,D,C1所确定的平面截去两个角后所得的几何体,则这个几何体的正视图为().【答案】B【解析】对于选项A,由于只是截去了两个角,此切割不可能使得正视图成为梯形.故A不对;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确;对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不对;对于D,正视图是正方形,符合题意,其中的两条实线符合俯视图的特征,故D不对.20.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则该棱柱的体积为()A.B.C.D.6【答案】B【解析】由三视图知该直三棱柱高为4,底面正三角形的高为3,所以正三角形边长为6,所以V=×36×4=36.故选B.【考点】1.三视图;2.柱体体积计算.21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为的扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意知道,该几何体体积是圆柱体积的,即.【考点】1、三视图;2、几何体体积.22.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A.B.C.D.【答案】B【解析】由三视图可得该几何体是一个圆台,其两底直径分别为2和4,母线长为4,所以该几何体的侧面积是,选B..【考点】三视图,圆台的侧面积.23.如图是一个组合几何体的三视图,则该几何体的体积是 .A.B.C.D.【答案】A【解析】由三视图还原可知该几何体是一个组合体,下面是一个半径为4,高为8的圆柱,,上面是一个三棱柱,故所求体积为.【考点】三视图,圆柱、三棱柱的体积公式.24.已知一个几何体的三视图如图所示,则该几何体的体积为___________【答案】【解析】该几何体为圆柱中挖去半个球而得的组合体,其体积为.【考点】三视图.25.一个几何体的三视图如图所示(单位长度:),俯视图中圆与四边形相切,且该几何体的体积为,则该几何体的高为 .【答案】【解析】由如图所示的几何体的三视图知:这个几何体是一个半径为的球和一个直四棱柱的结合体,且这个直四棱柱的底面是对角线分别为和的棱形,这个直四棱柱的高为,∴这个几何体的体积:V=,解得h=.【考点】1.三视图;2.几何体的面积和体积26.一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D【解析】通过三视图的俯视图可知,该几何体是由两个旋转体组成,故选D.【考点】1.三视图的应用.27.如图为一个几何体的三视图正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图所示,则该几何体的表面积为()A.B.C.D.【答案】D【解析】由三视图可知,这是一个由半个圆柱和一个三棱柱构成的组合体,这个组合体仍为一个柱体。
高中数学高考复习《空间几何体的三视图》经典例题解析附习题答案

3 32正视图侧视图俯视图图1空间几何体的三视图1..一个空间几何体得三视图如图所示,则该几何体的表面积为(A )48 (B)32+8(C) 48+8(D) 80【答案】 C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。
故S 表【解题指导】:三视图还原很关键,每一个数据都要标注准确。
2.设图1是某几何体的三视图,则该几何体的体积为A.1229 B.1829 C. 429 D. 1836答案:B解析:由三视图可以还原为一个底面为边长是3的正方形,高为2的长方体以及一个直径为3的球组成的简单几何体,其体积等于233)23(3431829。
故选 B评析:本小题主要考查球与长方体组成的简单几何体的三视图以及几何体的体积计算.3.如图l —3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()b5E2RGbCAPA.63 B.93 C.123 D.183【解析】 B.由题得三视图对应的直观图是如图所示的直四棱柱,.ABCD EA 平面3931232hS VABCD平行四边形。
所以选 B4.某几何体的三视图如图所示,则它的体积是(A )283(B )83(C )82(D )23【答案】A【解析】:由三视图可知该几何体为立方体与圆锥,立方体棱长为2,圆锥底面半径为1、高为2,所以体积为3212123283故选A5.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是HGFEDCBA 3123A .8B .62C .10 D .82【答案】 C6.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是____________.p1EanqFDPw答案:2323234aa ,解得解析:设正三棱柱的侧棱长和底面边长为a ,则由a=2,正三棱柱的左视图与底面一边垂直的截面大小相同,故该矩形的面积是322232.DXDiTa9E3d7.一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________ 3m 【答案】6【解析】由题意知,该几何体为一个组合体,其下面是一个长方体(长为3m,宽为2m,高为1m),上面有一个圆锥(底面半径为1,高为3),所以其体积为1321363V V 长方体圆锥.8. 下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】 A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.9.若某几何体的三视图如图所示,则这个几何体的直观图可以是第一节10.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于()A.3 B.2 C.23 D.6【命题立意】本题考查三棱柱的三视图与直观图、表面积。
【备战高考文科数学】题型全突破:热点题型一 空间几何题的三视图与体积和表面积(解析版)

热点题型一空间几何题的三视图与体积和表面积(解析版)空间几何体的三视图及体积与表面积问题是高考的必考点,常在选择题中出现。
题目难度中等,只要考生对三视图的概念清楚,并加以练习即可掌握。
