(完整版)初三解直角三角形练习题基础

合集下载

中考《解直角三角形》复习练习题及答案

中考《解直角三角形》复习练习题及答案

中考数学复习专题练习解直角三角形一、选择题:1、在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=3、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )A.2 B. C. D.4、在Rt ABC中,∠C=90°,sinB=,则tanA的值为( )A. B. C. D.5、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.6、在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长是()A. B.2 C.1 D.27、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB值为( )A. B. C. D.8、如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10mB.mC.15m D.m9、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米D.24米10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图,已知的三个顶点都在方格图的格点上,则的值为( )A. B. C. D.12、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、在△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C=________.14、已知在Rt△ABC中,∠C=90°,AB=15,cosB=,则BC= .15、如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.16、如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.17、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .18、如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(+) tan+tan.(填“>”“=”“<”)19、如图在四边形ABCD中,∠ACB=∠BAD=105°,∠B=∠D=45°若 AD=,则AB=__________20、如图所示的半圆中,是直径,且,,则的值是.21、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.22、如图,在中,是边边上的中线,如果,tanB值是________23、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米.24、如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°= .三、简答题:25、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.26、已知:如图,正方形ABCD中,点E为AD边的中点,联结CE. 求cos∠ACE和tan∠ACE的值.27、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)28、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)29、张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)30、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.31、中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)参考答案1、A.2、C.3、B.4、D.5、B.6、B.7、B.8、A.9、B.10、A.11、D.12、B.13、答案为:60°14、答案为:9.15、答案为:(米).16、答案为24.17、答案为:4.3 18、答案为:>. 19、答案为:.20、答案为: ;21、答案为:2 ;22、答案为:23、答案为:137.24、答案为:2﹣.25、解:∵方程(5+b)x2+2ax+(5-b)=0有两个相等的实数根,且c=5,∴△=(2a)2-4(c+b)(c-b)=0,∴a2+b2=c2,则△ABC为直角三角形,且∠C=90°.设x1,x2是方程2x2-(10sin A)x+5sin A=0的两个根,则根据根与系数的关系有x1+x2=5sin A,x1·x2=sin A.∴x12+x22=(x1+x2)2-2x l·x2=(5sin A)2-2×sin A=6,解得sinA=或sinA=-(舍去),∴a=csin A=3,b==4,S△ABC=ab==18.26、解:过点作于点,∵四边形是正方形,∴平分,.∴,.∵是中点,∴.设,则,,.在Rt△AEF中,,.∴.∴,.27、【解答】解:(1)过C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离约为60海里.28、【解答】解:过点C作CE∥AD,交AB于E∵CD∥AE,CE∥AD∴四边形AECD是平行四边形∴AE=CD=50m,EB=AB﹣AE=50m,∠CEB=∠DAB=30°又∠CBF=60°,故∠ECB=30°∴CB=EB=50m∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m答:河流的宽度CF的值为43m.29、解:如图,过B作BE⊥CD交CD延长线于E,∵∠CAN=45°,∠MAN=30°,∴∠CAB=15°∵∠CBD=60°,∠DBE=30°,∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB,∴∠CAB=∠ACB=15°,∴AB=BC=20,在Rt△BCE中,∠CBE=60°,BC=20,∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,在Rt△DBE中,∠DBE=30°,BE=10,∴DE=BEtan∠DBE=10×,∴CD=CE﹣DE=≈11.5,答:这棵大树CD的高度大约为11.5米.30、:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.31、【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.。

解直角三角形基础训练题

解直角三角形基础训练题

解直角三角形基础训练题一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2021秋•肃州区期末)如图,在Rt△ABC中,∠C=90°,AB=4,sin A=,则BC的长为()A.2B.3C.D.22.(4分)(2020秋•三明期末)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,则tan A的值为()A.B.C.D.3.(4分)(2021•玉林)如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有()A.h1=h2B.h1<h2C.h1>h2D.以上都有可能4.(4分)(2021•宁波模拟)在Rt△ABC中,CD是斜边AB上的高,那么下列锐角三角函数的值与的值不相等的是()A.sin B B.cos A C.cos∠BCD D.cos∠ACD5.(4分)(2021秋•钢城区期末)在Rt△ABC中,∠C=90°,cos A=,AB=10,则AC 的长为()A.3B.4C.6D.86.(4分)(2021秋•岱岳区期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足.若AC=8,BC=6,则sin∠ACD的值为()A.B.C.D.7.(4分)(2021秋•万州区期末)在△ABC中,∠A、∠B为锐角,cos A=,tan B=,则△ABC的形状为()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形8.(4分)(2022•锦江区校级开学)在Rt△ABC中,∠ACB=90°,BC=12,tan B=,则AB的长为()A.8B.12C.13D.189.(4分)(2021秋•启东市期末)如图,在平面直角坐标系xOy中,AB=2,连结AB 并延长至C,连结OC,若满足OC2=BC•AC,tanα=3,则点C的坐标为()A.(﹣2,6)B.(﹣3,9)C.(﹣,)D.(﹣,)10.(4分)(2022•绿园区校级一模)如图,电线杆AB的中点C处有一标志物,在地面D 点处测得标志物的仰角为32°,若点D到电线杆底部点B的距离为a米,则电线杆AB的长可表示为()A.米B.米C.2a•cos32°米D.2a•tan32°米二.填空题(共6小题,满分30分,每小题5分)11.(5分)(2021秋•长春期末)如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD =6,tan A=,则sin B的值为.12.(5分)(2021秋•船营区校级期末)如图,在Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A,若AC=4,cos A=,则BD的长度为.13.(5分)(2021秋•温江区校级月考)在Rt△ABC中,∠ACB=90°,∠A=30°,则AC:BC=.14.(5分)(2021秋•巴中期末)定义:等腰三角形中底边与腰的比叫做顶角正对(sad),即在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.如图,若在△ABC中,AB=AC,sin B=,则sadA的值是.15.(5分)(2021秋•城关区期末)如图,在Rt△ABD中,AB=6,tan∠ADB=,点C 为斜边BD的中点,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF=.16.(5分)(2020秋•德江县期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=6,tan B=,则CE=.三.解答题(共5小题,满分50分,每小题10分)17.(10分)(2021秋•五华区校级期末)在Rt△ABC中,∠C=90°,∠B=25°,b=10,解这个直角三角形(结果保留小数点后一位).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)18.(10分)(2021秋•长丰县期末)如图,在△ABC中,AB=5,AC=8,∠A=60°.(1)求BC的长.(2)求sin B.19.(10分)(2021春•徐汇区校级月考)如图,在△ABC中,∠ACB=90°,∠CAB>∠B,CD是斜边AB上的中线,过点A作∠CAE=∠B,交BC于点E,交CD于点H,且AH =2CH.(1)求sin B的值;(2)当CD=时,求BE的长.20.(10分)(2020秋•宁德期末)如图,在四边形ABCD中,∠ABC=90°,AD=BD,BC =CD.(1)若BD=13,AB=10,求cos∠CBD的值;(2)设△ABD的面积为S1,△BCD的面积为S2,求证:=4cos2∠CBD.21.(10分)(2021•苏州二模)如图,∠ABC=45°,其中P、Q分别是射线BA、BC上的点,BP=3.(1)给出条件①PQ=4;②∠BPQ=105°;③PQ=6.能使BQ的长唯一确定的条件是;(2)在题(1)中选一个使BQ的长唯一确定的条件,求出此时BQ的长度.。

九年级解直角三角形经典习题附答案

九年级解直角三角形经典习题附答案

解直角三角形班级: 姓名 成绩解直角三角形1、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.2、我国为了维护队钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP ∥BD ),当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC =5km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).C AD B︒ 55 5.8m 10mA BC D 姓名: 得分:M E NCA4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。

在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°. 问:距离B 点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16 米,坝高 6米,斜坡BC 的坡度3:1=i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ; (2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。

