分数混合运算知识点
分数混合运算知识点整理

分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a x b=b x a 乘法结合律:a x b x c=a x (b x c) 乘法分配律:(a+b)x c=a x c+b x c 或a x c+b x c= (a+b)x c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a* b*c=a* (b x c)或a* (b x c)= a 宁b*c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数( 0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价*原价二折扣2、一件商品打几折,求现价。
计算方法:原价x折数3、一件商品打几折,求原价。
计算方法:现价*折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“ T例如:小红看完整本书的,那么单位“ 1”是整本书的页码。
②原价就是单位“ T例如:笔记本电脑原价是300元,现在降价了,那么单位“ 1”是原价3000元③分数比率之前的“的”字前面的量是单位“ 1”例如:全校男生的人数是女生人数的几分之几,那么单位“ 1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“ 1”是橘子数量。
2、确定乘或除(1)已知单位“ 1”,用乘法(2)未知单位“ 1”,用除法或方程3、对应量和对应分率(1)单位“ 1”x对应分率(2)对应量十对应分率二单位“1”若用方程:一般设单位“ 1”的量为未知数4、如何根据分率句来写等量关系找出关键性的字和词,“是”字、“占”字、“相当于”、“正好是”等字、词, 相当于等量关系式中的等于号,分率前面的“的”字相当于等量关系式中的乘号。
分数的混合运算知识点及典型题

2018苏教版六上分数混合运算知识点及典型题一、分数的计算: 1. 分数的加减法同分母分数相加减:分母相同,分母不变,只把分子相加减,结果注意化简成最简分数。
异分母分数相加减:分母不同,先通分(计算两个分母的最小公倍数),转化为同分母分数,再分子相加减,最后化简成最简分数。
分数加减混合运算:按从左往右顺序计算,有括号先算括号里面的。
2. 分数的乘法:(1)分数乘整数时,用分数的分子和整数相乘的积做分子,分母不变。
(能约分要在计算中先约分,整数与分母约)(2)分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的要约成最简分数。
(能约分的要先约分,再计算。
)。
用于快速比较大小的结论:(1)一个数与比1小的数相乘,积小于原数; (2)一个数与1相乘,积等于原数(3)一个数与比1大的数相乘,积大于原数。
3. 分数除法法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
【最后化简成最简分数】 用于快速比较大小的结论:(1)当除数小于1,商大于被除数; (2)当除数等于1,商等于被除数; (3)当除数大于1,商小于被除数。
4.分数混合运算与整数混合运算的顺序一样:先算乘除,后算加减,有括号的,先算括号里的,同一级运算,应从左到右依次计算。
5.整数的运算律在分数中同样适用:加法的交换律:a b b a +=+ 加法的结合律:()()a b c a b c ++=++ 乘法的交换律:a b b a ⨯=⨯ 乘法的结合律:()()a b c a b c ⨯⨯=⨯⨯ 乘法的分配律:()a b c a c b c +⨯=⨯+⨯减法的性质:a-b-c=a-(b+c) 除法的性质:a ÷b ÷c=a ÷(b ×c)6.在分数连乘中,可以同时进行约分(所有的分子可以和所有的分母约分)。
7.分数乘除法混合运算,先将里面的除法改成乘法(除号改成乘号,除号后面的数改成它的倒数),再进行约分、计算。
最新分数混合运算知识点整理

分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
分数混合运算知识点

分数混合运算知识点标准化管理部编码-[99968T-6889628-J68568-1689N]分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
分数混合运算知识点整理

分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c) 乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。
计算方法:原价×折数3、一件商品打几折,求原价。
计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
第2讲 分数混合运算-六年级上册数学讲义(思维导图+知识梳理+例题精讲+易错专练)北师大版(含答案)

第2讲分数混合运算(思维导图+知识梳理+典型精讲+易错专练)一、思维导图二、知识点梳理知识点一:分数混合运算(一)1.分数混合运算的运算顺序与整数混合运算的运算顺序相同,没有括号的,按从左到右的顺序计算;有括号的,要先算括号里面的,再算括号外面的。
2.“连续求一个数的几分之几是多少”的解题方法:依据分数乘法的意义,用这个数连续乘几分之几。
知识点二:分数混合运算(二)1.“已知一个数比另一个数多(或少)几分之几,求这个数”(1)先根据分数乘法的意义,求出多(或少)的几分之几是多少,再用加(或减)法求这个数;(2)先求出另一个数占单位“1”的几分之几,再根据分数乘法的意义,用乘法计算。
2.“已知总量及一部分量占总量的几分之几,求另一部分量”(1)总量-总量×已知部分量占总量的分率=另一部分量;(2)总量×(1-已知部分量占总量的分率)=另一部分量。
知识点三:分数混合运算(三)1.“已知比一个数多(或少)几分之几的数是多少,求这个数”(1)先求比这个数多(或少)的数占这个数(即单位“1”)的几分之几,再根据分数乘法的意义列方程解答;(2)先求出比这个数(即单位“1”)多(或少)的几分之几是多少,再根据加减关系列方程解答。
2.“已知一部分量占总量的几分之几及另一部分量,求总量”把总量看作单位“1”,可以根据“总量×(1-已知部分量占总量的分率)=另一部分量”列方程解答;也可以根据“总量-总量×已知部分量占总量的分率=另一部分量”列方程解答。
三、典型精讲考点一:分数连乘【典型一】一桶油净重100千克,用去这桶油的以后,又买来这时桶里油的加进桶中,现在桶里还有90千克油.【分析】把油桶内原来油的质量看作单位“1”,用去这桶油的以后,剩下的占原来的(1),再油桶里剩下油的质量看作单位“1”,又买来这时桶里油的加进桶中,根据一个数乘分数的意义,用乘法解答.【解答】解:100×(1)+100×(1)×=100×+100×=60+30=90(千克)答:现在桶里还有90千克油.故答案为:90.【典型二】工程队要修一段400米长的路,第一天修了全长的15,第二天修的是第一天的34,第二天修了多少米?【分析】根据“第一天修了全长的15,第二天修的是第一天的34”可得:第一天修的长度=全长×1 5,第二天修的长度=第一天修的长度×34,代入数据计算即可。
分数除法混合运算知识点

分数除法混合运算知识点一、分数除法混合运算的运算顺序。
1. 没有括号的情况。
- 分数除法混合运算中,如果没有括号,要先算乘除,后算加减。
例如:(2)/(3)÷(4)/(5)+(1)/(2),先算除法(2)/(3)÷(4)/(5)=(2)/(3)×(5)/(4)=(5)/(6),再算加法(5)/(6)+(1)/(2)=(5)/(6)+(3)/(6)=(4)/(3)。
2. 有括号的情况。
- 如果有括号,要先算括号里面的。
例如:((3)/(4)-(1)/(3))÷(5)/(6),先算括号里的减法(3)/(4)-(1)/(3)=(9 - 4)/(12)=(5)/(12),再算除法(5)/(12)÷(5)/(6)=(5)/(12)×(6)/(5)=(1)/(2)。
二、分数除法的计算法则。
1. 除以一个分数等于乘以它的倒数。
- 例如计算(2)/(3)÷(4)/(5),就等于(2)/(3)×(5)/(4)(因为(4)/(5)的倒数是(5)/(4)),然后按照分数乘法的计算方法,分子相乘得分子,分母相乘得分母,结果为(10)/(12)=(5)/(6)。
- 在分数除法混合运算中,每一个除法运算都要按照这个法则转化为乘法运算。
例如:(3)/(4)÷(1)/(2)+(2)/(3)÷(4)/(5)=(3)/(4)×2+(2)/(3)×(5)/(4)=(3)/(2)+(5)/(6)=(9 +5)/(6)=(7)/(3)。
三、简便运算。
1. 乘法分配律的应用。
- 在分数除法混合运算中,有时可以通过将除法转化为乘法后,运用乘法分配律进行简便计算。
例如:((1)/(2)+(1)/(3))÷(1)/(6)=((1)/(2)+(1)/(3))×6=(1)/(2)×6+(1)/(3)×6 = 3 + 2=5。
分数混合运算的知识点总结

分数混合运算的知识点总结分数混合运算是指在一个算式中同时使用整数、分数和运算符进行计算的数学运算。
它是数学中的一个重要知识点,也是数学应用领域中常见的运算方式。
分数混合运算涉及到整数的加减乘除运算,以及分数的加减乘除运算。
一、整数的加减乘除运算整数的加减乘除运算是分数混合运算中的基础。
在整数的加减乘除运算中,加法是指将两个整数相加,得到一个新的整数;减法是指将一个整数减去另一个整数,得到一个新的整数;乘法是指将两个整数相乘,得到一个新的整数;除法是指将一个整数除以另一个整数,得到一个新的整数或分数。
在整数的乘法和除法运算中,需要注意乘除法的运算顺序,按照先乘除后加减的顺序进行运算。
二、分数的加减乘除运算分数的加减乘除运算是分数混合运算的核心。
在分数的加减乘除运算中,加法是指将两个分数相加,得到一个新的分数;减法是指将一个分数减去另一个分数,得到一个新的分数;乘法是指将两个分数相乘,得到一个新的分数;除法是指将一个分数除以另一个分数,得到一个新的分数。
在分数的乘法和除法运算中,需要注意乘除法的运算规则,按照分子相乘,分母相乘的规则进行运算。
三、整数和分数的混合运算整数和分数的混合运算是分数混合运算的扩展。
在整数和分数的混合运算中,需要将整数和分数进行相应的转换,使它们具有相同的分母,然后按照分数的加减乘除运算规则进行运算。
在整数和分数的混合运算中,需要注意整数和分数的运算顺序,按照先乘除后加减的顺序进行运算。
四、分数的化简和约分分数的化简和约分是分数混合运算中的重要步骤。
在分数的化简和约分中,需要将分数进行化简,使其分子和分母没有除了1以外的公因数,得到一个最简分数。
分数的化简和约分可以使分数的计算更加简便,避免出现较大的分子和分母,方便进行后续的运算。
五、分数混合运算的应用分数混合运算在实际生活中有广泛的应用。
例如,在购物中计算打折后的价格、计算食谱中的食材用量、计算比例等都需要使用到分数混合运算的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数混合运算知识点整理
1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。
2、整数的运算律在分数运算中同样适用。
加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)
乘法定律:乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c
减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c
除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c
3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。
4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。
5、分数加减法
同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。
二、分数混合运算的应用
1、打折计算方法:现价÷原价=折扣
2、一件商品打几折,求现价。
计算方法:原价×折数
3、一件商品打几折,求原价。
计算方法:现价÷折数
4、分数混合运算的应用题解答方法
解答方法:
1、找准单位1——并在题目的文字下面标注
①总数量是单位“1”
例如:小红看完整本书的,那么单位“1”是整本书的页码。
②原价就是单位“1”
例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。
③分数比率之前的“的”字前面的量是单位“1”
例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。
④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”
例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。
2、确定乘或除
(1)已知单位“1”,用乘法(2)未知单位“1”,用除法或方程
3、对应量和对应分率
(1)单位“1”×对应分率
(2)对应量÷对应分率=单位“1”
若用方程:一般设单位“1”的量为未知数
4、如何根据分率句来写等量关系
找出关键性的字和词,“是”字、“占”字、“相当于”、“正好是”等字、词,相当于等量关系式中的等于号,分率前面的“的”字相当于等量关系式中的乘号。
如:(1)公鸡的只数是(“是”可以改为“占”或“相当于”、或“正好是”等字词)母鸡的 。
等量关系式是:母鸡的只数× =公鸡的只数
(2)五年级有男生15人,相当于(“相当于”可以改为“是”或、“占”或“正好是”等字、词)。
全班人数的几分之几 。
数量关系式是:全班人数×几分之几 =男生人数
《分数混合运算》练习题 姓名: 班级:
一、 填空
1、一根绳子长2米,剪去52,还剩( )米,如果剪去5
2米,还剩( )米。
2、20千克增加它的4
1是( )千克,20千克比25千克少( ) ,
25千克比20千克多( ) 。
3、一袋米50千克,卖掉了( )千克,还剩它的5
2。
4、一段路修了8
3后,还剩下1000米没修,这段路共有( )米。
5、小明5天看了一本书的4
1
,他平均每天看这本书的( ),照这样
的速度,他看完这本书要( )天。
6、90比100少 ( ) ,80比60多 ( ) 。
(填分数)
7、一本书,每天看它的7
1,( )天可以看完。
8、一箱苹果,吃了5
2,吃了18个,这箱苹果原有( )个。
9、甲数是25,乙数的4
1等于甲数的5
2,乙数是( )。
二、应用题
1、一辆汽车从甲地开往乙地,全程600千米,已经行驶了全程的5
2,离乙地还有多少米?
2、海京居有40户人家,海星阁比海京居多8
3,海星阁有多少户人家? 3、鲜鲜水果店运进30筐苹果,第一天卖出总数的5
1,第二天卖出总数的2
1,两天共卖出水果多少筐?
4、鲜鲜水果店运进一批水果,第一天卖出总数的4
1,第二天卖出总数的5
1,两天一共卖出水果90千克,这批水果共重多少千克? 5、同学们收集废电池,五年级收集了280个,比四年级多4
1,四年级收集了多少个?
6、工程队修一段路,第一天修了全长的5
1,第二天修了200米,两天刚好修了全长的一半,这段路一共有多少米?
7、小明看一本书,已经看了150页,还剩下全书的8
3
没看,全书有多少页? 8、一台空调原价是3000元,先涨价101,后又降价10
1
卖出,这台空调现在的价钱是多少元?
9、合唱队有50人,舞蹈队的人数是合唱队的5
4,美术组的人数是舞蹈队的8
5,美术组有多少人?。