常见问题归纳如下;类型一三视图的辨识类型二三视图与几何体的体积和表面积【基础知识整合】1.空间几何体的结构特征(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2) 三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正(主)侧(左)一样高,正(主)俯一样长,侧(左)俯一样宽;看不到的线画虚线.3.柱、锥、台和球的表面积和体积类型一三视图的辨识【典例1】【2013年高考新课标2文(9)】一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A B C D【答案】A【典例2】【2016高考天津文数(3)】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【变式训练】1.【2014湖北高考】在如图所示的空间直角坐标系错误!未找到引用源。
中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D【解析】设错误!未找到引用源。
,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图的面积,容易题.【思路点拨】将空间几何体的三视图与空间直角坐标系融合在一起,凸显了数学学科内知识间的内在联系,充分体现了数学学科特点和知识间的内在联系,能较好的考查学生的综合知识运用能力.其解题突破口是正确地在空间直角坐标系中画出该几何体的原始图像.2. 【2014全国1文8】如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B类型二 三视图与几何体的体积和表面积【典例1】【2016年高考新课标1文(7)】(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π【典例2】【2016年高考新课标3文(7)】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的体积.【思路点拨】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【变式训练】1. 【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)错误!未找到引用源。
高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是圆锥的四分之一,其底半径为,高为,所以其体积为,故选.【考点】1.三视图;2.几何体的体积.2.若某三棱柱截去一个三棱锥后所剩几何体的三视图如下图所示,则此几何体的体积等于()A.B.C.D.【答案】C【解析】由三视图可知,空间几体体的直观图如下图所示:所求几何体的体积故选C.【考点】1、三视图;2、空间几何体的体积.3.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为A.πB.2πC.3πD.4π【答案】C【解析】原几何体为有一条侧棱垂直于底面的四棱锥,且底面是边长为1的正方形,垂直于底面的侧棱长也为1,因此,该几何体可以补形为一个棱长为1的正方体,其外接球就是这个正方体的外接球,直径为正方体的对角线长,即2R=,故R=故外接球表面积为:4πR2=3π.【考点】三视图,几何体的外接球及其表面积4.如图所示,一个三棱锥的三视图是三个直角三角形(单位: cm),则该三棱锥的外接球的表面积为________cm2.【答案】29π【解析】从三棱锥的三视图可知,三棱锥有两侧面与底面垂直,把三棱锥补成长,宽,高分别为4,2,3的长方体,设外接球的半径为R,由42+22+32=4R2得,S=4πR2=29π(cm2).球5.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.2C.D.8【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形,正方形的边长为2.HD=3,BF =1,将相同的两个几何体放在一起,构成一个高为4的长方体,所以该几何体的体积为×2×2×4=8.6.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.7.一个几何体的三视图如图所示,已知这个几何体的体积为,= .【答案】【解析】由三视图知,原几何体是一个四棱锥,底面是面积为的矩形,高为,所以,解得.【考点】三视图,空间几何体的体积.8.如图,水平放置的正三棱柱的主视图是一边长为2的正方形,则该三棱柱的左视图的面积为.【答案】【解析】左视图为一个矩形,长宽分别为,因此面积为.【考点】三视图9.若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为() A.B.C.D.【答案】B【解析】依题意得,该正三棱柱的底面正三角形的边长为2,侧棱长为1.设该正三棱柱的外接球半径为R,易知该正三棱柱的底面正三角形的外接圆半径是2sin 60°×=,所以R2=+=,则该球的表面积为4πR2=.10.图中的网格是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为________.【答案】16【解析】从三视图可知,这是一个四棱锥,.【考点】三视图.11.如图所示,一个空间几何体的正视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的体积为 ( )A.B.C.D.【答案】B【解析】几何体是圆柱,.【考点】三视图,圆柱的体积.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为( )A.1B.C.D.【答案】B【解析】由三视图可知,此几何体为三棱锥,如图,其中正视图为,是边长为2的正三角形,,且,底面为等腰直角三角形,,所以体积为,故选B.13.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.C.D.【答案】C【解析】由题意知,正视图的最大面积为对角面的面积,最小面积为,而,故选C.【考点】三视图.14.已知某几何体的三视图如右图所示,其中俯视图是圆,且该几何体的体积为;直径为2的球的体积为.则()A.B.C.D.【答案】C【解析】由题意,该几何体是一个圆柱挖去一个圆锥得到的几何体,,,∴.选B.【考点】三视图,体积.15.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.B.C.D.【答案】B【解析】过B作BD⊥AC于点D,则BD=2,CD=2,所以BC=,因为SC⊥平面ABC,所以SC⊥BC,所以SB=,故选B.【考点】三视图、直线与平面垂直的性质.16.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱和一个三棱锥拼接而成,且半圆柱的底面是半径为的半圆,高为,其底面积为,故其体积为,三棱锥的底面是一个直角三角形,三棱锥的高也为,其底面积为,故其体积为,所以该几何体的体积为,故选A.【考点】1.三视图;2.组合体的体积17.右图为某几何体的三视图,则该几何体的体积为 .【答案】【解析】所求几何体为一个底面半径为1,高为1的圆柱与半径为1的四分之一的球的组合体,所以体积为【考点】三视图18.一个空间几何体的三视图如图所示,该几何体的体积为______.【答案】96【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,棱柱的高为8.因此所求体积为【考点】三视图19.把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右上图所示,则二面角 C-AB-D的正切值为.【答案】【解析】如图所示,做BD,AB的中点分别为点E,F.则有CE面ABD,由于EF为等腰直角三角形ABD的中位线,故EF AB,则为二面角 C-AB-D的代表角,所以,故填.【考点】二面角三视图20.已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC 的面积为()A.a2B.a2C.a2D.a2【答案】D【解析】斜二测画法中原图面积与直观图面积之比为1∶,则易知S= ( a)2,∴S=a2.21.一个空间几何体的三视图如图所示,则该几何体的体积为()A.πcm3B.3πcm3C.πcm3D.πcm3【答案】D【解析】由三视图可知,此几何体为底面半径为1cm、高为3cm的圆柱上部去掉一个半径为1cm的半球,所以其体积为V=3π-π=π(cm 3).22. 右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =AD =2EC =2.(1)请画出该几何体的三视图; (2)求四棱锥B-CEPD 的体积.【答案】(1)见解析 (2)2【解析】解:(1)该组合体的三视图如图所示.(2)∵PD ⊥平面ABCD , PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD. ∵四边形ABCD 为正方形,∴BC ⊥CD ,且BC =DC =AD =2. 又∵平面PDCE∩平面ABCD =CD , BC ⊂平面ABCD. ∴BC ⊥平面PDCE.∵PD ⊥平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥DC.又∵EC ∥PD ,PD =2,EC =1,∴四边形PDCE 为一个直角梯形,其面积: S 梯形PDCE = (PD +EC)·DC =×3×2=3, ∴四棱锥B-CEPD 的体积V B-CEPD =S 梯形PDCE ·BC =×3×2=2.23. 某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【答案】A【解析】将三视图还原成直观图为:上面是一个正四棱柱,下面是半个圆柱体.所以V=2×2×4+×22×π×4=16+8π.24.某几何体的三视图如图所示,则其体积为________.【答案】【解析】由三视图还原几何体为半个圆锥,高为2,底面半圆的半径r=1.∴体积V=×(π×12×2)=.25.如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).(1)求四棱锥P-ABCD的体积;(2)若G为BC上的动点,求证:AE⊥PG.【答案】(1)(2)见解析【解析】(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4 ,BE=2 ,AB=4.∴VP-ABCD =PA·S四边形ABCD=×4 ×4×4=.(2)∵=,∠EBA=∠BAP=90°,∴△EBA∽△BAP,∴∠BEA=∠PBA.∴∠BEA+∠BAE=∠PBA+∠BAE=90°,∴PB⊥AE又∵BC⊥平面APEB,∴BC⊥AE.∵BC∩PB=B,∴AE⊥平面PBC.∵PG⊂平面PBC,∴AE⊥PG.26.如图所示,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为________.【答案】9【解析】由题意知,此几何体是三棱锥,其高h=3,相应底面面积为S=×6×3=9,∴V=Sh=×9×3=9.27.某几何体的三视图如图所示,主视图和侧视图为全等的直角梯形,俯视图为直角三角形.则该几何体的表面积为( )A. B. C. D【答案】B【解析】此几何体直观图如图所示。
立体几何三视图问题分类

立体几何三视图问题分类一、由空间图形画三视图1、一几何体的直观图如图,下列给出的四个俯视图中正确( )解析由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.答案 B2、在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,故侧视图选D.3、如图,△ ABC为三角形,AA'//BB'//CC',CC'CC'⊥平面ABC 且3AA'=32BB'=CC' =AB,则多面体△ABC -A B C'''CC'的正视图(也称主视图)是()【答案】D4.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:答案:C二、正方体5.如图所示,E,F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________(填序号).解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.答案②③6.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A.108cm3B.100cm3C.92cm3D.84cm3【解题指南】根据几何体的三视图,还原成几何体,再求体积.【解析】选B.由三视图可知原几何体如图所示,所以111111ABCD A B C D M A D N V V V --=-1166334410032=⨯⨯-⨯⨯⨯⨯=. 第8题图7.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( ) A .32B.1C.212+D.2【解题指南】根据面积关系得出,侧视图就是正方体的一个对角面,则正视图也是一个对角面 【解析】选D ,根据条件得知正视图和侧视图一样,是正方体的一个对角面,故面积相等8、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A .6 2 B .4 2 C .6D .4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =(42)2+22=6,选C.9、一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为 ( )【解析】选A.由题意可知,该四面体为正四面体,其中一个顶点在坐标原点,另外三个顶点分别在三个坐标平面内,所以以zOx 平面为投影面,则得到的正视图可以为选项A 中的图.10、一个多面体的三视图如图所示,则该多面体的表面积为( ) A .21+ 3 B .18+ 3 C .21 D .18解析 (1)由三视图可知该几何体是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分(如图所示),其表面积为S =6×4-12×6+2×34×(2)2=21+ 3.11、一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80解析:由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱,所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817. 答案:C12、某几何体三视图如图所示,则该几何体的体积为( ) A .8-2π B .8-π C .8-π2 D .8-π4解析:直观图为棱长为2的正方体割去两个底面半径为1的14圆柱,所以该几何体的体积为23-2×π×12×2×14=8-π. 三、三棱柱13、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A .3 B .2C .23D .6【答案】D【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为324234⨯⨯=,侧面积为3216⨯⨯=,选D .14、 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是________.【解析】由俯视图知该正三棱柱的直观图为图1-6,其中M ,N 是中点,矩形MNC 1C 为左视图.由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM =3,故矩形MNC 1C 面积为2 3.15、若某空间几何体的三视图如图所示,则该几何体的体积是[B](A )2 (B )1(C )23(D )13【答案】 B解析:本题考查立体图形三视图及体积公式 如图,该立体图形为直三棱柱所以其体积为122121=⨯⨯⨯四、四棱柱16、一个几何体的三视图如图所示,则这个几何体的体积为 。
高考有方法——三视图解题超级策略

高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.留意正视图、侧视图和俯视图的视察方向,留意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先依据已知的一部分三视图,还原、推想直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形态.要熟识柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析依据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD 是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.62B.6 C.42D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,依据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.其次步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最终一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.4042+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A A 、23 B 、43 C 、83D 、24244131211侧视图俯视图正视图侧视图正视图CDBP A5325、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C )61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B ) ()A 6 ()B 9 ()C 12 ()D 18O yxz (0,1,1)(0,0,0)(1,0,1)(1,1,0)DD 1C 1B 119、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11、已知某几何体的三视图如图所示,则其体积为_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于_____________.13、某几何体的三视图如图所示,则该几何体的体积为_____________.14、某几何体的三视图如图所示,则该几何体的体积为_____________.11142122222224442PBAC338332315、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A .62B .42C .6D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+俯视图正视图r2r2rrCAP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科数学:三视图问题分类解答
例1、概念问题
1、下列几何体各自的三视图中,有且仅有两个视图相同的是.(填序号)
①正方体④正四棱锥
③三棱台
②圆锥
2、如图,折线ABC表示嵌在玻璃正方体内的一根铁丝,请把它的三视图补充完整.
俯视图
左视图
正视图
C
B
A
3 、已知某个几何体的三视图如下图所示,试根据图中所标出的尺寸(单位:㎝),可得这个几何体的体积是.
10
10
20
20
20
20
正视图左视图俯视图
4、已知某个几何体的三视图如下图所示,试根据图中所标出的尺寸(单位:㎝),可得这个几何体的面积是.
