红外偏振成像技术研究
试论红外偏振成像系统光学设计

试论红外偏振成像系统光学设计1. 引言1.1 研究背景红外偏振成像技术是一种重要的光学成像技术,通过探测目标物体在红外波段的偏振特性来实现高分辨率成像。
红外偏振成像技术在军事、安防、医疗、环境监测等领域具有广泛的应用前景。
目前,随着红外探测器和光学元件制造技术的不断发展和进步,红外偏振成像系统的光学设计越来越受到人们的关注。
在现实世界中,许多目标物体的特征信息都可以通过其在红外波段的偏振特性来进行表征和识别。
不仅可以在日常生活中用于安全检测和犯罪侦查,还可以在医疗领域用于疾病诊断和药物研发。
红外偏振成像技术的发展受到光学设计的限制。
对红外偏振成像系统光学设计进行深入研究和优化具有重要的意义。
通过对红外偏振成像技术的研究和实践,可以更好地理解光学设计原理和流程,进一步提高成像系统的性能和分辨率。
研究红外偏振成像系统的光学设计也可以为相关行业提供更多的创新思路和解决方案,推动该技术在各个领域的广泛应用和发展。
1.2 研究意义红外偏振成像技术在军事、安防、医学和工业领域具有重要的应用价值,可以实现对物体表面的高分辨率成像和材料特性的识别。
红外偏振成像系统的光学设计是整个成像系统中至关重要的一环,直接影响到成像效果和系统性能。
深入研究红外偏振成像系统的光学设计原理和方法具有重要意义。
光学设计是红外偏振成像系统中的关键技术之一,对于提升系统的成像质量和分辨率具有至关重要的作用。
通过合理设计光学系统的光路结构和光学元件的参数,可以有效地优化成像系统的性能,提高成像的清晰度和准确度。
光学设计在红外偏振成像技术的应用中具有广泛的实用性和推广价值。
通过对光学设计原理和流程的深入研究和探讨,可以为工程师和研究人员提供指导和借鉴,帮助他们更好地设计和优化红外偏振成像系统,推动该技术在各个领域的应用和发展。
研究红外偏振成像系统的光学设计具有重要的意义和实用价值。
1.3 研究目的研究目的是为了深入探讨红外偏振成像系统光学设计的原理和方法,以提高系统的成像效果和性能。
红外偏振成像对伪装目标的探测识别研究

给 出了试验 分析 数据 和偏振 融合 效 果 图 。研 究表 明, 用 红外偏 振 成像 技 术 可 以有 效 地 实现 对 采
地 面伪 装 目标 的探 测 和识 别 。研 究结果 还 可 以扩展 到 对人 工假 目标 、 中隐身 目标 等 的探 测和 空
识别。
关键 词 : 外偏振 成像 ; 托克 斯参 量 ; 振 融合 图像 ; 红 斯 偏 伪装 目标 ; 测和 识别 探
第 3 3卷 第 3期
21 0 2年 5月
应用 光学 NhomakorabeaV0 . 3 No 3 I3 .
Ma y 201 2
J u n l fAp l dOpis o r a pi t o e c
文 章 编 号 : 0 2 2 8 ( 0 2 0 — 4 10 1 0 — 0 2 2 1 ) 30 4 — 5
中图分类号 : TN6 ; P 5 5 T 71 文献标志码 : A d i1 . 7 8J o:0 5 6 /AO2 1 3. 3 1 0 O 2 3 00 0 1
I r r d po a i a i n i a i g: e e to n e o nii n nf a e l r z to m g n d t c i n a d r c g to
GAO e g,S M n UN —e g,GAO o b Kefn Ja - o i
( ’n I s i t fAp l d Op is xi n t u e o p i t ,Xi n 7 0 6 a t e c ’ 1 0 5,Ch n ) a ia
Ab t a t Du o t e l we e e t n a d r c g i o r b b l y o a u l g a g t y c r e t s r c : e t h o rd t c i n e o n t n p o a i t fc mo fa e t r e u r n o i i b o t — l c rc li a i g s s e s ti i o t n o d v l p a n w e h o o y t e e ta d r c p o e e t ia m g n y t m ,i s mp r a t t e e o e t c n l g o d t c n e —
偏振成像技术在医学诊断中的应用研究

偏振成像技术在医学诊断中的应用研究随着科技的不断进步,人类掌握了越来越多先进的技术。
其中,偏振成像技术在医学诊断中的应用引起了极大关注。
偏振成像技术是一种通过光学方法分析材料的微结构的技术。
它可以提供高清晰、高分辨率、高灵敏的成像能力,使得医生可以更精确地诊断疾病。
一、偏振成像技术的原理偏振成像技术使用的原理是光的偏振现象。
光的偏振是指在某一个平面上,光的电矢量只振荡在一个方向上。
根据光线在介质中的速度不同,光线会分为两个方向,即快轴和慢轴,这两个方向的产生是由于光线在介质中的不同路程和介质的折射率不同所导致的,而同时又伴随着电矢量的旋转和光的能量变化的现象。
二、偏振成像技术的应用1.神经科学偏振成像技术在神经科学中的应用非常广泛。
利用该技术,我们可以观察到神经元突触中细胞膜对极性的响应,以及膜的电活动对神经元信号的影响。
这对于研究大脑的各种疾病的特征和治疗方案的制定非常有帮助。
2.癌症检测偏振成像技术可以用于癌症的基因识别和检测。
这种技术可以检测癌细胞中细胞核中的染色体,从而识别出细胞内的异常情况。
这对于早期诊断癌症非常有帮助。
3.眼科学偏振成像技术可以用于眼部疾病的诊断和治疗。
这种技术可以通过观察眼睛中的光学象差、散光和角膜厚度等参数来诊断眼病,例如青光眼和视网膜病变等。
4.医疗器械检测偏振成像技术可以用于医疗器械的检测,以确保其符合预测标准。
例如,石灰化的心脏血管可以通过使用偏振成像技术进行观察,以准确检测器件中的结构和状况。
这对于提高医用器械工程的效率和精度非常有帮助。
5.皮肤成像偏振成像技术可以用于诊断皮肤疾病。
该技术通过分析皮肤的色彩和纹理图案来检测皮肤中的血液流动和其他问题。
这可以帮助医生准确诊断和治疗一些皮肤疾病,例如皮肤癌和银屑病等。
三、偏振成像技术的优点使用偏振成像技术有许多优点。
首先,该技术可以提供高清晰、高分辨率、高灵敏的成像能力。
其次,偏振成像技术可以被应用于许多不同领域,例如神经科学、癌症检测、眼科、医疗器械检测和皮肤诊断等,可以更全面地提供医学服务。
红外与激光工程光学偏振成像技术的研究,应用与进展

红外与激光工程光学偏振成像技术的研究,应用与进展篇一:红外和激光工程光学偏振成像技术是一种非常重要的非接触式成像技术,可用于检测和测量物体的光学偏振性质。
本文将介绍光学偏振成像技术的研究、应用和进展。
1. 研究现状光学偏振成像技术是通过利用激光或红外光在不同偏振方向的传播特性来获取物体的偏振信息,从而实现非接触式物体检测和测量的技术。
目前,光学偏振成像技术已经在红外和激光工程领域得到了广泛应用,主要应用于以下领域: (1)光学偏振传感器:光学偏振传感器是一种基于光学偏振成像技术的物体检测传感器,可用于工业自动化、无人驾驶、智能家居等领域。
(2)光学偏振测量:光学偏振测量是一种测量物体偏振性质的方法,可用于航空航天、医疗成像、环境监测等领域。
(3)偏振信息处理:光学偏振成像技术的处理技术对偏振信息的处理和分析至关重要,可用于偏振信息的处理和转换,以及偏振图像的分析和识别。
2. 应用与进展光学偏振成像技术在红外和激光工程领域有广泛的应用,主要应用包括: (1)红外偏振成像:红外偏振成像技术可用于检测和测量物体的红外偏振性质,可用于智能家居、工业自动化、医疗成像等领域。
(2)激光偏振成像:激光偏振成像技术可用于检测和测量激光束的偏振性质,可用于光纤通信、激光雷达等领域。
(3)光学偏振成像传感器:光学偏振成像传感器可用于实现非接触式物体检测和测量,可用于无人驾驶、智能家居、工业自动化等领域。
目前,光学偏振成像技术正在快速发展,尤其是在红外和激光工程领域。
随着技术的发展,光学偏振成像技术的应用将会越来越广泛,并为人类社会的发展做出更大的贡献。
篇二:红外与激光工程光学偏振成像技术是一种利用光学偏振器实现对红外和激光信号进行非接触式成像的技术,具有广泛的应用前景,包括军事、安防、医学、环境监测等领域。
本文将介绍红外与激光工程光学偏振成像技术的研究、应用与进展。
一、研究红外与激光工程光学偏振成像技术的研究主要集中在以下几个方面:1. 光学偏振器的设计:光学偏振器是实现红外与激光工程光学偏振成像技术的基础。
红外偏振技术的原理及应用

红外偏振技术的原理及应用红外偏振技术是指利用物质对红外辐射进行选择性吸收、透射和反射的性质,结合偏振器件进行分析和检测的技术。
红外辐射是处于电磁波谱中可见光和微波之间的一种电磁辐射,具有广泛的应用领域,如军事监测、卫星遥感、环境监测等。
而红外偏振技术则通过选择性的偏振器件,使得能够探测特定方向上的红外辐射,从而实现对物质的分析和检测。
1.红外辐射的偏振性质:红外辐射也具有波动性质,因此可以用偏振参数来表征其振动的方向和方式。
红外辐射的偏振性质可以通过偏振器件如偏振片等进行选择性的分析和测量。
2.偏振器件:偏振器件是红外偏振技术的核心组成部分,通过其选择性地透过或封锁一些方向上的红外辐射。
常用的偏振器件包括偏振片、波片、偏振棒等。
这些器件能够根据红外辐射的偏振方向进行选择性透过,从而实现对红外辐射的分析和检测。
3.红外偏振光谱:红外偏振光谱是利用红外辐射的偏振性质进行分析和检测的方法。
它通过对物质对不同偏振方向红外辐射的选择性吸收、透射和反射的特性进行测量和分析,可以获取物质的结构、组成和性质等信息。
1.材料分析:红外偏振技术可以用于材料的分析和鉴定。
不同物质对红外辐射的吸收、透射和反射特性不同,通过对红外辐射的偏振进行分析,可以获得材料的组分和结构信息,从而实现对材料的分析和鉴定。
2.生命科学:红外偏振技术能够用于生命科学领域的研究。
例如,通过对蛋白质、细胞和组织等生物样品对红外辐射的偏振特性进行测量和分析,可以揭示其结构、功能和代谢等方面的信息,对生命科学的研究和进展具有重要意义。
3.环境监测:红外偏振技术可以应用于环境监测领域。
例如,通过对大气中各种气体对红外辐射的偏振特性进行测量和分析,可以实现对大气污染物的检测和定量分析。
此外,红外偏振技术还可以用于地球遥感和卫星监测等方面,为环境监测提供有效的手段。
4.安全监测:红外偏振技术可以应用于安全监测和检测领域。
例如,通过对烟雾、火焰等火灾危险的特定红外辐射的偏振特性进行测量和分析,可以实现对火灾的实时监测和预警。
红外偏振成像对伪装目标的探测识别研究_王军

机组合 , 探测 波 段 在 可 见 光 、 近 红 外 波 段, 每个通 探测3个 S 体积较 道各自 选 择 波 片 , t o k e s 矢 量, 大, 有运动部件 。
英国 T h a l e s光学有限公司开展了红外偏振成 像探测研 究 , 利用长波偏振热成像仪与普通热成 像仪进行了比对试 验 研 究 。 图 2 为 被 沙 土 掩 埋 的 采用偏振 融 3 种金属材料物体的强度图 和偏振图 ,
图 2 LW I R 偏振成像与普通热成像试验效果比较 F i . 2 E x e r i m e n t e f f e c t c o m a r i s o n b e t w e e n LW I R g p p i m a e a n d c o mm o n I R i m a i n o l a r i z a t i o n g g g p
1 国内外情况
近 年 来, 发达国家在偏振成像探测技术研究 取得了很大 方面开展 了 大 量 的 理 论 与 试 验 研 究 , 的 进 展。 美 国 军 方 和 B A E S Y S T EMS 高 级 技 术 中心对偏振成像探 测 技 术 在 军 事 上 的 应 用 开 展 了
4] 。 图 1 为普 大量研究工作 , 取得了大量试验数据 [
; 收稿日期 : 2 0 1 1 1 1 1 4 2 0 1 2 0 3 0 2 - - 修回日期 : - - , 作者简介 : 王军 ( 男, 江苏沛县人 , 研究员 , 主要从事军用目标光学特性 、 光谱成像及仿真评估技术研究工作 。 1 9 6 8- ) : E-m a i l x a 2 0 5 w a n u n 6 3. c o m @1 g j
: / 中图分类号 : TN 6 5; T P 7 5 1 文献标志码 : A d o i 1 0. 5 7 6 8 J AO 2 0 1 2 3 3. 0 3 0 1 0 0 1
红外偏振成像探测技术及应用研究_姜会林

2003 年, 瑞典国防研究局利用红外偏振探测能在 复杂背景中检出伪装目标的特点,测量证明表面覆盖 空心微珠结构的伪装物体散射光的退偏振度是入射 角的函数。同年,又利用偏振成像透视三层伪装网, 效果如图 6 所示。
旋转偏振片型 时序式,机械旋转 分振幅型 液晶/声光 调制型 分波前/ 分孔径型 分焦平面型 通道调制型 多光路、多探测器, 实时成像 时序式,电控旋转 多光路、单探测器, 实时成像 单光路,单探测器 全偏振、实时成像 单光路、单探测器 全偏振、实时成像
(1. Space opto-electronics institute, Changchun University of Science and Technology, Changchun 130022, China 2. Electronical-information Engeering institute, Changchun University of Science and Technology, Changchun 130022, China)
0
问题的提出
红外偏振成像是在红外成像基础上,通过获得每 一点的偏振信息而增加信息维度的一种成像技术,不 仅能获得目标二维空间的红外图像,而且能获得图像 上每一点偏振信息。利用增加的偏振维度,可明显增 强伪装、暗弱等目标与背景的差异,提高目标探测与 识别能力[1-4]。 根据其获取的偏振信息,红外偏振成像可分为红
收稿日期:2014-03-18;修订日期:2014-05-05. 作者简介:姜会林(1945-),男,博士,博士生导师。主要从事空间激光通信、光电测试、偏振成像等方面的工作。 基金项目:国家“973 项目”。
345
第 36 卷 第 5 期 2014 年 5 月
红外成像光谱的基础研究及应用

红外成像光谱的基础研究及应用红外成像光谱技术(infrared imaging spectroscopy)是一种基于红外辐射的无损分析和检测技术。
它通过将红外辐射反射、透射、散射或发射的光谱信息进行成像处理,可以对物质的结构、成分、形态等进行快速、非接触、大范围和高分辨率的检测与识别。
近年来,随着红外成像光谱技术的不断发展和完善,它已经广泛应用于许多领域,例如医学、环境、食品、化学、材料等。
本文就红外成像光谱技术的基础研究及应用展开探讨。
一、原理和技术1. 原理红外辐射是一种频率介于可见光和微波之间的电磁波辐射。
它具有充分透过大多数非金属物质的特性。
当红外辐射穿过物质时,受到了不同程度的吸收或反射,其反射光谱包含了物质的结构与成分信息。
红外成像光谱技术就是利用红外辐射的这种特性,测量和分析物质的反射光谱,再通过图像处理技术,得到高分辨率的成像结果。
2. 技术红外成像光谱技术基本分为以下几个步骤:采集样品辐射;光谱分析和成像处理;结果分析和识别。
a. 采集样品辐射在采集样品辐射时,可以采用不同的方式。
例如反射法、透射法、散射法和发射法。
通常使用的是反射法和透射法。
反射法是指将红外光发射到样品表面,再通过光谱仪测量它的反射光谱。
透射法则是将样品制成薄片,将红外光照射到样品背面,再通过样品前表面测量其透射光谱。
b. 光谱分析和成像处理在光谱分析和成像处理方面,需要对采集到的红外光谱进行分析。
其中,包括光谱预处和峰识别,即通过对光谱数据分析,找到每个波数位置上的峰,并用化学光谱库进行对比分析。
然后将光谱数据转化为数字图像,实现红外成像。
最后,通过图像处理软件对成像结果进行处理,得到一幅全景图像或者多幅图像拼接后的大范围图像。
c. 结果分析和识别在结果分析和识别方面,可以使用化学图像分析软件或人眼观察等多种方法。
其中,化学图像分析软件可以将不同波数下的峰用伪色图或真彩色图表现出来,方便用户直观观察其分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,偏振成像在伪装目标识别方面具有重要的军事应用价值。
2.会议论文聂劲松红外偏振成像探测技术2005
论文对红外偏振成像技术进行了全面系统的综述,在论述红外偏振特性物理本质的基础上,指出了红外偏振成像技术比较传统的红外成像技术具有的优势;给出了国内外该技术的研究概况;分析了国外研究红外偏振成像技术得到的主要结论;最后,指出红外偏振成像技术不仅是红外侦察技术的一次革命性进步,而且对传统的红外伪装技术提出了严峻的挑战,需要引起我们高度的重视。
3.会议论文刘晓.薛模根.王峰.吴云智.杨钒基于红外偏振特性的水面溢油检测实验研究2008
水面溢油是一种常见的水体污染,在电磁波辐射过程中,反应出与其自身性质相关的红外偏振特性。利用红外偏振特性反演水面溢油特征是水体监测的一种新方法。本研究基于红外偏振成像原理的基础,对不同温度下水面溢油的红外偏振特性进行了实验研究。结果表明:利用水面溢油的红外偏振特性可实现对水面溢油的有效检测。
本文链接:/Thesis_Y1366688.aspx
授权使用:太原科技大学(tykjdx),授权号:c3965fd7-fea4-4044-8910-9de901090927
下载时间:2010年9月6日
ቤተ መጻሕፍቲ ባይዱ
南京理工大学
硕士学位论文
红外偏振成像技术研究
姓名:韩宁
申请学位级别:硕士专业:光学工程
指导教师:陈钱
20080601
红外偏振成像技术研究
作者:韩宁
学位授予单位:南京理工大学
1.会议论文张朝阳.程海峰.陈朝辉.郑文伟.曹义伪装遮障的光学与红外偏振成像研究2008