概率论-样本与统计量、统计量的分布.共44页文档
合集下载
概率论与数理统计(06)第6章 统计量及其抽样分布

一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X
独
2
立
,
则
X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2
《概率论与数理统计》统计量及其分布

律性的数学学科.
但数理统计以概率论为基础,更着重于根据试验得
到的数据来对研究对象的客观规律作出种种合理的估
计和判断.
4
第5章
统计量及其分布
数
描述统计学
理
对随机现象进行观测、试验, 以取得有代表
统
性的观测值.
计
的
推断统计学
分
对已取得的观测值进行整理、分析, 作出推
类
断、决策,从而找出所研究的对象的规律性.
O
5
n 10
10
15
20
x
32
01
抽样分布
2. t 分布
2
X
~
N
(0,1)
,
Y
~
x
(n),且X与Y 独立,则
设随机变量
X
T
Y /n
服从自由度为n的t分布,记为t(n).
性质 密度f(t)是偶函数,且t分布的极限分布是标准正
态分布.
33
01
抽样分布
t分布的密度函数
n 1
n 1
那么如何来利用样本呢?
列表?
画图?
统计量!
样本来自于总体,含有总体性质的信息,但较为分
散. 为了进行统计推断,需要把分散的信息进行整理,
针对不同的研究目的,构造不同的样本函数,这种函
数在统计学中称为统计量.
18
本讲内容
01
总体与个体
02
样本
03
统计量
03
统计量
3.统计量
统计量——不含有未知参数的样本函数
f ( x)
n1
n2
x
但数理统计以概率论为基础,更着重于根据试验得
到的数据来对研究对象的客观规律作出种种合理的估
计和判断.
4
第5章
统计量及其分布
数
描述统计学
理
对随机现象进行观测、试验, 以取得有代表
统
性的观测值.
计
的
推断统计学
分
对已取得的观测值进行整理、分析, 作出推
类
断、决策,从而找出所研究的对象的规律性.
O
5
n 10
10
15
20
x
32
01
抽样分布
2. t 分布
2
X
~
N
(0,1)
,
Y
~
x
(n),且X与Y 独立,则
设随机变量
X
T
Y /n
服从自由度为n的t分布,记为t(n).
性质 密度f(t)是偶函数,且t分布的极限分布是标准正
态分布.
33
01
抽样分布
t分布的密度函数
n 1
n 1
那么如何来利用样本呢?
列表?
画图?
统计量!
样本来自于总体,含有总体性质的信息,但较为分
散. 为了进行统计推断,需要把分散的信息进行整理,
针对不同的研究目的,构造不同的样本函数,这种函
数在统计学中称为统计量.
18
本讲内容
01
总体与个体
02
样本
03
统计量
03
统计量
3.统计量
统计量——不含有未知参数的样本函数
f ( x)
n1
n2
x
概率论与数理统计统计量样本及抽样分布

(Xi
X )k
它反映了总体k 阶矩的信息
它反映了总体k 阶 中心矩的信息
请注意 : 若总体X的k阶矩E( X k ) k存在,则当n 时,
Ak
1 n
n
i 1
X
i
Hale Waihona Puke kp kk 1,2, .
事实上 由X1, X2 , , Xn独立且与X同分布,
有X
k 1
,
X
k 2
,
,
X
n
k
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2, ,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 , , Ak ) p g(1,2 , ,k ) 其中g为连续函数.
我们关心的是总体中的个体的某项指标(如人的 身高、灯泡的寿命,汽车的耗油量…) .
由于每个个体的出现是随机的,所以相应的数量指 标的出现也带有随机性 . 从而可以把这种数量指标看 作一个随机变量X ,因此随机变量X的分布就是该数 量指标在总体中的分布.
总体就可以用一个随机变量及其分布来描述.
因此在理论上可以把总体与概率分布等同起来.
样本是联系二者的桥梁
总体分布决定了样本取值的概率规律,也就是 样本取到样本值的规律,因而可以由样本值去推断 总体.
小结
总体:研究对象的全体称为总体 个体:总体中每个成员称为个体
简单随机样本:
由简单随机抽样得到的样本称为简单随机样本, 它可以用与总体X独立同分布的n个相互独立的随机 变量 X1,X2,…,Xn表示, n为样本容量,
1. 代表性: X1,X2,…,Xn中每一个与所考察的总体有 相同的分布.
第5章 概率分布与统计量抽样分布优秀课件

