广西南宁外国语学校2017届数学高考第一轮复习单元素质测试题——坐标系与参数方程(理科)
广西高考数学一轮复习 考点规范练56 坐标系与参数方程 文-人教版高三全册数学试题

考点规范练56 坐标系与参数方程一、基础巩固1.在平面直角坐标系xOy 中,已知直线l 的参数方程为{x =1+12x ,x =√32x (t 为参数),椭圆C 的参数方程为{x =cos x ,x =2sin x (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.C 的普通方程为x 2+x 24=1.将直线l 的参数方程{x =1+12x ,x =√32x (t 为参数)代入x 2+x 24=1,得(1+12x )2+(√32x )24=1,即7t 2+16t=0,解得t 1=0,t 2=-167. 所以AB=|t 1-t 2|=167.2.在平面直角坐标系xOy 中,将曲线C 1:x 2+y 2=1上的所有点的横坐标伸长为原来的√3倍,纵坐标伸长为原来的2倍后,得到曲线C 2;以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是ρ(2cos θ-sin θ)=6.(1)写出曲线C 2的参数方程和直线l 的直角坐标方程;(2)在曲线C 2上求一点P ,使点P 到直线l 的距离d 最大,并求出此最大值.由题意知,曲线C 2方程为(√3)2+(x 2)2=1,故曲线C 2的参数方程为{x =√3cos x ,x =2sin x(φ为参数).直线l 的直角坐标方程为2x-y-6=0. (2)设P (√3cos φ,2sin φ), 则点P 到直线l 的距离为d=√3cos √5=√5,故当sin(60°-φ)=-1时,d 取到最大值2√5,此时取φ=150°,点P 坐标是(-32,1).3.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =cos x ,x =1+sin x (α为参数,α∈R ),在以坐标原点为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 2:ρsin (x -π4)=√2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB|的值. 解 (1)由{x =cos x ,x =1+sin x ⇒{x =cos x ,x -1=sin x⇒x 2+(y-1)2=1,由ρsin (x -π4)=√2⇒√22ρsin θ-√22ρcos θ=√2⇒y-x=2, 即C 2:x-y+2=0.(2)∵直线x-y+2=0与圆x 2+(y-1)2=1相交于A ,B 两点, 又x 2+(y-1)2=1的圆心(0,1),半径为1,∴圆心到直线的距离d=√12+(-1)2=√22, ∴|AB|=2√12-(√22)2=√2.4.(2018全国Ⅱ,文22)在直角坐标系xOy 中,曲线C 的参数方程为{x =2cos x ,x =4sin x(θ为参数),直线l 的参数方程为{x =1+x cos x ,x =2+x sin x(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.曲线C 的直角坐标方程为x 24+x 216=1.当cos α≠0时,l 的直角坐标方程为y=tan α·x+2-tan α, 当cos α=0时,l 的直角坐标方程为x=1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t-8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-4(2cos x +sin x )1+3cos 2x,故2cos α+sin α=0,于是直线l 的斜率k=tan α=-2.5.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =4x 2,x =4x(t 为参数).在以坐标原点O 为极点,x轴正半轴为极轴建立的极坐标系中,曲线C 2的极坐标方程为ρcos (x +π4)=√22. (1)把曲线C 1的参数方程化为普通方程,C 2的极坐标方程化为直角坐标方程;(2)若曲线C 1,C 2相交于A ,B 两点,AB 的中点为P ,过点P 作曲线C 2的垂线交曲线C 1于E ,F 两点,求|PE|·|PF|的值.消去参数可得C 1:y 2=4x ,C 2:x-y-1=0.(2)设A (x 1,y 1),B (x 2,y 2),且AB 的中点为P (x 0,y 0),联立{x 2=4x ,x -x -1=0可得x 2-6x+1=0.∴x 1+x 2=6,x 1x 2=1,∴{x 0=x 1+x 22=3,x 0=2.∴AB 中垂线的参数方程为{x =3-√22x ,x =2+√22x(t 为参数). ①y 2=4x.②将①代入②中,得t 2+8√2t-16=0,∴t 1·t 2=-16.∴|PE|·|PF|=|t 1·t 2|=16.二、能力提升6.(2018全国Ⅰ,文22)在直角坐标系xOy 中,曲线C 1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0. (1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.由x=ρcos θ,y=ρsin θ得C 2的直角坐标方程为(x+1)2+y 2=4.(2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2,由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2, 所以√2=2,故k=-43或k=0.经检验,当k=0时,l 1与C 2没有公共点;当k=-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2, 所以√=2,故k=0或k=43,经检验,当k=0时,l 1与C 2没有公共点;当k=43时,l 2与C 2没有公共点.综上,所求C 1的方程为y=-43|x|+2. 7.已知直线C 1:{x =1+x cos x ,x =x sin x(t 为参数),圆C 2:{x =cos x ,x =sin x (θ为参数).(1)当α=π3时,求C 1被C 2截得的线段的长;(2)过坐标原点O 作C 1的垂线,垂足为A ,当α变化时,求点A 轨迹的参数方程,并指出它是什么曲线.当α=π3时,C 1的普通方程为y=√3(x-1),C 2的普通方程为x 2+y 2=1.联立方程组{x =√3(x -1),x 2+x 2=1,解得C 1与C 2的交点坐标为(1,0)与(12,-√32). 故C 1被C 2截得的线段的长为√(1-12)2+(0+√32)2=1.(2)将C 1的参数方程代入C 2的普通方程得t 2+2t cos α=0, 设直线C 1与圆C 2交于M ,N 两点,M ,N 两点对应的参数分别为t 1,t 2, 则点A 对应的参数t=x 1+x 22=-cos α,故点A 的坐标为(sin 2α,-cos αsin α).故当α变化时,点A 轨迹的参数方程为{x =sin 2x ,x =-sin x cos x(α为参数). 因此,点A 轨迹的普通方程为(x -12)2+y 2=14.故点A 的轨迹是以(12,0)为圆心,半径为12的圆.三、高考预测8.