根据上述测量数据,即可求出旗杆的高度MN 。

解直角三角形精选题

解直角三角形精选题

解直角三角形精选题42道一.选择题(共17小题)1.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=212.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.43.如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.4.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm5.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.B.C.D.26.如图,在△ABC中,sin B=,tan C=2,AB=3,则AC的长为()A.B.C.D.27.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.8.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan ∠OBD的值是()A.B.2C.D.9.在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm10.如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.211.在如图所示8×8的网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点E,则∠AED的正切值是()A.2B.C.D.12.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.13.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.14.如图,在正方形网格中,△ABC的位置如图,其中点A、B、C分别在格点上,则sin A 的值是()A.B.C.D.15.如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为()A.B.C.D.16.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tan B=,则tan∠CAD的值()A.B.C.D.17.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.二.填空题(共17小题)18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.19.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于.20.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于.21.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.22.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.23.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,连接AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.24.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.25.如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.26.△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是.27.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是.28.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是.29.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是cm2.30.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为.31.如图,在Rt△ABC中,∠ACB=90°,sin A=,点C关于直线AB的对称点为D,点E为边AC上不与点A,C重合的动点,过点D作BE的垂线交BC于点F,则的值为.32.如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB 上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的序号).33.已知,在△ABC中,∠A=45°,AB=4,BC=5,则△ABC的面积为.34.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD 中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为.三.解答题(共8小题)35.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.36.已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.37.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.求BC的长.38.如图,在△ABC中,AD⊥BC于点D,若AD=6.tan C=,BC=12,求cos B的值.39.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.40.如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sin B=,tan A=,AC=,(1)求∠B的度数和AB的长.(2)求tan∠CDB的值.41.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.42.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=.(1)求CD的长;(2)求tan∠DBC的值.解直角三角形精选题42道参考答案与试题解析一.选择题(共17小题)1.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选:B.2.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.4【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.3.如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.【解答】解:如图,过点B作BD⊥AC于D,由勾股定理得,AB==,AC==3,∵S△ABC=AC•BD=×3•BD=×1×3,∴BD=,∴sin∠BAC===.故选:B.4.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选:A.5.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.B.C.D.2【解答】解:延长AD、BC,两线交于O,∵在Rt△ABO中,∠B=90°,tan A==,AB=3,∴OB=4,∵BC=2,∴OC=OB﹣BC=4﹣2=2,在Rt△ABO中,∠B=90°,AB=3,OB=4,由勾股定理得:AO=5,∵∠ADC=90°,∴∠ODC=90°=∠B,∵∠O=∠O,∴△ODC∽△OBA,∴=,∴=,解得:DC=,故选:C.6.如图,在△ABC中,sin B=,tan C=2,AB=3,则AC的长为()A.B.C.D.2【解答】解:过A作AD⊥BC于D,则∠ADC=∠ADB=90°,∵tan C=2=,sin B==,∴AD=2DC,AB=3AD,∵AB=3,∴AD=1,DC=,在Rt△ADC中,由勾股定理得:AC===,故选:B.7.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.【解答】解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC===5,∴sin∠ACH==,故选:D.8.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan ∠OBD的值是()A.B.2C.D.【解答】解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.法二:在求出AF=4后∵tan∠BAD==.∴=.∴OF=3.∴OD=OF=3.∴tan∠OBD==.故选:A.9.在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【解答】解:∵sin A==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.10.如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.2【解答】解:设DE交AC于T,过点E作EH⊥CD于H.∵∠BAC=90°,BD=DC,∴AD=DB=DC,∴∠B=∠DAB,∵∠B=∠ADE,∴∠DAB=∠ADE,∴AB∥DE,∴∠DTC=∠BAC=90°,∵DT∥AB,BD=DC,∴AT=TC,∴EA=EC=ED,∴∠EDC=∠ECD,∵EH⊥CD,∴CH=DH,∵DE∥AB,∴∠EDC=∠B,∴∠ECD=∠B,∴cos∠ECH=cos B=,∴=,∴==2,故选:D.11.在如图所示8×8的网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点E,则∠AED的正切值是()A.2B.C.D.【解答】解:如图,取格点K,连接AK,BK.观察图形可知AK⊥BK,BK=2AK,BK∥CD,∴∠AED=∠ABK,∴tan∠AED=tan∠ABK==,故选:B.12.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.【解答】解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故选:B.13.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【解答】解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选:B.14.如图,在正方形网格中,△ABC的位置如图,其中点A、B、C分别在格点上,则sin A 的值是()A.B.C.D.【解答】解:过点C作CD⊥AB于点D,∵BC=2,∴S△ABC=BC×4=4,∵AB==4,∴CD==,∵AC==2,∴sin A===,故选:A.15.如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为()A.B.C.D.【解答】解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB===3,∴cos∠ABC===.故选:B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=.故选:B.16.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tan B=,则tan∠CAD的值()A.B.C.D.【解答】解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tan B=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴,∴CE=x,DE=,∴AE=,∴tan∠CAD==.故选:D.17.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.【解答】解:连接格点MN、DM,如图所示:则四边形MNCE是平行四边形,△DAM和△MBN都是等腰直角三角形,∴EC∥MN,∠DMA=∠NMB=45°,DM=AD=2,MN=BM=,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=180°﹣∠DMA﹣∠NMB=180°﹣45°﹣45°=90°,∴tan∠CPN=tan∠DNM===2,故选:B.二.填空题(共17小题)18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.【解答】解:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A===.故答案为.19.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于4﹣4.【解答】解:作CH⊥AE于H,如图,∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.20.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于15或10.【解答】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=AB sin B=5,BD=AB cos B=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.21.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.【解答】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.22.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.【解答】解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.23.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,连接AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.【解答】解:如图,过点E作EH⊥BC于H.∵BC=7,CD=3,∴BD=BC﹣CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°,∵DE=DC=3,∴EH=DE•sin60°=,∴E到直线BD的距离为,故答案为.24.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【解答】解:给图中相关点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.25.如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.【解答】解:∵在△ABC中,∠ACB=90°,点D为AB边的中点,∴AD=BD=CD=AB,又∵CD=3,∴AB=6,∴cos∠DCB=cos∠B===,故答案为:.26.△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是21或15.【解答】解:①如图1,作AD⊥BC,垂足为点D,在Rt△ABD中,∵AB=12、∠B=30°,∴AD=AB=6,BD=AB cos B=12×=6,在Rt△ACD中,CD===,∴BC=BD+CD=6+=7,则S△ABC=×BC×AD=×7×6=21;②如图2,作AD⊥BC,交BC延长线于点D,由①知,AD=6、BD=6、CD=,则BC=BD﹣CD=5,∴S△ABC=×BC×AD=×5×6=15,故答案为:21或15.27.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是2.【解答】解:设菱形ABCD边长为t,∵BE=2,∴AE=t﹣2,∵cos A=,∴,∴=,∴t=5,∴AE=5﹣2=3,∴DE==4,∴tan∠DBE===2.故答案为:2.28.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是(4,).【解答】解:过点A作AG⊥x轴,交x轴于点G.∵B、C的坐标分别是(1,0)、(0,),∴OC=,OB=1,∴BC==2.∵∠ABC=90°,∠BAC=30°,∴AB====2.∵∠ABG+∠CBO=90°,∠BCO+∠CBO=90°,∴∠ABG=∠BCO.∴sin∠ABG===,cos∠ABG===,∴AG=,BG=3.∴OG=1+3=4,∴顶点A的坐标是(4,).故答案为:(4,).29.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是2cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=2cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=2cm.故S△ACF=×2×2=2(cm2).故答案为:2.30.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为2.【解答】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.故答案为:2.31.如图,在Rt△ABC中,∠ACB=90°,sin A=,点C关于直线AB的对称点为D,点E为边AC上不与点A,C重合的动点,过点D作BE的垂线交BC于点F,则的值为.【解答】解:如图,设DF交AB于M,CD交AB于N,BE交DF于J.∵∠ACB=90°,∴sin A==,∴可以假设BC=4k,AB=5k,则AC=3k,∵C,D关于AB对称,∴CD⊥AB,CN=DN,∵S△ABC=×BC×AC=×AB×CN,∴CN=DN=k,∴CD=k,∵∠FCD+∠DCA=90°,∠DCA+∠A=90°,∴∠DCF=∠A,∵DF⊥BE,CD⊥AB,∴∠BJM=∠DNM=90°,∵∠BMJ=∠DMN,∴∠D=∠ABE,∴△DCF∽△BAE,∴===.32.如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB 上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的序号).【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④33.已知,在△ABC中,∠A=45°,AB=4,BC=5,则△ABC的面积为2或14.【解答】解:过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,∴BD=AD=4,在Rt△BDC中,BC=5,∴CD==3,①△ABC是钝角三角形时,AC=AD﹣CD=1,∴S△ABC=AC•BD==2;②△ABC是锐角三角形时,AC=AD+CD=7,∴S△ABC=AC•BD=×7×4=14,故答案为:2或14.34.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD 中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为9.【解答】解:如图,过点A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.在Rt△ABH中,tan B==,∴可以假设AH=3k,BH=4k,则AB=5k=10,∴k=2,∴AH=6,BH=8,∵BC=12,∴CH=BC﹣BH=12﹣8=4,∴AC===2,∵∠B+∠D=90°,∠D+∠ECD=90°,∴∠ECD=∠B,在Rt△CED中,tan∠ECD==,∵CD=5,∴DE=3,CE=4,∴AE===6,∴AD=AE+DE=9.故答案为:9.三.解答题(共8小题)35.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.【解答】解:(1)∵AC⊥BD,cos∠ABC==,BC=8,∴AB=10,在Rt△ACB中,由勾股定理得,AC===6,即AC的长为6;(2)如图,连接CF,过F点作BD的垂线,垂足E,∵BF为AD边上的中线,即F为AD的中点,∴CF=AD=FD,在Rt△ACD中,由勾股定理得,AD===2,∵三角形CFD为等腰三角形,FE⊥CD,∴CE=CD=2,在Rt△EFC中,EF===3,∴tan∠FBD===.解法二:∵BF为AD边上的中线,∴F是AD中点,∵FE⊥BD,AC⊥BD,∴FE∥AC,∴FE是△ACD的中位线,∴FE=AC=3,CE=CD=2,∴在Rt△BFE中,tan∠FBD===.36.已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB 于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.【解答】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB==,∴CD=5,由勾股定理得:AD==12,∵E是AD的中点,∴ED=AD=6,∴tan∠DCE==;(2)过D作DG∥CF交AB于点G,如图所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴==,==1,∴AF=FG,设BG=3x,则AF=FG=5x,BF=FG+BG=8x∴=.37.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.求BC的长.【解答】解:在Rt△ABD中,∵,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=+1.38.如图,在△ABC中,AD⊥BC于点D,若AD=6.tan C=,BC=12,求cos B的值.【解答】解:∵tan C===,∴CD=4.∴BD=12﹣4=8.在Rt△ABD中,AB==10.∴cos B==.39.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.40.如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sin B=,tan A=,AC=,(1)求∠B的度数和AB的长.(2)求tan∠CDB的值.【解答】解:(1)作CE⊥AB于E,设CE=x,在Rt△ACE中,∵tan A==,∴AE=2x,∴AC==x,∴x=,解得x=1,∴CE=1,AE=2,在Rt△BCE中,∵sin B=,∴∠B=45°,∴△BCE为等腰直角三角形,∴BE=CE=1,∴AB=AE+BE=3,答:∠B的度数为45°,AB的值为3;(2)∵CD为中线,∴BD=AB=1.5,∴DE=BD﹣BE=1.5﹣1=0.5,∴tan∠CDE===2,即tan∠CDB的值为2.41.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC×tan60°=10,∵AB∥CF,∴BM=BC×sin30°=10×=5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.42.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=.(1)求CD的长;(2)求tan∠DBC的值.【解答】解:(1)在Rt△ADE中,∠AED=90°,AE=6,cos A=,∴AD==10,∴==8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴,即=,∴BC=24,∴.。

中考数学解直角三角形练习

中考数学解直角三角形练习

中考数学解直角三角形练习第一课时(锐角三角函数)课标要求1、 通过实例认识直角三角形的边角关系:即锐角三角函数(sinA 、cosA 、tanA 、cotA )2、 熟知300、450、600角的三角函数值3、 会用计算器求锐角的三角函数值:以及由已知的三角函数值求相应的锐角。

4、 通过特殊角三角函数值:知道互余两角的三角函数的关系。

5、 了解同角三角函数的平方关系。

sin 2α+cos 2α=1:倒数关系tan α·cot α=1.6、 熟知直角三角形中:300角的性质。

中招考点1、 锐角三角函数的概念:锐角三角函数的性质。

2、 300、450、600角的三角函数值及计算代数式的值。

3、 运用计算器求的三角函数值或由锐角三角函数值求角度。

典型例题[例题1] 选择题(四选一)1、如图19-1:在Rt △ABC 中:CD 是斜边AB 上的高:则下列线段比中不等于sinA 的是( )A. AC CDB. CB BDC.AB CBD.CBCD分析:sinA=AC CD ; sinA=sin ∠BCD=BC BD ;sinA= ABBC;从而判断D 不正确。

故应选D.。

2、在Rt △ABC 中:∠C =900:∠A =∠B :则cosA 的值是( ) A.21B. 22 C.23 D.1分析:先求出∠A 的度数:因为∠C =900:∠A =∠B :故∠A =∠B =450:再由特殊角的三角函数值可得:cosA=cos450=22故选B.。

3、在△ABC 中:∠C =900:sinA=23 ;则cosB 的值为( )A. 21B. 22C.23D.33分析:方法一:因为sinA=23;故锐角A =600。

因为∠C =900:所以∠B =300.cosB=23.故选C.方法二:因为 ∠C =900:故 ∠A 与 ∠B 互余.所以cosB=sin A =23.故选C..4、如图19-2:在△ABC 中:∠C =900:sinA=53.则BC :AC 等于( )A C图19-1A. 3:4B. 4:3C.3:5D.4:5 分析: 因为∠C =900:sinA =53 ;又sinA=AB BC .所以AB BC =53; 不妨设BC =3k ;AB=5k ;由勾股定理可得AC =22BC AB -=4k ;所以BC :AC =3k:4k=3:4故选A.。

九年级中考数学复习解直角三角形专项练习(含答案)

九年级中考数学复习解直角三角形专项练习(含答案)
九年级中考数学复习解直角三角形专项练习
1. 在������������ △ ������������������中,∠������=90 ∘ ,cos������ = 35,则sin������的值为( )
5
4
5
3
A.4
B.5
C.3
D.5
2. 如图,在 △ ������������������中,∠������ = 90,sin������ = 35,则cos������等于( )
31. 如图,港口������在观测站������的正西方向,������������ = 4������������,某船从港口������出发,沿北偏西15 ∘ 方向航行一段距离后到达������处,此时从观测站������ 处测得该船位于北偏西60 ∘ 的方向,则该船航行的距离(即������������的长)为多少?(结果保留根号)
14.
计算:������������������60 ⋅ ������������������30 ‒ ������������������45 = ________. 15. 若 2cos������ ‒ 1 = 0,则������ = ________.
16. 计算:| 2 ‒ 2| + ( 2 ‒ 1)0 + 2sin45 ∘ .
28. 如图,两座建筑物的水平距离������������为60������,从������点测得������点的仰角������为53 ∘ ,从������点测得������点的俯角������为37 ∘ ,求两座建筑物的高度(参 考数据:sin37 ∘ ≈ 35,cos37 ∘ ≈ 45,tan37 ∘ ≈ 34,sin53 ∘ ≈ 45,cos53 ∘ ≈ 35,tan53 ∘ ≈ 43).

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。

3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。

在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。

在 Rt△ABC 中,BC =。

4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。

5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。

因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。

在 Rt△BDE 中,tan∠DBE =。

二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。

答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。

初三数学解直角三角形试题

初三数学解直角三角形试题

初三数学解直角三角形试题1.一公路大桥引桥长100米,已知引桥的坡度i=1:3,那么引桥的铅直高度为米(结果保留根号).【答案】10.【解析】根据坡度的定义:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,求解即可.试题解析:如图:由题意得,桥长AB=10米,∵BC:AC=1:3,∴设BC=x,AC=3x,则AB=解得:x=10【考点】解直角三角形的应用-坡度坡角问题.2.如图,若△ABC和△DEF的面积分别为、,则A.B.C.D.【答案】D.【解析】在两个图形中分别作BC、EF边上的高,求出、,比较即可.如图,过点A、D分别作AG⊥BC,DH⊥EF,垂足分别为G、H,在Rt△ABG中,AG="ABsinB=5×sin" 40°="5sin" 40°,在Rt△DHE中,∠DEH=180°﹣130°=50°,DH=DEsin∠DEH="5sin" 40°,∴AG=DH.∵BC=8,EF=5,∴.故选D.【考点】解直角三角形.3.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.B.C.D.【答案】D.【解析】∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,,∴.故选D.【考点】1.直角三角形两锐角的关系;2.锐角三角函数定义.4.如图,从热气球P上测得两建筑物A、B的底部的俯角分别为45°和30°,如果A、B两建筑物的距离为60米,P点在地面上的正投影恰好落在线段AB上,求热气球P的高度.(结果保留根号)【答案】(30-30)米.【解析】过P作AB的垂线,设垂足为G.分别在Rt△APG和Rt△BPG中,用PG表示出AG、BG的长,进而由AB=AG+BG=90求得PC的长,即热气球P的高度.试题解析:过点P作PG⊥AB与点G,设PG=x,则AG=PG=x,BG=x,∴x+x=60,∴x=30-30.答:热气球P的高度是(30-30)米.考点: 解直角三角形的应用----仰角俯角问题.5.如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度,同时他测得自己的影长NH﹦336cm,而他的身长MN为168cm,求铁塔的高度.【答案】AB=4.1米 .【解析】作AC的延长线交BD的延长线于E,作CF⊥DE,垂足为F.利用勾股定理和相似三角形的性质求出DF,FE,从而得到BE的长,再用相似三角形的性质求出AB即可.试题解析:过点C作CE⊥BD于点E,延长AC交BD延长线于点F在Rt△CDE中,∴设CE="8x" ,DE="15x" ,则CD=17x∵DC=3.4米∴CE=1.6米,DE=3米在Rt△MNH中,tan∠MHN∴在Rt△ABF中,tan∠F tan∠MHN∴EF=3.2米即BF=2+3+3.2=8.2米∴在Rt△CEF中,tan∠F∴AB=4.1米答:铁塔的高度是4.1米.【考点】1.解直角三角形的应用-坡度坡角问题;2.相似三角形的应用.6. tan60°的值等于A.1B.C.D.2【答案】C.【解析】试题解析:根据tan60°=即可得出答案.故选C.考点: 特殊角的三角函数值.7.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD= cm.【答案】2.【解析】如图,过点B作BE⊥AC,垂足为点E,AB的垂直平分线交AB于点F.∵在△ABC中,AB=BC,∠B=1200,AC=6cm,∴∠A=300,AE=3cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三解直角三角形练习题一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、在Rt △ABC 中,∠C =900,AB =,35cm BC cm=则SinA= cosA= 3、Rt △ABC 中,∠C =900,SinA=54,AB=10,则BC =4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\=5、 ∠B 为锐角,且2cosB -1=0则∠B =6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB=7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB= 二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( ) A 、都扩大2倍 B 、都扩大4倍 C 、没有变化 D 、都缩小一半2、若∠A 为锐角,且cotA <3,则∠A ( )A 、小于300B 、大于300C 、大于450且小于600D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、A a sin C 、acosA D 、Aa cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、15005、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( )A 、41cmB 、21cmC 、43cmD 、23cm三、求下列各式的值1、sin 2600+cos 26002、sin600-2sin300cos3003. sin300-cos 24504. 2cos450+|32 |5. 0045cos 360sin 2+ 6. 130sin 560cos 300-7. 2sin 2300·tan300+cos600·cot300 8. sin 2450-tan 2300四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5, 求sinA, cosA, tanA, cotA2. 在Rt △ABC 中,∠C =900,若1312sin =A 求cosA, sinB, cosB3. 在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A四、根据下列条件解直角三角形。