b
P(a X b) a f (x)dx F(b) F(a)
分布函数与密度函数的图示
1. 密度函数曲线下的面积等于1 2. 分布函数是曲线下小于 x0 的面积
f(x)
F ( x0 )
x0
x
连续型随机变量的期望和方差
1. 连续型随机变量的数学期望为
E(X ) xf (x)dx
2. 方差为
第5章 概率分布与 统计量抽样分布
随机变量的概念
随机变量
(random variables)
1. 一次试验的结果的数值性描述 2. 一般用 X、Y、Z 来表示 3. 例如: 投掷两枚硬币出现正面的数量 4. 根据取值情况的不同分为离散型随机变
量和连续型随机变量
离散型随机变量
(discrete random variables)
n
E( X ) xi pi i 1
( X取有限个值)
E( X ) xi pi i 1
( X取无穷个值)
离散型随机变量的方差
(variance)
1. 随机变量X的每一个取值与期望值的离差平 方和的数学期望,记为D(X)
2. 描述离散型随机变量取值的分散程度 3. 计算公式为
D( X ) E[ X E( X )]2 若X是离散型随机变量,则
概率是曲线下的面积
b
P(a X b) a f (x)dx
f(x)
ab
x
分布函数
(distribution function)
1. 连续型随机变量的概率可以用分布函数F(x) 来表示
2. 分布函数定义为
x
F(x) P(X x) f (t)dt ( x )
3. 根据分布函数,P(a<X<b)可以写为
P(a X b) a f (x)dx F(b) F(a)
分布函数与密度函数的图示
1. 密度函数曲线下的面积等于1 2. 分布函数是曲线下小于 x0 的面积
f(x)
F ( x0 )
x0
x
连续型随机变量的期望和方差
1. 连续型随机变量的数学期望为
E(X ) xf (x)dx
2. 方差为
第5章 概率分布与 统计量抽样分布
随机变量的概念
随机变量
(random variables)
1. 一次试验的结果的数值性描述 2. 一般用 X、Y、Z 来表示 3. 例如: 投掷两枚硬币出现正面的数量 4. 根据取值情况的不同分为离散型随机变
量和连续型随机变量
离散型随机变量
(discrete random variables)
n
E( X ) xi pi i 1
( X取有限个值)
E( X ) xi pi i 1
( X取无穷个值)
离散型随机变量的方差
(variance)
1. 随机变量X的每一个取值与期望值的离差平 方和的数学期望,记为D(X)
2. 描述离散型随机变量取值的分散程度 3. 计算公式为
D( X ) E[ X E( X )]2 若X是离散型随机变量,则
概率是曲线下的面积
b
P(a X b) a f (x)dx
f(x)
ab
x
分布函数
(distribution function)
1. 连续型随机变量的概率可以用分布函数F(x) 来表示
2. 分布函数定义为
x
F(x) P(X x) f (t)dt ( x )
3. 根据分布函数,P(a<X<b)可以写为
概率论 第六章 样本及抽样分布

函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.
概率论-样本与统计量、统计量的分布

2
iid
Xi
N (0,1) (
i 1
n
Xi
)
2
(n)
2
Xi X 则Z1,Z2,…,Zn并不完全自由, 有一个约束条件: 令 Zi 故自由度 1 Z1+Z2+…+Zn= ( X 1 X X 2 X X n X ) =0 为n-1.
特别地,若 X1 , X 2 , , X n ~ N ( , 2 )
则 X 1X ~ N , , i
n 2
i . i .d
X
n i 1
n
n
~ N 0,1
标准正态分布的 分位数
定义 若 P X u 则称u为标准正态 分布的上 分位数.
2
E( X ) ( E X ) D X n 1 n 1 2 2 2 2 2 ( ) n ( ) n 1 i 1 n
1 2 2 EX i nE ( X ) n 1 i 1
S2
样本的数字特征
3.样本k阶矩 k阶原点矩 k阶中心矩
1 mk X ik n i 1
1 n M k ( X i X )k n i 1
n
m1 X n1 2 M2 S n S 2 ( n较大)
性质 如果总体X的期望为,方差为2,则 2 D( X ) (1) E ( X ) E ( X ) (2) D( X ) n n
i 1
n
3.总体、样本、样本观察值的关系
总体
理论分布
样本
样本观察值
样本空间 —— 样本所有可能取值的集合.
iid
Xi
N (0,1) (
i 1
n
Xi
)
2
(n)
2
Xi X 则Z1,Z2,…,Zn并不完全自由, 有一个约束条件: 令 Zi 故自由度 1 Z1+Z2+…+Zn= ( X 1 X X 2 X X n X ) =0 为n-1.
特别地,若 X1 , X 2 , , X n ~ N ( , 2 )
则 X 1X ~ N , , i
n 2
i . i .d
X
n i 1
n
n
~ N 0,1
标准正态分布的 分位数
定义 若 P X u 则称u为标准正态 分布的上 分位数.
2
E( X ) ( E X ) D X n 1 n 1 2 2 2 2 2 ( ) n ( ) n 1 i 1 n
1 2 2 EX i nE ( X ) n 1 i 1
S2
样本的数字特征
3.样本k阶矩 k阶原点矩 k阶中心矩
1 mk X ik n i 1
1 n M k ( X i X )k n i 1
n
m1 X n1 2 M2 S n S 2 ( n较大)
性质 如果总体X的期望为,方差为2,则 2 D( X ) (1) E ( X ) E ( X ) (2) D( X ) n n
i 1
n
3.总体、样本、样本观察值的关系
总体
理论分布
样本
样本观察值
样本空间 —— 样本所有可能取值的集合.
《概率论与数理统计》第六章

所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .