有理数的加法教学教案

合集下载

有理数的加法的教案5篇

有理数的加法的教案5篇

有理数的加法的教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作报告、工作计划、心得体会、合同方案、演讲稿、作文大全、教案、述职报告、调查报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work reports, work plans, reflections, contract proposals, speeches, essay summaries, lesson plans, job reports, investigation reports, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!有理数的加法的教案5篇教案能够帮助教师更好地掌握教学进度,合理安排课程内容,一份实用的教案可以帮助教师更好地组织和安排课堂教学活动,提高教学效率,本店铺今天就为您带来了有理数的加法的教案5篇,相信一定会对你有所帮助。

《有理数的加法》教案

《有理数的加法》教案

《有理数的加法》教案一、教学目标:知识与技能目标:使学生掌握有理数的加法运算方法,能够正确进行有理数的加法运算。

过程与方法目标:通过实例讲解和练习,培养学生的数学思维能力和运算能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。

二、教学重点与难点:重点:掌握有理数的加法运算方法。

难点:理解有理数加法的运算规律,能够灵活运用。

三、教学准备:教师准备:教案、PPT、黑板、粉笔。

学生准备:课本、练习本、文具。

四、教学过程:1.导入:回顾小学学过的加法运算,引导学生思考有理数加法的意义。

2.新课讲解:(1)讲解有理数的加法定义和运算方法。

(2)通过实例演示和练习,让学生理解有理数加法的运算规律。

(3)讲解有理数加法的运算步骤。

3.课堂练习:(1)让学生独立完成课本上的练习题。

(2)选取部分学生的作业进行点评和讲解。

(2)引导学生思考有理数加法的应用场景。

五、课后作业:1.完成课本上的课后练习题。

2.进行有理数加法的自我巩固练习。

3.思考有理数加法在实际生活中的应用。

教学反思:在课后对教学效果进行反思,观察学生对有理数加法的掌握程度,针对存在的问题进行调整教学方法和策略。

六、教学评估:1. 课堂问答:通过提问学生,了解他们对有理数加法的理解程度。

2. 作业批改:检查学生课后作业的完成情况,评估他们对有理数加法的掌握情况。

3. 练习测试:设计一份有理数加法的练习测试,测试学生的实际操作能力。

七、教学策略调整:1. 针对学生在课堂问答中的问题,进行针对性的讲解和辅导。

2. 根据作业批改的情况,对学生的错误进行归纳和讲解。

3. 根据练习测试的结果,针对学生的薄弱环节进行强化训练。

八、拓展与延伸:1. 引导学生思考有理数加法在实际生活中的应用,例如购物、计算温度等。

2. 介绍有理数加法的运算规则,引导学生探索有理数减法、乘法和除法的运算规律。

3. 鼓励学生参加数学竞赛或研究小组,提高他们的数学素养。

1.3.1《有理数的加法》教案

1.3.1《有理数的加法》教案
1.教学重点
(1)有理数加法法则的理解与应用:本节课的核心是使学生掌握同号相加和异号相加的法则,并能熟练运用这些法则进行计算。
-同号相加:两个正数或两个负数相加,保留原符号,直接将绝对值相加。
-异号相加:一个正数和一个负数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(2)减法转化为加法的技巧:使学生理解减法是加法的逆运算,能够将减法问题转化为加法问题进行计算。
其次,在新课讲授环节,我发现学生对有理数加法的基本概念掌握得还不错,但在案例分析中,部分学生对符号的处理仍存在困难。针对这一点,我打算在接下来的教学中,增加一些典型案例,让学生在分析案例的过程中,逐步突破难点。
此外,实践活动环节,学生分组讨论和实验操作的过程较为顺利。但在成果展示时,我发现部分学生表达不够清晰,可能是因为他们对知识点的理解还不够深入。为了提高学生的表达能力,我计划在以后的课堂中,多给学生一些展示自己的机会,并适时给予指导和鼓励。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数加法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
1.3.1《有理数的加法》教案
一、教学内容
《有理数的加法》教案,选自人教版七年级数学上册1.3.1节。本节课主要内容包括以下三个方面:
1.掌握有理数的加法法则:同号相加,保留原符号,得到结果;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,得到结果。

《有理数的加法》说课稿8篇

《有理数的加法》说课稿8篇

《有理数的加法》说课稿8篇《有理数的加法》说课稿1学习目标:1、理解有理数加法意义2、掌握有理数加法法则,会正确进行有理数加法运算3、经历探究有理数有理数加法法则过程,学会与他人交流合作学习重点:和的符号的确定学习难点:异号两数相加的法则学法指导:在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。

先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。

学习过程(一)课前学习导引:1、如果向东走5米记作+5米,那么向西走3米记作2、比较大小:2 -3,-5 - 7,43、已知a=-5,b=+ 3,则︱a ︳+︱ b︱=(二)课堂学习导引正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。

例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是(1)红队的净胜球数为 4+(-2) ,(2)蓝队的净胜球数为 1+(-1) 。

这里用到正数和负数的加法。

那么,怎样计算4+(-2),1+(-1)的结果呢?现在让我们借助数轴来讨论有理数的加法:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示①先向东走了5米,再向东走3米,结果怎样?可以表示为②先向西走了5米,再向西走了3米,结果如何?可以表示为:③先向东走了5米,再向西走了3米,结果呢?可以表示为:④先向西走了5米,再向东走了3米,结果呢?可以表示为:⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:⑥先向西走5米,再向东走5米,结果呢?可以表示为:从以上几个算式中总结有理数加法法则:(1)、同号的两数相加,取的`符号,并把相加(2)。

绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值。

互为相反数的两个数相加得。

《有理数的加法》教案

《有理数的加法》教案

《有理数的加法》教案一、教学目标:1. 让学生理解有理数的加法概念,掌握有理数加法的基本运算方法。

2. 能够正确进行有理数的加法运算,解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重点:1. 有理数加法的基本运算方法。

2. 能够正确进行有理数的加法运算。

三、教学难点:1. 有理数加法的运算规律。

2. 不同符号有理数加法的运算方法。

四、教学方法:1. 采用讲解法,讲解有理数加法的基本概念和运算方法。

2. 采用例题演示法,展示不同类型的有理数加法运算。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学内容:1. 有理数加法的概念:两个有理数相加的运算称为有理数加法。

2. 有理数加法的运算方法:(1)同号有理数相加:取相同符号,并把绝对值相加。

(2)异号有理数相加:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

3. 练习题:(1)同号有理数相加:23 + 17 = 40(2)异号有理数相加:-5 + 7 = 2(3)混合运算:34 15 + 26 = 45六、教学步骤:1. 引入新课:讲解有理数加法的概念和意义。

2. 讲解有理数加法的运算方法,并通过例题展示。

3. 让学生进行练习,巩固所学知识。

4. 总结本节课的主要内容和知识点。

七、课后作业:1. 完成练习册上的相关题目。

2. 找一些实际问题,运用有理数加法解决。

八、教学反思:通过本节课的教学,学生应该能够掌握有理数加法的基本概念和运算方法,能够正确进行有理数的加法运算。

在教学过程中,要注意引导学生理解有理数加法的运算规律,并通过练习让学生熟练掌握。

要关注学生的学习情况,及时解答学生的疑问,提高教学效果。

六、教学评价:1. 通过课堂讲解、练习和课后作业,评估学生对有理数加法的理解和掌握程度。

2. 观察学生在解决问题时的思路和方法,评估其应用能力和创新意识。

3. 收集学生反馈意见,了解教学方法的适用性和改进方向。

七、教学拓展:1. 引导学生探索有理数加法的运算规律,例如:a + (-a) = 0,a + b = b + a 等。

数学有理数的加法教案精选8篇

数学有理数的加法教案精选8篇

数学有理数的加法教案精选8篇有理数的加法教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。

2、运用有理数加法法则熟练进行整数加法运算。

(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

(3)培养学生合作意识,体验成功,树立学习自信心。

二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。

新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。

信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)=+5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。

又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。

同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。

有理数的加法的教学设计(精选11篇)

有理数的加法的教学设计(精选11篇)

有理数的加法的教学设计(精选11篇)有理数的加法的教学设计第1篇《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。

教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。

重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。

最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。

学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。

教学目标:1、理解加法的意义。

2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。

3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。

教学重点:法则的探索与应用教学难点:异号两数相加教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。

教学过程:一、复习回顾1、一个不为零的有理数可以看做是由哪两部分组成的?2、比较下列各组数绝对值哪个大?①-22与30;②-与;③-4.5和63、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。

)二、新知探究1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。

2、你还能举出类似用加法运算的实例吗?3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?4、总结归纳有理数的加法法则。

突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。

有理数的加法教案优秀15篇

有理数的加法教案优秀15篇

有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。

(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。

2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。

二、教学重点会用有理数加法法则进行运算。

三、教学难点异号两数相加的#39;法则。

四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。

小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。

记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。

记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。

记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。

记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。

我们可以借助数轴来得知两个有理数相加的结果。

请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。

1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的加法一教学教案
教学目标
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能依据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议
(一)重点、难点分析
本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。

难点是有理数的加法法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与O相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。

如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。

一个数与0相加,仍得这个数。

(二)知识结构
(三)教法建议
1.对于根底比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.有理数的加法法则是规定的,而教材开始局部的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律"a+b=b+a〃中字母a、b的任意性Q
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。

不要盲目动手,应
该先认真观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似“两数之和必大于任何一个加数〃的推断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。

用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

教学设计例如
有理数的加法(第一课时)
教学目的
1使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
7.通过有理数的加法运算,培养学生的运算能力.
教学重点与难点
重点:熟练应用有理数的加法法则进行加法运算.
难点:有理数的加法法则的理解.
教学过程
(一)复习提问
1有理数是怎么分类的?
2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3•有理数大小比较是怎么规定的?以下各组数中,哪一个较大?利用数轴说明?
一3与一2;⑶与|一3|;|-3|与0;
12与∣+ιI;-1+41⅛I-31.
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.
(三)进行新课有理数的加法(板书课题)
例1如以下列图,某人从原点O出发,如果第一次走了5米,第二次接着又走了3米,求
两次行走后某人在什么地方?
两次行走后距原点O为8米,应该用加法.
为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:
2.同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.
5+3=8
用数轴表示如图
从数轴上说明,两次行走后在原点O的东边.离开原点的距离是8米.因此两次一共向东走了8米.
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
用数轴表示如图
从数轴上说明,两次行走后在原点O的西边,离开原点的距离是8米.因此两次一共向东走了-8米.
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.
总之,同号两数相加,取相同的符号,并把绝对值相加.
例如,(-4)+(-5), ..... 同号两数相加
(-4)+(-5)=-(),…取相同的符号
4+5=9……把绝对值相加
/.(-4)+(-5)=-9.
口答练习:
(1)举例说明算式7÷9的实际意义?
32)(-20)+(-13)=
43)
5.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上说明,两次行走后,又回到了原点,两次一共向东走了0米.
5+(-5)=0
可知,互为相反数的两个数相加,和为零.
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上说明,两次行走后在原点。

的东边,离开原点的距离是2米•因此,两次一共向东走了2米.
就是5+(-3)=2.
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上说明,两次行走后在原点。

的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.
就是3+(-5)=-2.
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
例如(-8)+5……绝对值不相等的异号两数相加
8>5
(-8)+5=-()……取绝对值较大的加数符号
8-5=3……用较大的绝对值减去较小的绝对值
Λ(-8)+5=-3.
□答练习
用算式表示:温度由-4。

C上升7C,到达什么温度.
(-4)+7=3(℃)
6.一个数和零相加
(1)某人向东走5米,再向东走。

米,两次一共向东走了多少米?
显然,5+0=5.结果向东走了5米.
(2)某人向西走5米,再向东走。

米,两次一共向东走了多少米?
简单得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.
请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数.
总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.
有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加.
每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.
(四)例题分析
例1计算例3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大〃“一个较小〃)
解:
解题时,先确定和的符号,后计算和的绝对值.
(五)稳固练习
1计算(口答)
(1)4+9;(2)4+(-9);(3)-4+9; (4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
2.计算
(1)5÷(-22); (2)(-1.3)÷(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活动
题目(1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;
(2)在1,2,3, 11,12十二个数的前面添加正号或负号,使它们的和为零;
(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;
(4)在解决这个问题的过程中,你能。

相关文档
最新文档