在Rt △ABC 中。

1、c=20 ∠A=450 2. a=36 ∠B=3003.a=19 c=2194. a=66,26 b五、等腰梯形的一个底角的余弦值是232,腰长是6,上底是22求下底及面积解直角三角形练习题A 组1、 锐角A 满足2 sin(A-150)=3,则∠A= .2、已知:CD ⊥AB,CD=33m ,∠CAD=∠DBC=600, 则拉线AC 的长是 m 。

3、如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于____________4、如图,在矩形ABCD 中,DE ⊥AC于E ,设∠ADE=α,且53cos =α,AB = 4, 则AD 的长为_______________5、在山坡上种树,要求株距为5.5米,测得斜坡的倾斜角为300,则斜坡上的相邻两株间的坡面距离是 米。

6、如图所示,某建筑物BC 直立于水平地面,AC=9米,要建造阶梯AB ,使倾斜角为300,且每阶高不超过20厘米,则阶梯至少要建 阶。

一阶计算;3取1.732)(最后一阶的高不足20厘米时,按B 组1、 △ABC 中,∠A=600,∠B=450,AB=8.求△ABC 的面积(结果可保留根号)。

DCBAAB CDEa BA C CBA2、 如图:四边形 ABCD 中, ∠B=∠D=900,∠BAD=600,且BC=11,CD=2,求AC 的长。

3、甲、乙两楼相距100米,从乙楼底望甲楼顶仰角为60°,从甲楼顶望乙楼顶俯角为30°,要求画出正确图形并求两楼的高度。

4、如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点。

已知∠BAC=600,∠DAE=450,点D 到地面的垂直距离DE=32m 。

求点B 到地面的垂直距离BC. C 组1.如图,Rt △ABC 中,∠ACB=900,D 是AB 的中点, sin α=32,AC=54,求ABC S 。

D EB CAαC2、某居民小区有一朝向为正南方向的居民楼(如图8),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (结果保留整数)图88532tan ,12510632cos ,1005332sin 000≈≈=初中数学解直角三角形总复习题一、填空题:(2`×21=42`)1、解直角三角形是指在一个直角三角形中,除 外共 个个元素,已知个元素(其中至少有一个是 ),求出其余 个元素的过程。

2、在Rt △ABC 中,∠C = 90°,三条边a 、b 、c 这间的关系式是 ,两锐角∠A 、∠B 之间的关系式是 ,边角a 、b 、c 、∠A 、∠B 之间的关系是 , , , ; , , , 。

3、在Rt △ABC 中,∠C = 90°,∠B= 30°,c = 3,则①∠A = ,②a = ,③b = 。

4、在Rt △ABC 中,∠C = 90°,∠B= 45°,c = 3,则①∠A = ,②a = ,③b = 。

5、在Rt △ABC 中,∠C = 90°,a = 1. 5,c = 3,则①∠A = ,② ∠B = ,③b = 。

6、在Rt △ABC 中,∠C = 90°,a = 2,sinA = 31,则①∠A = ,② ∠B= ,③b= ④c = 。

(保留根号)7、在Rt △ABC 中,∠C = 90°,a = 2,tanB = 31,则①∠A = ,② ∠B= ,③b= ④c = 。

(保留根号)8、在Rt △ABC 中,∠C = 90°,a = 2,cotB = 31,则①∠A = ,② ∠B= ,③b= ④c = 。

(保留根号)9、在Rt △ABC 中,∠C = 90°,a = 2,3a = 2b ,则①∠A = ,② ∠B = ,③b= ④c = 。

(保留根号)10、在Rt △ABC 中,∠C = 90°,a = 2,5a = 3c ,则①∠A = ,② ∠B = ,③b= ④c = 。

(保留根号) 11、在Rt △ABC 中,∠C = 90°,a = 10,S △ABC =3350,则①∠A = , ② ∠B = ,③b= ④c = 。

(保留根号) 12、在△ABC 中,∠A= 75°,∠B= 45°,c = 26,则①a = ,②b = 。

13、在△ABC 中,c = b =3 ,a= 2,则sinA = 。

14、在Rt △ABC 中,∠C = 90°,∠A = 60°,斜边上的高CD =3, 则 ①∠B = ,② a = ,③b= ④c = 。

(保留根号)15、在Rt △ABC 中,∠C = 90°,∠A = 60°,a +b =14, 则①∠B = ,② a = ,③b= ④c = 。

(保留根号) 16、在Rt △ABC 中,∠C = 90°,斜边上的高CD =12,AD = 16, 则①∠B = ,② ∠B = ,③a = ,④b= ⑤c = 。

(保留根号)17、在Rt △ABC 中,∠C = 90°,若sinA = cosA ,则tanB = 。

18、cos43°= 0. 7314,sinx = 0.7314 ,则x = 。

19、在Rt △ABC 中,∠C = 90°,∠B= 30°,则tanA +sinB= 。

20、tanA ·tan15°= 1,则锐角∠A = 。

21、某人上坡走了10米,实际升高了6 ,则这斜坡的坡度i= 二、填空题:(3`×8=24`)1、在Rt △ABC 中,∠C = 90°,a 、b 、c 分别是三角形的三边,则下列正确的是( )A 、a = c sinB B 、a = b cotBC 、b = c sinBD 、c = atanB 2、关于锐角α、β,下列说法正确的是( ) A 、若α+β=90°则sin α=sin β B 、sin (α+β)=sin α+sin β C 、若α<β,则cot β-cot α>0 D 、sin α+sin β>1 3、已知0°<x <90°,且sinx = cos60°,则cot 2x =( ) A 、30°B 、60°C 、3D 、33 4、当x 为锐角时,下面的命题中正确的是( ) A 、sinx <tanx B 、cosx >cotx C 、sinx < cosxD 、tanx >cotx5、已知sinx = 31,则锐角x 满足( )A 、0°<x <30°B 、30°<x <45°C 、45°<x <60°D 、60°<x <90° 6、当锐角A >30°时,cosA 的值( ) A 、小于22 B 、大于22 C 、小于23 D 、大于23 7、在Rt △ABC 中,∠C = 90°,则正确的是( ) A 、sinA = cos (90°-B ) B 、tanA = cot (90°-B ) C 、sin 2A +sin 2B = 1 D 、cosA = sinA8、令a = sin60°,b = cos45°,c = tan30°,则它们的大小关系是( ) A 、c <b <a B 、b <a <c C 、a <c <b D 、b <c <a三、解答题:1、(10`)如图:已知楼房AB 高40米,铁塔CD 塔基中心C 到AB 楼房房基间水平距离B 为40米,从A 望D 的仰角30°求塔CD 的高.2、(11`)数学实验课上,同学们调查知道:本乡位于距离学校不远处最高的山顶上的电信发射台铁塔高30米,为了测量此小山相对学校的高度,在学校里操场上用自制的测仰角的仪器做测试实验,如图:在一个地方测的仰角为α=45°,仰角β高。

相关文档
最新文档