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=a cos θ(a>0),过点P (-2,-4)的直线l 的参数方程为{x =-2+√22x ,x =-4+√22x(t 为参数),直线l 与曲线C 相交于A ,B 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PA|·|PB|=|AB|2,求a 的值.∵ρsin 2θ=a cos θ(a>0),∴ρ2sin 2θ=a ρcos θ(a>0),即y 2=ax (a>0).直线l 的参数方程消去参数t ,得普通方程为y=x-2.(2)将直线l 的参数方程代入曲线C 的直角坐标方程y 2=ax (a>0)中, 得t 2-√2(a+8)t+4(a+8)=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=√2(a+8),t 1·t 2=4(a+8).∵|PA|·|PB|=|AB|2, ∴t 1·t 2=(t 1-t 2)2.∴(t 1+t 2)2=(t 1-t 2)2+4t 1·t 2=5t 1·t 2,即[√2(8+a )]2=20(8+a ),解得a=2或a=-8(不合题意,应舍去),∴a 的值为2.。
坐标系与参数方程典型例题含高考题----答案详细)

选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:①了解参数方程,了解参数的意义. ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下, 点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
最新—2017高考全国卷ⅰ文科数学坐标系与参数方程汇编

新课标全国卷Ⅰ文科数学汇编坐标系与参数方程一、解答题【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程; (II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。
2017版高考数学一轮总复习第13章坐标系与参数方程高考AB卷理

【大高考】2017版高考数学一轮总复习 第13章 坐标系与参数方程高考AB 卷 理坐标系与极坐标1.(2016·全国Ⅰ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsinθ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.2.(2016·全国Ⅱ,23)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 3.(2015·全国Ⅰ,23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.参数方程4.(2016·全国Ⅲ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 5.(2013·全国Ⅱ,23)已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+cos 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.坐标系与极坐标1.(2014·安徽,4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14 B.214 C. 2D.22解析 由⎩⎪⎨⎪⎧x =t +1,y =t -3消去t 得x -y -4=0,C :ρ=4cos θ⇒ρ2=4ρcos θ,∴C :x 2+y 2=4x ,即(x -2)2+y 2=4,∴C (2,0),r =2. ∴点C 到直线l 的距离d =|2-0-4|2=2, ∴所求弦长=2r 2-d 2=2 2.故选D. 答案 D2.(2016·北京,11)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.解析 直线的直角坐标方程为x -3y -1=0,圆的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1.圆心坐标为(1,0),半径r =1. 点(1,0)在直线x -3y -1=0上, 所以|AB |=2r =2. 答案 23.(2015·广东,14)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎪⎫22,7π4,则点A 到直线l 的距离为________. 解析 依题已知直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2和点A ⎝⎛⎭⎪⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522. 答案5224.(2015·北京,11)在极坐标系中,点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析 在平面直角坐标系下,点⎝⎛⎭⎪⎫2,π3化为(1,3),直线方程为:x +3y =6,∴点(1,3)到直线的距离为d =|1+3×3-6|2=|-2|2=1.答案 15.(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.解析 由ρ=8sin θ得x 2+y 2=8y ,即x 2+(y -4)2=16,由θ=π3得y =3x ,即3x-y =0,∴圆心(0,4)到直线y =3x 的距离为2,圆ρ=8sin θ上的点到直线θ=π3的最大距离为4+2=6. 答案 66.(2014·天津,13)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.解析 圆的直角坐标方程为x 2+y 2=4y ,直线的直角坐标方程为y =a ,因为△AOB 为等边三角形,则A (±a3,a ),代入圆的方程得a 23+a 2=4a ,故a =3.答案 37.(2014·湖南,11)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.解析 曲线C 的普通方程为(x -2)2+(y -1)2=1,由直线l 与曲线C 相交所得的弦长|AB |=2知,AB 为圆的直径,故直线l 过圆心(2,1),注意到直线的倾斜角为π4,即斜率为1,从而直线l 的普通方程为y =x -1,从而其极坐标方程为ρsin θ=ρcos θ-1,即2·ρcos ⎝⎛⎭⎪⎫θ+π4=1.答案2·ρcos ⎝⎛⎭⎪⎫θ+π4=1 8.(2014·广东,14)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.解析 由ρsin 2θ=cos θ得ρ2sin 2θ=ρcos θ,其直角坐标方程为y 2=x ,ρsin θ=1的直角坐标方程为y =1,由⎩⎪⎨⎪⎧y 2=x ,y =1得C 1和C 2的交点为(1,1).答案 (1,1)9.(2013·湖北,16)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________. 解析 l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,由直线l 与圆O 相切,得m =±2b .从而椭圆的一个焦点为(2b ,0), 即c =2b ,所以a =3b ,则离心率e =c a =63. 答案6310.(2015·江苏,21)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0. 则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.11.(2014·辽宁,23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos ty =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得:⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.参数方程12.(2014·北京,3)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析 曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的普通方程为(x +1)2+(y -2)2=1,该曲线为圆,圆心(-1,2)为曲线的对称中心,其在直线y =-2x 上,故选B. 答案 B13.(2014·江西,11(2))若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4解析 ∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤π2.故选A.答案 A14.(2015·重庆,15)已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析 直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π). 答案 (2,π)15.(2014·湖北,16)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________. 解析 曲线C 1为射线y =33x (x ≥0).曲线C 2为圆x 2+y 2=4.设P 为C 1与C 2的交点,如图,作PQ 垂直x 轴于点Q .因为tan ∠POQ =33,所以∠POQ =30°,又∵OP =2,所以C 1与C 2的交点P 的直角坐标为(3,1).答案 (3,1)16.(2013·陕西,15C)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析 由三角函数定义知y x=tan θ(x ≠0),y =x tan θ,由x 2+y 2-x =0得,x 2+x 2tan2θ-x =0,x =11+tan 2θ=cos 2θ,则y =x tan θ=cos 2θtan θ= sin θcos θ,又θ=π2时,x =0,y =0也适合题意,故参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案 ⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)17.(2013·重庆,15)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.解析 由极坐标方程ρcos θ=4,化为直角坐标方程可得x =4, 而由曲线参数方程消参得x 3=y 2,∴y 2=43=64,即y =±8,∴|AB |=|8-(-8)|=16. 答案 1618.(2015·福建,21(2))在平面直角坐标系xOy 中,圆C的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ).①求圆C 的普通方程及直线l 的直角坐标方程; ②设圆心C 到直线l 的距离等于2,求m 的值.解 ①消去参数t ,得到圆C 的普通方程为(x -1)2+(y +2)2=9. 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m ,得ρsin θ-ρcos θ-m =0. 所以直线l 的直角坐标方程为x -y +m =0. ②依题意,圆心C 到直线l 的距离等于2, 即|1-(-2)+m |2=2,解得m =-3±2 2.19.(2015·湖南,16Ⅱ)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t 代入②式,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知, |MA |·|MB |=|t 1t 2|=18.20.(2014·江苏,21C)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长. 解 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2.所以|AB |=|t 1-t 2|=8 2.。
2017届高考数学一轮复习坐标系与参数方程第一节坐标系课后作业

【创新方案】2017届高考数学一轮复习 坐标系与参数方程 第一节坐标系课后作业 理 选修4-41.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标.2.在极坐标系中,求曲线ρ=4cos ⎝ ⎛⎭⎪⎫θ-π3上任意两点间的距离的最大值.3.在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.4.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.5.(2016·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎪⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.6.已知直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=4和圆C :ρ=2k cos ⎝ ⎛⎭⎪⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.答 案1.解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6.2.解:由ρ=4cos ⎝⎛⎭⎪⎫θ-π3可得ρ2=4ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=2ρcos θ+23ρsin θ,即得x 2+y 2=2x +23y ,配方可得(x -1)2+(y -3)2=4,该圆的半径为2,则圆上任意两点间距离的最大值为4.3.解:在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0).因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.4.解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎪⎫θ+π4=22.5.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为 ρ=4cos ⎝ ⎛⎭⎪⎫θ-π3. 作图如图所示.(2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数),∴点M 的轨迹的普通方程为(x -3)2+y 2=1. 6.解:∵ρ=2k cos θ-2k sin θ, ∴ρ2=2k ρcos θ-2k ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝ ⎛⎭⎪⎫x -22k 2+⎝ ⎛⎭⎪⎫y +22k 2=k 2, ∴圆心的直角坐标为⎝ ⎛⎭⎪⎫22k ,-22k .∵ρsin θ·22-ρcos θ·22=4, ∴直线l 的直角坐标方程为x -y +42=0, ∴⎪⎪⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝ ⎛⎭⎪⎫-22,22.。
(全国通用)届高考数学一轮总复习第十七章坐标系与参数方程训练检测(PDF)理新人教B版【含答案】

������������
������������������������������������������������������������������������������������������������������������������������������������������
2
π 即 θ = ( ρɪR) 和 ρcos θ = 2. 2
6. 答案㊀
解析㊀ 直线与圆的直角坐标方程分别为 x - 3 y -1 = 0 和 x + y 2 = 2x,则该圆的圆心坐标为(1,0) ,半径 r = 1,圆心(1,0) 到直 | 1- 3 ˑ0-1 | 1+3
7π 得 A 点的直角坐标为(2,-2) ,从而点 A 到直线 由 A 2 2, 4
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
1 +( -1)
2
=
5 2 . 2
程后,计算圆心到直线的距离可得直线经过圆心, 从而可得 AB 即为直径.
思路分析㊀ 将直线与圆的极坐标方程分别化为直角坐标方
系中,曲线 C 1 和 C 2 的方程分别为 ρsin 2 θ = cos θ 和 ρsin θ = 1. 以
2017年全国卷高考数学复习专题——坐标系与参数方程

2017年全国卷高考数学复习专题——坐标系与参数方程考点一坐标系与极坐标1.(2014安徽,4,5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是x=t+1,y=t-3(t为参数),圆C的极坐标方程是ρ=4cos θ,则直线l被圆C截得的弦长为( )A.14B.214C.2D.22答案 D2.(2014湖南,11,5分)在平面直角坐标系中,倾斜角为π4的直线l与曲线C:x=2+cosα,y=1+sinα(α为参数)交于A,B两点,且|AB|=2,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是. 答案2ρcos θ+π4=13.(2014广东,14,5分)(坐标系与参数方程选做题)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.答案(1,1)4.(2014天津,13,5分)在以O为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a相交于A,B两点.若△AOB是等边三角形,则a的值为.答案 35.(2014重庆,15,5分)已知直线l的参数方程为x=2+t,y=3+t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ= .答案56.(2014陕西,15C,5分)(坐标系与参数方程选做题)在极坐标系中,点2,π6到直线ρsin θ-π6=1的距离是.答案 17.(2014辽宁,23,10分)选修4—4:坐标系与参数方程将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解析(1)设(x1,y1)为圆上的点,在已知变换下变为C上点(x,y),依题意,得x=x1, y=2y1,由x12+y12=1得x2+y22=1,即曲线C的方程为x2+y24=1.故C的参数方程为x=cos t,y=2sin t(t为参数).(2)由x2+y24=1,2x+y-2=0解得x=1,y=0或x=0,y=2.不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为12,1,所求直线斜率为k=12,于是所求直线方程为y-1=12 x-12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sinθ-2cosθ.考点二参数方程8.(2014北京,3,5分)曲线x=-1+cosθ,y=2+sinθ(θ为参数)的对称中心( )A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1上D.在直线y=x+1上答案 B9.(2014江西,11(2),5分)(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为( )A.ρ=1cosθ+sinθ,0≤θ≤π2B.ρ=1cosθ+sinθ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2 D.ρ=cos θ+sin θ,0≤θ≤π4答案 A10.(2014湖北,16,5分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是x=t,y=3t3(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.答案(3,1)11.(2014课标Ⅰ,23,10分)选修4—4:坐标系与参数方程已知曲线C:x 24+y 29=1,直线l:x =2+t ,y =2-2t(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值.解析 (1)曲线C 的参数方程为 x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为 d= 55|4cos θ+3sin θ-6|. 则|PA|=dsin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA|取得最小值,最小值为2 55.12.(2014课标Ⅱ,23,10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈ 0,π2 . (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l:y= 3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解析 (1)C 的普通方程为(x-1)2+y 2=1(0≤y≤1).可得C 的参数方程为 x =1+cos t ,y =sin t(t 为参数,0≤t≤π).(2)设D(1+cos t,sin t).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆. 因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t= 3,t=π3. 故D 的直角坐标为 1+cosπ 3,sin π3 ,即 32,32. 13.(2014江苏,21C,10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为x =1- 22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A,B 两点,求线段AB 的长.解析将直线l的参数方程x=1-22t,y=2+22t代入抛物线方程y2=4x,得2+2 2t2=41-22t,解得t1=0,t2=-82.所以AB=|t1-t2|=82.14.(2014福建,21(2),7分)选修4—4:坐标系与参数方程已知直线l的参数方程为x=a-2t,y=-4t(t为参数),圆C的参数方程为x=4cosθ,y=4sinθ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.解析(1)直线l的普通方程为2x-y-2a=0,圆C的普通方程为x2+y2=16.(2)因为直线l与圆C有公共点,故圆C的圆心到直线l的距离d=5≤4,解得-25≤a≤25.。
2017届高三数学人教版A版数学(理)高考一轮复习教案:选修4-4 坐标系与参数方程 Word版含答案

选修4-4 坐标系与参数方程 1.坐标系与极坐标 (1)理解坐标系的作用.(2)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示图形时选择坐标系的意义.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知识点一 极坐标系 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫作极点,自极点O 引一条射线Ox ,Ox 叫作极轴;再选定一个长度单位、一个角度单位及其正方向,这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫作点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫作点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫作点M 的极坐标,记作M (ρ,θ). 2.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).易误提醒1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标.[自测练习]1.设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y=sin x 的方程变为________.解析:由⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y .知⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 中得y ′=3sin 2x ′. 答案:y ′=3sin 2x ′2.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎫2,-π3. 答案:⎝⎛⎭⎫2,-π3 3.(2015·高考北京卷)在极坐标系中,点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析:点⎝⎛⎭⎫2,π3的直角坐标为(1,3),直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0,所以点(1,3)到直线的距离d =|1+3×3-6|1+3=1.答案:1知识点二 参数方程 参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫作这条曲线的参数方程,变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程.易误提醒1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价. 2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义,且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.[自测练习]4.在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t ,(t 为参数)的普通方程为________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0.答案:x -y -1=05.在平面直角坐标系xOy 中,过椭圆⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线截椭圆所得的弦长为________. 解析:椭圆的普通方程为x 24+y 23=1,则右焦点的坐标为(1,0).直线的普通方程为x -2y+2=0,过点(1,0)与直线x -2y +2=0平行的直线方程为x -2y -1=0,由⎩⎪⎨⎪⎧x 24+y 23=1,x -2y -1=0,得4x 2-2x -11=0,所以所求的弦长为1+⎝⎛⎭⎫122×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-114=154.答案:154考点一 曲线的极坐标方程|1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 2.(2016·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2.(1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22.直角坐标化为极坐标的关注点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.考点二 曲线的参数方程|1.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t ,(t 为参数)曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ.(θ为参数)(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)的距离的最小值. 解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.2.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ.(θ为参数)直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|.则|P A |=d sin 30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.参数方程化为普通方程,主要用“消元法”消参,常用代入法、加减消元法、利用三角恒等式消元等.在参数方程化为普通方程时,要注意保持同解变形.考点三 极坐标方程、参数方程的综合应用|(2015·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos αy =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.[解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2016·昆明模拟)在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O为极点,以x轴正半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cos θ.(1)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(2)若曲线C与直线l相交于不同的两点M、N,求|PM|+|PN|的取值范围.解:(1)直线l的参数方程:⎩⎪⎨⎪⎧x=4+t cos αy=2+t sin α(t为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴C:x2+y2=4x.(2)直线l的参数方程:⎩⎪⎨⎪⎧x=4+t cos αy=2+t sin α(t为参数),代入x2+y2=4x,得t2+4(sin α+cos α)t+4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t1+t2=-4(sin α+cos α),t1t2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t1<0,t2<0.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4(sin α+cos α)=42sin⎝⎛⎭⎫α+π4,由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4,∴22<sin⎝⎛⎭⎫α+π4≤1,故|PM|+|PN|的取值范围是(4,4 2 ].33.直线参数方程中参数t几何意义的应用【典例】 已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|P A |·|PB |的值.[思维点拨] (1)根据条件写出l 的参数方程及化曲线C 为标准方程. (2)利用t 的几何意义求解|P A |·|PB |的值. [解] (1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎨⎧x =3+12ty =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0, 设t 1,t 2是方程的两个根,则t 1t 2=-3, 所以|P A ||PB |=|t 1||t 2|=|t 1t 2|=3.[方法点评] 过定点M 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t为参数)该参数t 经常用在直线截圆锥曲线的距离问题中,解题时通常过某定点作一直线与圆锥曲线相交于A ,B 两点,所求问题与定点到A ,B 两点的距离有关.解题时主要应用定点在直线AB 上,利用参数t 的几何意义,结合根与系数的关系进行处理,巧妙求出问题的解.[跟踪练习] (2016·大庆模拟)在平面直角坐标系xOy 中,已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6.在极坐标系(与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (1)写出直线l 的参数方程,并把圆C 的极坐标方程化为直角坐标方程; (2)设l 与圆C 相交于A ,B 两点,求|P A |+|PB |的值.解:(1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6,y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t ,y =1+12t ,(t 为参数).由ρ=22cos ⎝⎛⎭⎫θ-π4得:ρ=2cos θ+2sin θ, ∴ρ2=2ρcos θ+2ρsin θ,∴x 2+y 2=2x +2y , 故圆C 的直角坐标方程为(x -1)2+(y -1)2=2. (2)把⎩⎨⎧x =12+32t y =1+12t (t 为参数)代入(x -1)2+(y -1)2=2得t 2-32t -74=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=32,t 1t 2=-74, ∴|P A |+|PB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=312.A 组 考点能力演练1.(1)化圆的直角坐标方程x 2+y 2=r 2(r >0)为极坐标方程; (2)化曲线的极坐标方程ρ=8sin θ为直角坐标方程.解:(1)将x =ρcos θ,y =ρsin θ代入x 2+y 2=r 2,得ρ2cos 2 θ+ρ2sin 2 θ=r 2,ρ2(cos 2 θ+sin 2 θ)=r 2,ρ=r .所以,以极点为圆心、半径为r 的圆的极坐标方程为ρ=r (0≤θ<2π).(2)法一:把ρ=x 2+y 2,sin θ=yρ代入ρ=8sin θ,得x 2+y 2=8·y x 2+y 2,即x 2+y 2-8y =0.法二:方程两边同时乘以ρ,得ρ2=8ρsin θ,即x 2+y 2-8y =0.2.(2016·济宁模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:∵ρ=2k cos θ-2k sin θ, ∴ρ2=2kρcos θ-2kρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0,即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, ∴圆心的直角坐标为⎝⎛⎭⎫22k ,-22k .∵ρsin θ·22-ρcos θ·22=4,∴直线l 的直角坐标方程为x -y +42=0,∴⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |,两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3, 解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 3.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2 θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值及此时P 点的直角坐标.解:(1)∵x =ρcos θ,y =ρsin θ, ∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin (θ+60°), 当θ=30°时,|PQ |+|QR |取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.4.(2016·长春模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点C 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点P ,且倾斜角为π3,圆C 的半径为4.(1)求直线l 的参数方程和圆C 的极坐标方程.(2)试判断直线l 与圆C 的位置关系.解:(1)直线l 的参数方程为⎩⎨⎧x =1+t cos π3,y =-5+t sin π3,(t 为参数),即⎩⎨⎧x =1+12t ,y =-5+32t ,(t为参数).由题知C 点的直角坐标为(0,4),圆C 的半径为4,∴圆C 方程为x 2+(y -4)2=16,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入得,圆C 的极坐标方程为ρ=8sin θ. (2)由题意得,直线l 的普通方程为3x -y -5-3=0,圆心C 到l 的距离为d =|-4-5-3|2=9+32>4,∴直线l 与圆C 相离.5.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ,(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α,(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2 α+cos 2 α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2 α+cos 2 α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64. B 组 高考题型专练1.(2015·高考广东卷改编)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离. 解:由2ρsin ⎝⎛⎭⎫θ-π4=2得2ρ⎝⎛⎭⎫22sin θ-22cos θ=2,所以y -x =1,故直线l 的直角坐标方程为x -y +1=0,而点A ⎝⎛⎭⎫22,7π4对应的直角坐标为A (2,-2),所以点A (2,-2)到直线l :x -y +1=0的距离为|2+2+1|2=522.2.(2015·高考全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2015·高考湖南卷)已知直线l :⎩⎨⎧x =5+32t ,y =3+12t ,(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解:(1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t ,代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义知,|MA |·|MB |=|t 1t 2|=18.4.(2015·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t ,(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届数学高考第一轮复习单元素质测试题——坐标系与参数方程(理科)(考试时间120分钟,满分150分)姓名_______评价_______一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.(10湖南理3)极坐标方程cos ρθ=和参数方程1,23x t y t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线2.(11北京理3)在极坐标系中,圆θρsin 2-=的圆心的极坐标系是( )A .(1,)2πB .(1,)2π-C . (1,0)D .(1,π) 3.(14北京理3)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上 4.(14安徽理4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A .14B .214C .2D .22 5.(08重庆理4)已知函数13x x -+M ,最小值为m ,则mM 的值为( ) A .14B .12C 2D 3 6.(11安徽理5)在极坐标系中,点)3,2(π到圆θρcos 2=的圆心的距离为( )A .2B .942π+C .912π+D .37.(10上海16)直线l 的参数方程是)(221R t ty tx ∈⎪⎩⎪⎨⎧-=+=,则l 的方向向量可以是( )A .(1,2)B .(2,1)C .(2-,1)D .(1,2-)8.(10安徽理7)设曲线C 的参数方程为⎩⎨⎧+-=+=θθsin 31cos 32y x (θ为参数),直线l 的方程为023=+-y x ,则曲线C 到直线l 的距离为10107的点的个数为( ) A .1 B .2C .3D .49.(13安徽理7)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( ) A .)(0R ∈=ρθ和2cos =θρ B .)(2R ∈=ρπθ和2cos =θρC .)(2R ∈=ρπθ和1cos =θρ D .)(0R ∈=ρθ和1cos =θρ10.(10重庆文8)若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为( )A .(22,1)-B .[22,22]+C .(,22)(22,)-∞++∞D .(22,22)+11.(10重庆理8)直线233+=x y 与圆心为D 的圆))2,0[(,sin 31,cos 33πθθθ∈⎪⎩⎪⎨⎧+=+=y x 交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A .π67B .π45C .π34D .π3512.(14江西理11)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标方程为( )A .1,0cos sin 2πρθθθ=≤≤+B .1,0cos sin 4πρθθθ=≤≤+C .cos sin ,02πρθθθ=+≤≤D .cos sin ,04πρθθθ=+≤≤二、填空题(本大题共4小题,每小题5分,共20分,把答案填在对应题号后的横线上)13.(14广东理14)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为 .14.(12天津理12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作l 的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .15.(13广东理14)已知曲线C 的参数方程为⎪⎩⎪⎨⎧==ty t x sin 2cos 2(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_______________. 16.(15湖北理16)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为0)cos 3(sin =-θθρ,曲线C 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t t y tt x 11(t 为参数),l 与C 相交于A ,B 两点,则=|AB | .三、解答题(本大题共7小题,每小题10分,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(15新课标全国Ⅰ23)在直角坐标系xOy 中,直线1C :2-=x ,圆2C : 1)2()1(22=-+-y x ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M 、N ,求△C 2MN 的面积.18.(13新课标全国Ⅰ23)已知曲线C 1的参数方程为⎪⎩⎪⎨⎧+=+=ty t x sin 55,cos 54(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θρsin 2=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).19.(14新课标全国Ⅰ23)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.20.(15新课标全国Ⅱ23)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.21.(13新课标全国Ⅱ23)已知动点P ,Q 都在曲线⎪⎩⎪⎨⎧==ty tx C sin 2cos 2:(t 为参数)上,对应参数分别为α=t 与α2=t (πα20<<),M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.22.(14新课标全国Ⅱ23)在直角坐标系xOy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.23.(16新课标全国Ⅲ23)在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==ααsin cos 3y x (α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为22)4sin(=+πθρ.(Ⅰ)写出1C 的普通方程和2C 的直角坐标系方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.2017届数学高考第一轮复习单元素质测试题——坐标系与参数方程(文科)(参考答案)一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABBDCDCBBDBA二、填空题13. (1,1) . 14. 2 . 15.)4sin(202sin cos πθρθρθρ+==-+或. 16. 52.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.解:(Ⅰ)1C :2-=x ,极坐标方程为2cos -=θρ;2C :1)2()1(22=-+-y x ,1)2sin ()1cos (22=-+-∴θρθρ,即04cos 2sin 4cos sin 2222=+--+θρθρθρθρ.故2C 的极坐标方程04cos 2sin 42=+--θρθρρ.(Ⅱ)直线3C 的直角坐标方程为0=-y x ,1)2,1(2=r C ,,)2,1(2C 到直线3C 的距离222|21|=-=d , 221122||22=-=-=d r MN , 21222||212=⨯=⋅=∴∆d MN S MNC . 解法二:直线3C 的直角坐标方程为x y =,代入1)2()1(22=-+-y x 解得M(1,1),N(2,2), ∴C 2M ⊥C 2N .2121||||212222==⋅=∴∆r N C M C S MN C . 18.解:(Ⅰ)曲线C 1的普通方程为25)5()4(22=-+-y x ,25)5sin ()4cos (22=-+-∴θρθρ,即016cos 8sin 10cos sin 2222=+--+θρθρθρθρ.故的极坐标方程016cos 8sin 102=+--θρθρρ.(Ⅱ)曲线C 2的直角坐标方程为1)1(22=-+y x ,⎪⎩⎪⎨⎧⋯⋯⋯⋯⋯⋯⋯⋯=-+⋯⋯⋯=+--+)2(02)1(0161082222y y x y x y x )1()2(-,得01688=-+y x ,2+-=∴y x . (3)把(3)代入(2)得,02)44(22=-++-y y y y ,即0232=+-y y ,2121==∴y y ,.从而0121==x x ,.1C 与2C 交点的直角坐标为)1,1(和)2,0(,极坐标为)4,2(π和)2,2(π.19.解:(Ⅰ)曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 3,cos 2y x (θ为参数,[)πθ2,0∈)⎪⎩⎪⎨⎧⋯⋯⋯-=⋯⋯⋯⋯+=)2(22)1(2t y t x , )2(2)1(+⨯,得62=+y x ,故直线l 的普通方程为062=-+y x . (Ⅱ)设)sin 3,cos 2(θθP ,则点P 到直线l 的距离5|6)sin(5|5|6sin 3cos 4|-+=-+=ϕθθθd ,其中53cos ,54sin ==ϕϕ. 作PB ⊥l 于B ,根据题意,得|6)sin(5|522||2||-+===ϕθd PB PA ,N O xC 2(1,2)yr d M l O x ydP AB当1)sin(-=+ϕθ时,5522|65|52||max =--=PA ; 当1)sin(=+ϕθ时,552|65|52||min =-=PA . 20.解:(Ⅰ)2C :1)1(22=-+y x ,即0222=-+y y x ; (1)3C :3)3(22=+-y x ,即03222=-+x y x . (2))(2)1(-,得0232=-y x ,x y 3=.………………(3) 把(3)代入(2)并整理,得03242=-x x ,23021==∴x x ,. 从而01=y ,232=y . 故2C 与3C 交点的直角坐标)0,0(和)23,23(; (Ⅱ)1C 的极坐标方程为παρραρ<≤≠∈=0)0,(,R ,),cos 32(),,sin 2(ααααB A ∴.|cos 32sin 2|||αα-=AB|,)3sin(|4|cos 23sin 21|4πααα-=-=4||max =∴AB .21.解:(Ⅰ)设点M 的坐标为),(y x ,根据题意知,P 、Q 两点的坐标分别是)sin 2,cos 2(αα和)2sin 2,2cos 2(αα.αααααααα2sin sin 22sin 2sin 2,2cos cos 22cos 2cos 2+=+=+=+=∴y x .故M 的轨迹的参数方程为⎪⎩⎪⎨⎧+=+=αααα2sin sin 2cos cos y x ,(α为参数,πα20<<).(Ⅱ)222)2sin (sin )2cos (cos αααα+++=d,cos 22)2cos(22)2sin sin 22cos cos 2()2cos 2(sin )cos (sin 2222ααααααααααα+=-+=+++++=αcos 22+=∴d (πα20<<). 当πα=时,0=d ,所以M 的轨迹过坐标原点.22.解:(Ⅰ)半圆C 的直角坐标方程为)10(1)1(22≤≤=+-y y x ,所以半圆C 的参数方程为⎪⎩⎪⎨⎧=+=θθsin cos 1y x ,(θ为参数,πθ≤≤0). (Ⅱ))0,1(C ,设)sin ,cos 1(θθ+D ,则直线CD 的斜率θθθtan 1cos 10sin =-+-=k ,根据题意得3tan =θ,3πθ=,23sin ,21cos ==∴θθ.故点D 的坐标为)23,23(.23.解:(Ⅰ)1C 的普通方程为1322=+y x .2C :22)4sincos 4cos(sin =+πθπθρ,即22)cos sin (22=+θρθρ, 所以2C 的直角坐标系方程为04=-+y x .(Ⅱ)设)sin ,cos 3(ααP ,则P 到2C 的距离|2)3sin(|22|2cos 23sin 21|22|4sin cos 3|-+=-+=-+=παααααd , 当1)3sin(=+πα,即Z k k k ∈+=+=+,26,223ππαπππα时,=min |PQ |2m in =d .此时P 的直角坐标为)21,23(.lO C(1,0) xy)sin ,cos 1(θθ+D。