2
2
2
2
33
俯视图
正视图左视图
例2、图形判定问题
1、一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( D )
A .球
B .三棱锥
C .正方体
D .圆柱
2、某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( D )
4、某几何体的正视图如左图所示,则该几何体的俯视图不可能的是(
C )
5、在一个几何体的三视图中,正视图和俯视图如左图,则相应的侧视图可以为( D )
6、一个简单几何体的正视图、侧
视图如图所示,则其俯视图不可能为
B
①长方形;②正方形;③圆;④椭圆. 其中正确的是
(A )①② (B ) ②③ (C )③④ (D ) ①④ 例3、三视图和几何体的体积相结合的问题
1、下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1与
3的直角三角形,俯视图是半径为1的半圆,则该几何体的体积等于
A
B
C
D
第5题图
(A )π63 (B )π33 (C )π
33
4 (D )π21
答案:A
2、一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积等于 A
A .3
B .23
C .33
D .63
3、设图1是某几何体的三视图,则该几何体的体积为
A .942π+ B.36
18π+ C.9
122
π+ D.9
182
π+
其体积3439
+332=18322
V ππ=⨯⨯+()。
答案:D
4、如图是一个几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是( B )
A.43
3
π
B.63
6
π
C.12
π D.33
π
例4、三视图和几何体的表面积相结合
1、一个几何体的三视图如图所示,则该几何体的表面积为_____38___。
2、一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形. 则该几何体的表面积为( A ) A .88 B .98 C .108 D .158
3、一个空间几何体得三视图如图所示,则该几何体的表面积为( C )
(A ) 48 (B)32+817 (C) 48+817 (D) 80
【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,
下底为4,高为4,两底面积和为()1
2244242⨯+⨯=,四个侧面的面积为
()
44221724817++=+,所以几何体的表面积为48817+.故选C.
5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...
等于 ( D )
A.3
B.2
C.23
D.6
6、如图,一个空间几何体的主视图、左视图都是边长为1且一个内角为60°的菱形,俯视图是圆,那么这个几何体的表面积为 ( A )
A .π
B .π2
C .π3
D .π4 答案:A
例5、综合问题
1.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的 直观图与三视图的侧视图、俯视图,在直观图中,M 是
BD 的中点,侧视图是直角梯形,俯视图是等腰直角三
角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积。
(Ⅱ)若N 是BC 的中点,求证://AN 平面CME ; (Ⅲ)求证:平面BDE ⊥平面BCD .
解:(Ⅰ)由题意可知:四棱锥ACDE B -中, 平面ABC ⊥平面ACDE ,AC AB ⊥
所以,⊥AB 平面ACDE 又4,2====CD AE AB AC ,
则四棱锥ACDE B -的体积为:422
2
)24(3131=⨯⨯+⨯
=⋅=AB S V ACDE
4
2
2 2
侧视图
俯视图
直观图
M
D
E
B
A C
N
(Ⅱ)连接MN ,则,//,//CD AE CD MN
又CD AE MN 2
1
==,所以四边形ANME 为平行四边形,EM AN //∴⊄AN 平面CME ,⊂EM 平面
CME ,
所以,//AN 平面CME ;
(Ⅲ)AB AC = ,N 是BC 的中点,BC AN ⊥ 又平面⊥ABC 平面BCD ⊥∴AN 平面BCD 由(Ⅱ)知:EM AN // ⊥∴EM 平面BCD 又⊂EM 平面BDE
所以,平面BDE ⊥平面BCD .
2.已知四棱锥P ABCD -的三视图如右图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.E 是侧棱PC 上的动点.(Ⅰ)求证:BD AE ⊥(Ⅱ)若E 为PC 的中点,求直线BE 与平面PBD 所成角的正弦值;
(1)证明
:由已知
,PC BC PC DC PC ABCD ⊥⊥⇒⊥面
BD ABCD BD PC ⊂⇒⊥ 面,又因为BD AC ⊥
,,.BD PAC AE PAC BD AE ∴⊥⊂∴⊥ 面又面
(2)连AC 交BD 于点O ,连PO ,由(1)知BD PAC ⊥面,BED PAC ⇒⊥面面,
E EH PO H ⊥过点作于,则EH PBD ⊥面,EBH ∴∠为BE 与平面PBD 所成的角1
3
EH =
,2,BE =则1
2
3sin .62
EBH ∠==
3.已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等
腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S
解: 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面 的射影是矩形中心的四棱锥V-ABCD 。
(1) ()1
864643
V =⨯⨯⨯=
(2) 该四棱锥有两个侧面VAD. VBC 是全等的等腰三角形,
A
且BC 边上的高为
2
2
184422h ⎛⎫
=+= ⎪⎝⎭
, 另两个侧面V AB. VCD 也是全等的等腰三角形,
AB 边上的高为2
226452h ⎛⎫
=+= ⎪⎝⎭
∴112(64285)4024222S =⨯⨯+⨯⨯=+。