第一节 函数的概念及其表示
函数的概念及其表示

第1节函数的概念及其表示[要点梳理]1.函数与映射的概念类别函数映射两个集合A 、B设A ,B 是两个非空数集设A ,B 是两个非空集合对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称称f :A →B 为从集合A 到集合B的一个函数称f :A →B 为从集合A 到集合B 的一个映射记法函数y =f (x ),x ∈A映射:f :A →B2.函数的定义域、值域(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.1.函数是特殊的映射,是A ,B 为非空数集的映射,其特征:第一,在A 中取元素的任意性;第二,在B 中对应元素的唯一性.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.一、思考辨析判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)函数是建立在其定义域到值域的映射.()(2)函数y =f (x )的图象与直线x =a 最多有2个交点.()(3)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.()(4)若两个函数的定义域与值域相同,则这两个函数是相等函数.()(5)f (x )=|x |x 与g (x )=⎩⎨⎧<-≥0101x x ,表示同一函数.()(6)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.()二、小题查验1.函数y =x ln (1-x )的定义域为()A .(0,1)B .[0,1)C .(0,1]D .[0,1]2.已知函数f (x )=⎩⎨⎧≤>030log 2x x x x,则f (f (41))的值是()A .9B .19C .-9D .-193.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是()4.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是______________.5.函数f (x )=x -4|x |-5的定义域是__________________.6.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________.1.下列所给图象是函数图象的个数为()A .1B .2C .3D .42.下列各组函数中,表示同一函数的是()A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-13.设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的几个函数:①f (x )=x 2;②f (x )=1x -1;③f (x )=ln(2x +3);④f (x )=2x -2-x;⑤f (x )=2sin x -1.其中是“美丽函数”的序号有______________.[命题角度1]用换元法与配方法求函数解析式1.已知f (x +1)=x +2x ,则f (x )=__________________.2.已知f (x2+1)=lg x ,则f (x )的解析式为________________.[命题角度2]用待定系数法求函数解析式3.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=_____________.4.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,则f (x )的解析式为__________________.[命题角度3]用解方程组法求函数解析式5.定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则函数f (x )的解析式为_____________________.6.已知函数f (x )的定义域为(0,+∞),且f (x )=2f (x1)·x -1,则f (x )=_____________.[命题角度1]求给定函数解析式的定义域1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________________.2.函数y =lg (2-x )12+x -x 2+(x -1)0的定义域是________________.[命题角度2]求抽象函数的定义域3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为()A .(-1,1)B .(-1,—21)C .(-1,0)D .(21,1)4.已知函数f (2x +1)的定义域是(-1,0),则f (x )的定义域为____________.5.已知f (2x )的定义域是[-1,1],则f (log 2x )的定义域为_____________.[命题角度3]已知定义域确定参数问题6.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为______________.[命题角度1]求函数值、值域(最值)1.设函数f (x )=⎩⎨⎧≥<-+-121)2(log 112x x x x ,则f (-2)+f (log 212)=()A .3B .6C .9D .122.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________________.[命题角度2]解方程或解不等式问题3.已知函数f (x )=⎩⎨⎧≥<+0201x x e x ,则方程f (1+x 2)=f (2x )的解集是__________.4.设函数f (x )=⎩⎨⎧>≤+0201x x x x,则满足f (x )+f (x —21)>1的x 的取值范围是____________.5.设函数f (x )=⎪⎩⎪⎨⎧≥<-11311x xx ex ,则使得f (x )≤2成立的x 的取值范围是_______________.[课时训练]一、选择题1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()2.函数y =-x 2-x +2ln x的定义域为()A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]3.已知f (x x+1)=x 2+1x2+1x ,则f (x )=()A .(x +1)2(x ≠1)B .(x -1)2(x ≠1)C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1)4.已知函数f (x )=⎩⎨⎧>+-≤-1)1(log 1221x x x x ,且f (a )=-3,则f (6-a )=()A .-74B .-54C .-34D .-145.已知函数f (x )=⎪⎩⎪⎨⎧>-+≤13412x x x x x ,则f (x )的定义域是()A .[1,+∞)B .[0,+∞)C .(1,+∞)D .[0,1)∪(1,+∞)6.设函数f (x )=x -1,则f (2x)+f (x 4)的定义域为()A .[21,4]B .[2,4]C .[1,+∞)D .[41,2]7.已知f (x )=⎪⎩⎪⎨⎧≤<-≤≤-+10201212x x x x x ,若f (2m -1)<12,则m 的取值范围是()A .m >12B .m <12C .0≤m <12D .12<m ≤1二、填空题8.图中的图象所表示的函数的解析式f (x )=_____________.9.若函数y=f(x)的值域是[1,3],则函数F(x)=1-2f(x+3)的值域是____________. 10.已知函数f(x)=ax-b(a>0),f(f(x))=4x-3,则f(2)=__________.11.若函数f(x)=x2+2ax-a的定义域为R,则a的取值范围为____________.三、解答题12.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.13.已知函数f(x)=x·|x|-2x.(1)求函数f(x)=0时x的值;(2)画出y=f(x)的图象,并结合图象写出f(x)=m有三个不同实根时,实数m的取值范围.14.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(米)与汽车的车速x(千米/时)满足下列关系:y=x2200+mx+n(m,n是常数).如图是根据多次实验数据绘制的刹车距离y(米)与汽车的车速x(千米/时)的关系图.(1)求出y关于x的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.。
第一讲+函数的概念及其表示 高三数学一轮复习

,k∈Z.
2.常见函数的值域 (1)y=kx+b(k≠0)的值域是 R.
(2)y=ax2+bx+c(a≠0)的值域:当 a>0 时,值域为 4ac4-a b2,+∞;当 a<0 时,值域为-∞,4ac4-a b2.
(3)y=xk(k≠0)的值域是{y|y≠0}.
(4)y=ax(a>0 且 a≠1)的值域是(0,+∞). (5)y=logax(a>0 且 a≠1)的值域是 R. (6)y=sin x,y=cos x 的值域是[-1,1],y=tan x 的定义域 是 R.
高考一轮总复习
第二章 函数、导数及其应用
第一讲 函数的概念及其表示
1.函数的概念
内容
函数
两个集合A,B 设A,B是两个非空的实数集
对应关系 f:A→B
如果按照某种确定的对应关系f,使对于集合A中 的任意一个数x,在集合B中都有唯一确定的数y 和它对应
名称
称f:A→B为从集合A到集合B的一个函数
记法
解得2-kπ4<≤x<x≤π+4.2kπ,k∈Z, 当 k=0 时,x∈(0,π)满足;k=1 时,x∈(2π,3π),则 x∈∅; k=-1 时,x∈(-2π,-π),则 x∈[-4,-π), 则 f(x)的定义域为[-4,-π)∪(0,π).故选 D. 答案:D
(2)若函数 f(x)= ax2+abx+b的定义域为{x|1≤x≤2},则 a+
则 y=xf(-2x1]
B.[-4,1)∪(1,8]
C.(1,2]
D.[-1,1)∪(1,2]
解析:由题意,得- x-21≤≠20x≤ ,4, 解得-1≤x≤2 且 x≠1.故 选 D.
答案:D
考点二 求函数的解析式 [例 3](1)已知二次函数 f(2x+1)=4x2-6x+5,求 f(x); (2)已知函数 f(x)满足 f(-x)+2f(x)=2x,求 f(x).
3.1函数的概念及其表示

3.1函数的概念及其表示【知识清单】一.函数有关概念1.函数的有关概念函数的概念设A ,B 是非空的数集,如果按照某种对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数f(x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数函数的记法y =f (x ),x ∈A 定义域x 叫做自变量,x的取值范围A 叫做函数的定义域值域函数值的集合{f (x )|x ∈A}叫做函数的值域2.区间的概念及表示定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b ]{x |a <x <b }开区间(a ,b ){x |x ≥a }半开半闭区间[a ,+∞){x |x >a }开区间(a ,+∞){x |x ≤a }半开半闭区间(-∞,a ]{x |x <a }开区间(-∞,a )R 开区间(-∞,+∞)3.函数的表示方法(1)解析法(2)图像法(3)列表法4.分段函数(1)一般的分段函数指的是在函数整个定义域内,对于自变量x 的不同取值范围有着不同的对应关系的函数。
书写解析式时要分成多段来书写,各段自变量x 的范围的并集正好是完整的定义域。
(2)画分段函数的图像,可以先画各段整体图像,然后截取所需部分即可。
(3)求函数值时,注意带入相应的x 的范围对应的解析式。
【常见题型】一.函数概念的理解1.下列图形(横轴表示x 轴,纵轴表示y 轴)中,表示y 是x 的函数的是()2.设集合 02M x x , 02N y y ,那么下列四个图形中,能表示集合M 到集合N 的函数关系的有()A .①②③④B .①②③C .②③D .②3.如图,设{|02}A x x ,{|12}B y y ,表示A 到B 的函数的是__________(填序号).4.下列是从集合A 到集合B 的函数的是()A .*AB N ,对应法则:3f x y x B .A R , 0,1B ,对应法则1,0:0,0x f x y x C .A B R ,对应法则:f x y xD .A Z ,B Q ,对应法则1:f x y x二.区间的概念1.用区间表示下列数集:(1){x |x ≥1}=________;(2){x |2<x ≤4}=________;(3){x |x >-1,且x ≠2}=________.2.下列集合不能用区间的形式表示的个数为()①{0,1,5,10}A ;② 210,x x x N ;③ ;④ x x 是等边三角形;⑤ 03x x x 或;⑥ 1,x x x Q .A .2B .3C .4D .53.已知(a-1,3a+2]为一个确定的区间,则a 的取值范围是_________.三.函数三要素的考察1.函数y=x -5+31 x 中自变量x 的取值范围是________.2.函数 13x f x x 的定义域为().A . 1,B .1, C . 1,3D .1,33, 3.函数 2021y x的定义域为()A {x|x<12}B {x|x>12}C {x|x<12或12<x<3}D {x|x<12或12<x ≤3}4.下列各组函数中,表示同一函数的是()A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z5.已知函数 f x f x 的定义域为R ,则m 的取值范围是________.6.已知函数()f x 的定义域为[1,2],则函数(12)f x 的定义城是________.7.已知函数(21)y f x 的定义域为 1,2 ,则函数(1) y f x 的定义域为_________.8.函数 f x A ,若3A ,则a 的取值范围是__________.四.函数的表示方法1.作出下列函数的图象并求出其值域.(1)y =2x +1,x ∈[0,2];(2)y =2x,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].2.已知函数 y f x ,用列表法表示如下:x 21 023y 52134则 12f f ()A .4B .5C .6D .93.根据下列条件,求函数 f x 的解析式;(1)已知 f x 是一次函数,且满足 3121217f x f x x ;(2)已知函数()f x 为二次函数,且2(1)()24f x f x x ,求()f x 的解析式;(3)已知3311f x x x x;(4)已知等式 21f x y f x y x y 对一切实数x 、y 都成立,且 01f ;(5)知函数 f x 满足条件123f x f x x对任意不为零的实数x 恒成立;4.某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是()五.分段函数1.已知3,(10)(),((5)),(10)n n f n n N f f n n ,则(5)f 的值为()A.7B.8C.9D .102.在函数)2(23)()21()1(22x x ,x f ,x x x x y 则若中x 的值是()A、1B、1或23C、3 D、33.如图为一分段函数的图象,则该函数的定义域为________,值域为________.4.已知函数 22,0,,02,12,2x x f x x x x x ,(1)求12f f f的值;(2)若 2f x ,求x 的值.5.已知2,11()1,11x x f x x x 或(1)画出()f x 的图象;(2)若1()4f x ,求x 的取值范围;(3)求()f x 的值域.【巩固练习】1.将下列集合用区间表示出来.(1){|3}x x ;(2){|0}x x ;(3){|23}x x ;(4){|1x x ,或24}x .2.已知()f x =2x +x +1,则f =______;f [(2)f ]=______.3.已知 2,31a a 为一个确定的区间,则a 的取值范围是________.4.已知函数 ,m f x x x 且此函数图象过点(1,5),实数m 的值为.5.24,02(),(2)2,2x x f x f x x 已知函数则;若00()8,f x x 则.6.有对应法则f :(1)A ={0,2},B ={0,1},x →2x ;(2)A ={-2,0,2},B ={4},x →x 2;(3)A =R,B ={y |y >0},x →21x ;(4)A =R,B =R,x →2x +1;(5)A ={(x ,y )|x ,y ∈R},B =R,(x ,y )→x +y .其中能构成从集合A 到集合B 的函数的有________(填序号).7.下列函数 f x g x 与表示同一函数的是()A . 42f x x g x 与B . 2x f x x g x x与C . f x g xD . 2f x x g x 与8.拟定从甲地到乙地通话m 分钟的话费由 3.71,(04)() 1.06*(0.52),(4)m f m m m给出,其中 m 是不超过m 的最大整数,如: 3.743 ,从甲地到乙地通话5.2分钟的话费是().A. 3.71B. 4.24C. 4.77D.7.959.已知函数y 的定义域为R ,求实数a 的取值范围.10.已知2()f x ax bx c ,(0)0f ,且(1)()1f x f x x ,试求()f x 的表达式.。
02-第一节 函数的概念及其表示-课时2 函数的表示法高中数学必修一人教A版

3.已知函数 的对应关系如下表,函数 的图象为如图所示的曲线
,其中 1,3 , 2,1 , 3,2 ,则 2
A.3
B.2
=( B
1
2
3
2
3
0
C.1
【解析】 由题知 2 = 1, 1 = 2,所以 2
)
D.0
3
水资源费
污水处理费
1.5
1.4
(1)试写出用户所交水费(元)与用水量 m3 之间的函数解析式;
【解析】 依题意得,当0 ≤ ≤ 180时, = 5;
当180 < ≤ 260时, = 7 − 180 + 5 × 180 = 7 − 360;
(5)解方程组法:已知关于 与
知条件构造出另外一个关于 与
1
1
或 与 − 的表达式,可根据已
或 与 − 的等式,通过解方
程组求出 .
(6)赋值法:通过取某些特殊值代入题设中的等式,可使抽象的问题具体化、
简单化,从而找到规律,求出解析式.
17.已知 是定义在上的函数, 0 = 1,且对任意的实数,都有
[0,2] ∪ {2,3} = [0,2] ∪ {3}.故选D.
−, ≤ 0,
7.(多选)设函数 = ቊ 2
若 = 4,则实数的值可以是
, > 0,
( AD
A.2
)
B.−2
C.4
D.−4
> 0,
≤ 0,
【解析】 因为 = 4,所以ቊ
或ቊ 2
解得 = −4或 = 2.故
4
第2章 第1节 函数的概念及其表示

(2)函数的性质主要考查函数奇偶性、单调性的应用以及函数的对称
性与周期性的综合问题.
第一节 函数的概念及其表示
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
高考命题规律把握
(3)函数的图象主要考察图象的识别问题. (4)指数、对数、幂函数常常考察代数值的大小比较、对数函数的性 质应用等问题. (5)函数的应用主要考察函数的零点问题、函数的建模问题等.
第一节 函数的概念及其表示
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
考点二 求函数的解析式 [典例 1] (1)已知 f 2x+1=lg x,求 f(x)的解析式. (2)已知 f(x)是二次函数,且 f(0)=0,f(x+1)=f(x)+x+1,求 f(x) 的解析式. (3)已知函数 f(x)满足 f(-x)+2f(x)=2x,求 f(x)的解析式.
B.2201211,2908158 D.2201211,2908251
第一节 函数的概念及其表示
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
A [由抽象函数的定义域可知,
211≤2 018x≤985, 211≤2 021x≤985,
解得2201118≤x≤2908251,
所以所求函数的定义域为2201118,2908251.故选 A.]
x 满足的条件
f(x)≠0
f(x)>0 f(x)有意义 f(x)≠π2+kπ,k∈Z 各个函数定义域的交集 使实际问题有意义
第一节 函数的概念及其表示
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
2019新版高中数学人教A版必修一第三章 函数的概念与性质 第1节 函数的概念及其表示

2019新版高中数学人教A 版必修一 第1节 函数的概念及其表示一.知识点: 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f: A→B 为从集合A 到集合B 的一个函数,记作y =f(x),x ∈A. 2.函数的定义域与值域在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域.如果自变量x =a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作y =f(a)或y|x =a .所有函数值构成的集合{y|y =f(x),x ∈A}叫做这个函数的值域. 3.区间及表示设a ,b 是两个实数,而且a<b.(1) 满足不等式a≤x≤b 的实数x 的集合叫做闭区间,表示为[a ,b]; (2) 满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a ,b); (3) 满足不等式a≤x<b 或a<x≤b 的实数x 的集合叫做半开半闭区间,分别 表示为[a ,b),(a ,b];(4)实数集R 可以用区间表示为(-∞,+∞) 二.考点突破 考点一:函数的概念例1:下列各式中,函数的个数是( )①y =1;②y =x 2;③2y x =;④y =.A .4B .3C .2D .1答案:C练习:下列图象中,表示函数关系y =f (x )的是( )A .B .C .D .解:根据函数的定义知,一个x 有唯一的y 对应,由图象可看出,只有选项D 的图象满足这一点.故选:D . 作业:1.下列式子中能确定y 是x 的函数的是________. ①x 2+y 2=1;②y =x -2+1-x ; ③y =12gx 2(g =9.8 m/s 2);④y =x.解析:①中每一个x 对应两个y ,故①不是函数. ②中满足式子有意义的x 取值范围是⎩⎪⎨⎪⎧x -2≥0,1-x≥0即x≤1且x≥2,∴为∅,故②也不是,而③④可以确定y 是x 的函数. 答案:③④考点二:函数的定义域 例2:求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x|x≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x≥0,x -1≥0.解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x>-1,且x≠1,所以这个函数的定义域为{x|x>-1,且x≠1}. 练习:求下列函数的定义域: (1)y =x +12x +1-1-x ;(2)y =x +1|x|-x.解:(1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x≥0,即⎩⎪⎨⎪⎧x≠-1,x≤1,所以函数的定义域为{x|x≤1,且x≠-1}. (2)要使函数有意义,需满足 |x|-x≠0,即|x|≠x, ∴x<0.∴函数的定义域为{x|x<0}. 作业:2.求下列函数的定义域: (1)f(x)=1x +1;(2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1. 解:(1)要使函数有意义,即分式有意义,需x +1≠0,x≠-1.故函数的定义域为{x|x≠-1}.(2)要使函数有意义,需⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x|x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x|x ∈R}.(4)因为当x 2-1≠0,即x≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x|x≠±1,x ∈R}.例3:已知函数y=f (x )定义域是{x|-2≤x ≤3},则y=f (2x ﹣1)的定义域是( ) A .{x|0≤x ≤52}B .{x|-1≤x ≤4}C{x|12-≤x ≤2} D . {x|-5≤x ≤5} 解:∵函数y=f (x )定义域是-2≤x ≤3, ∴由﹣2≤2x ﹣1≤3, 解得﹣≤x ≤2,即函数的定义域为12≤x≤2,故选:C .练习:已知函数y=f(x+1)的定义域是{x|-2≤x≤3},则y=f(x2)的定义域是()A.{x|-1≤x≤4} B.{x|0≤x≤16} C.{x|-2≤x≤2} D.{x|1≤x≤4} 解:∵函数y=f(x+1)的定义域是{x|-2≤x≤3},即﹣2≤x≤3,∴﹣1≤x+1≤4,即函数y=f(x)的定义域为{x|-1≤x≤4},由﹣1≤x2≤4,得﹣2≤x≤2.∴y=f(x2)的定义域是{x|-2≤x≤2}.故选:C.作业:3. 已知函数y=f(x+1)定义域是{x|-2≤x≤1} ,则y=f(2x﹣1)的定义域()A.{x|0≤x≤32} B.{x|-1≤x≤4} C.{x|-5≤x≤5} D.{x|-3≤x≤7}解:∵函数y=f(x+1)定义域是{x|-2≤x≤1},∴-2≤x≤1,∴-1≤x+1≤2,∴-1≤2x﹣1≤2,∴0≤x≤3 2∴y=f(2x﹣1)的定义域为{x|0≤x≤32}.故答案为:A考点三:函数值例4:若f(x)=1-x1+x(x≠-1),求f(0),f(1),f(1-a)(a≠2),f[f(2)].解:f(0)=1-01+0=1;f(1)=1-11+1=0;f(1-a)=1-1-a1+1-a=a2-a(a≠2);f[f(2)]=1-f21+f2=1-1-21+21+1-21+2=2.练习: 设函数f(x)=41-x,若f(a)=2,则实数a=________.解析:由题意知,f(a)=41-a=2,得a=-1. 答案:-1作业:4.已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(2)],g[f(2)]的值. 解:(1)f(2)=11+2=13,g(2)=22+2=6; (2)f[g(2)]=f(6)=11+6=17,g[f(2)]=g(13)=(13)2+2=199. 考点四:简单的求函数的值域 例5:求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1;(3)y =-x 2-2x +3(-1≤x≤2); (4)y =1-x21+x2.解:(1)将x =1,2,3,4,5分别代入y =2x +1,算得函数的值域为{3,5,7,9,11}. (2)∵x ≥0,∴x +1≥1,即函数的值域为[1,+∞).(3)y =-x 2-2x +3=-(x +1)2+4.∵-1≤x≤2,∴0≤x+1≤3,∴0≤(x+1)2≤9.∴-5≤-(x +1)2+4≤4.∴函数的值域为[-5,4].(4)∵y =1-x 21+x 2=-1+21+x 2,∴函数的定义域为R.∵x 2+1≥1,∴0<21+x2≤2.∴y ∈(-1,1]. ∴函数的值域为(-1,1].练习:(1)已知函数y=2x+1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y|1≤y <7} B .{y|1≤y ≤7} C .{1,3,5,7} D .{1,3,5} 解:函数y=2x+1,x ∈{x ∈Z|0≤x <3}={0,1,2}. 当x=0时,y=1,当x=1时,y=3,当x=2时,y=5. ∴函数的值域为{1,3,5}.故选D .(2)函数y=x 2﹣4x+1,x ∈[1,5]的值域是( ) A .{y|1≤y ≤6} B .{y|-3≤y ≤1}C .{y|y ≥-3}D .{y|-3≤y ≤6}解:对于函数f (x )=x 2﹣4x+1,是开口向上的抛物线. 对称轴x=,所以函数在区间[1,5]上面是先减到最小值再递增的.所以在区间上的最小值为f (2)=﹣3.又f (1)=﹣2<f (5)=6,,所以最大值为6.故选D .作业:5.求下列函数的值域:(1)f(x)=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f(x)=(x -1)2+1,x ∈R ; (3)y =1-x 2,x ∈R ; (4)y =2x +1x,x≠0. 解:(1)函数的定义域为{-1,0,1,2,3},∵f(-1)=5, f(0)=2,f(1)=1,f(2)=2,f(3)=5, ∴这个函数的值域为{1,2,5}.(2)函数的定义域为R ,∵(x -1)2+1≥1, ∴这个函数的值域为{y|y≥1}. (3)函数的定义域为R ,∵1-x 2≤1, ∴函数y =1-x 2的值域为{y|y≤1}. (4)y =2x +1x =2+1x ,∵x≠0,∴1x≠0, ∴y =2+1x ≠2,∴函数的值域为{y|y≠2}.考点五:判断两函数是否相等例6:下列各组函数表示相等函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x≠0)与y =1(x≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析:选C A 中两函数定义域不同,B 、D 中两函数对应法则不同,C 中定义域与对应法则都相同.练习:下列四组函数中,表示同一函数的是( ) A .f (x )=|x|,g (x )=B .f (x )=|x|,g (x )=()2C .f (x )=,g (x )=x+1D .f (x )=,g (x )=解:要判断两个函数是否是同一个函数,需要从三个方面来分析,即定义域,对应法则和值域,B 选项两个函数的定义域不同,前面函数的定义域为R ,后面函数的定义域为[0,+∞),C 选项两个函数的定义域不同,前面函数的定义域为{x|x ≠1},后面函数的定义域为R ,D 选项两个函数的定义域不同,前面函数的定义域为[1,+∞),后面函数的定义域为(﹣∞,﹣1]∪[1,+∞),故选:A . 作业:6. 下列四组函数中,表示同一函数的是( ) A .y =,y =()2B .y =|x|,y =C .y =,y =x+1D .y =x ,y =解:对于A ,y ==|x|(x ∈R ),与y ==t (t ≥0)的定义域不同,对应关系也不同,不是同一函数; 对于B ,y =|x|(x ∈R ),与y ==|t|(t ∈R )的定义域相同,对应关系也相同,是同一函数; 对于C ,y ==x+1(x ≠1),与y =x+1(x ∈R )的定义域不同,不是同一函数;对于D ,y =x (x ∈R ),与y ==x (x ≠0)的定义域不同,不是同一函数.故选:B .考点六:区间及其表示例7:集合{x|-12≤x<10,或x>11}用区间表示为________. 答案:[-12,10)∪(11,+∞)练习:已知函数y =1-x 2x 2-3x -2,则其定义域为( )A .(-∞,1]B .(-∞,2]C .(-∞,-12)∪(-12,1)D .(-∞,-12)∪(-12,1]解析:选D 要使式子1-x2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x≥0,2x 2-3x -2≠0即⎩⎪⎨⎪⎧x≤1,x≠2且x≠-12,所以x≤1且x≠-12,即该函数的定义域为(-∞,-12)∪(-12,1],故选D.作业: 7. 函数y=+1的值域为( ) A .(0,+∞) B .(1,+∞)C .[0,+∞)D .[1,+∞)解:函数y=+1,定义域为[1,+∞),当x=1时,函数y 取得最小值为1, 函数y=+1的值域为[1,+∞),故选D。
01-第一节 函数的概念及其表示-课时1 函数的概念高中数学必修一人教A版

【解析】 令 = 4 − , ∈ [1,3],满足定义域和值域均为[1,3].(注:其他
满足题意的函数均可.)
18.已知 =
1
(
1+
∈ ,且 ≠ −1), = 2 + 2 ∈ .
(1)求 2 , 2 的值;
A.①③
B.①②
C.③④
D.②④
【解析】 对应关系若能构成从到的函数,须满足:对中的任意一个
数,通过对应关系在中都有唯一的数与之对应.对于①, =
1
2
1
,当
=2
时, = ∉ ,故①不满足题意;对于②, = + 1,当 = −1时,
= −1 + 1 = 0 ∉ ,故②不满足题意;对于③, = ,当 = ±1时,
【解析】 2 =11来自2=1,
3
2 = 22 + 2 = 6.
(2)求 2 的值;
【解析】 2
= 6 =
1
1+6
=
1
.
7
(3)求 , 的值域.
【解析】 因为 =
1
的定义域为{|
+1
≠ −1},
所以 的值域是 −∞, 0 ∪ 0, +∞ .
因为 = 2 + 2的定义域为,且 2 + 2 ≥ 2,所以 的值域是
3
B √ = 3 + 2 = + 2,与 = + 2的定义域相同,对应关系相同.
C × =
2
+ 2的定义域为{| ≠ 0},与 = + 2的定义域不同.
3.1 函数的概念及其表示高一数学(人教A版2019必修第一册)

3.1函数的概念及其表示【考点梳理】考点一:函数的有关概念函数的定义设A ,B 是非空的实数集,如果对于集合A 中任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数函数的记法y =f (x ),x ∈A定义域x 叫做自变量,x 的取值范围A叫做函数的定义域值域函数值的集合{f (x )|x ∈A }叫做函数的值域考点二:同一个函数一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数.考点三:区间1.区间概念(a ,b为实数,且a <b )定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b]2.其他区间的表示定义R {x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }区间(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )考点四:函数的表示方法考点五:分段函数1.一般地,分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.3.作分段函数图象时,应分别作出每一段的图象.【题型归纳】题型一:函数定义的判断1.(2022·全国·高一课时练习)给出下列说法:①函数值域中的每一个数都有定义域中的一个数与之对应;②函数的定义域和值域一定都是无限集;③若函数的定义域中只有一个元素,则值域中也只有一个元素;④对于任意的一个函数,如果x 不同,那么y 的值也不同;⑤()f a 表示当x a =时,函数()f x 的值,这是一个常量.其中说法正确的个数为()A .1B .2C .3D .42.(2022·全国·高一)下列图形中,不能表示以x 为自变量的函数图象的是()A .B .C .D .3.(2021·江苏淮安·高一期中)设集合{}{}|02|03M x x N y y =≤≤=≤≤,.下列四个图象中能表示从集合 M 到集合N 的函数关系的有()①②③④A .3个B .2个C .1个D .0个题型二:区间的表示4.(2022·全国·高一专题练习)下列集合不能用区间的形式表示的个数为()①{0,1,5,10}A =;②{}210,x x x N <∈ ;③∅;④{}x x 是等边三角形;⑤{}03x x x ≤≥或;⑥{}1,x x x Q >∈.A .2B .3C .4D .55.(2021·全国·高一专题练习)已知22a a ⎡⎤-⎣⎦,为一确定区间,则实数a 的取值范围是()A .()21-,B .()12-,C .[]21-,D .[]12-,6.(2021·广东·中山中学高一期中)集合{}01x x x <≥或用区间表示为()A .()(),01,-∞⋃+∞B .()[),01,-∞+∞C .()[),01,-∞⋂+∞D .(]0,1题型三:具体函数的定义域7.(2022·山东·临沂二十四中高一阶段练习)函数2311y x x =-+的定义域是()A .(],1-∞B .()()1,00,1-UC .[)(]1,00,1-D .(]0,18.(2022·全国·高一单元测试)函数32x y x+=的定义域是()A .[)3,∞-+B .[)()3,00,-⋃+∞C .()3,-+∞D .()0,∞+9.(2022·全国·高一单元测试)函数11y x x=++的定义域为()A .{}1x x ≥-B .{}0x x ≠C .{1x x >-且}0x ≠D .{1x x ≥-且}0x ≠题型四:抽象函数的定义域10.(2022·全国·高一单元测试)已知函数()2f x +的定义域为()3,4-,则函数()()31f xg x x =-的定义域为()A .1,43⎛⎫ ⎪⎝⎭B .1,23⎛⎫ ⎪⎝⎭C .1,63⎛⎫ ⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭11.(2021·全国·高一课时练习)已知()21f x -的定义域为3,3⎡⎤-⎣⎦,则()f x 的定义域为()A .[]22-,B .[]0,2C .[]1,2-D .3,3⎡⎤-⎣⎦12.(2022·全国·高一专题练习)已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为()A .3[,1]2-B .3[,1)(1,1]2--⋃-C .[3,7]-D .[3,1)(1,7]--⋃-题型五:求函数的值域13.(2022·全国·高一课时练习)已知函数f (x )2263x x =-+,[]12x ∈-,,则函数的值域是()A .3[112-,)B .3[ 112,)C .[] 111-,D .3112⎡⎤-⎢⎥⎣⎦,14.(2022·全国·高一课时练习)函数2()23g x x x =--在区间[]0,4上的值域为()A .[]3,5-B .()3,5-C .[]4,5-D .()4,5-15.(2022·全国·高一课时练习)下列函数中,值域为[0,)+∞的是()A .y x=B .y x=C .16y x=D .21y x x =++题型六:复杂(根式、分式)函数的值域16.(2022·全国·高一课时练习)函数2()1xf x x =+的值域是()A .(),1-∞-()1,+∞B .(),2-∞C .(),2-∞()2,+∞D .[)1,-+∞17.(2021·陕西·武功县普集高级中学高一阶段练习)函数y 243xx+=-的值域是()A .(﹣∞,+∞)B .(﹣∞,12-)∪(12,+∞)C .(﹣∞,13-)∪(13,+∞)D .(﹣∞,13-)∪(13-,+∞)18.(2021·全国·高一课时练习)函数()2211x x f x x x --=++的最大值与最小值的和是()A .53B .23C .1D .23-题型七:函数相等问题19.(2022·天津南开·高一期末)下列各组函数是同一函数的是()①3()2f x x =-与()2g x x x =-;②()f x x =与()2g x x =;③()0f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--A .①②B .①③C .③④D .①④20.(2022·全国·高一专题练习)下面各组函数中是同一函数的是()A .32y x =-与2y x x =-B .2()y x =与y x=C .()221f x x x =--与()221g t t t =--D .11y x x =+-与()()11y x x =+-21.(2022·全国·高一单元测试)在下列四组函数中,()f x 与()g x 表示同一函数的是()A .()1f x x =-,()()21g x x =-B .()3f x x =-,()()23g x x =-C .()f x x =,()2x g x x=D .()(1)(3)f x x x =--,()13g x x x =-⋅-题型八:已知函数类型求解析式(待定系数法)22.(2022·全国·高一课时练习)设()f x 为一次函数,且()()41f f x x =-.若()35f =-,则()f x 的解析式为()A .()211f x x =-或()21f x x =-+B .()21f x x =-+C .()211f x x =-D .()21f x x =+23.(2022·全国·高一课时练习)已知二次函数()f x 满足()()2211075f x f x x x +-=-+,则()()1f f =()A .1B .7C .8D .1624.(2022·全国·高一课时练习)已知()f x 为二次函数,且满足()01f =,()()14f x f x x --=,则()f x 的解析式为()A .()2221f x x x =--+B .()2221f x x x =-++C .()2221f x x x =---D .()2221f x x x =-+题型九:换元法求函数解析式25.(2022·浙江·温州市第二十二中学高一开学考试)已知(1)2f x x x +=+,则()f x 的解析式为()A .2()1f x x =-B .()21(1)f x x x =->C .2()1(1)f x x x =-≥D .2()1(0)f x x x =-≥26.(2022·全国·高一课时练习)若函数2112f x x x x ⎛⎫+=+ ⎪⎝⎭,且()4f m =,则实数m 的值为()A .6B .6或6-C .6-D .327.(2021·重庆南开中学高一阶段练习)若(1)1f x x x -=++,则()f x 的解析式为()A .2()1(1)f x x x x =++≥-B .2()1(1)f x x x =-≥-C .2()33(1)f x x x x =++≥-D .2()(1)(1)f x x x =-≥-题型十:分段函数中的问题28.(2021·江苏宿迁·高一期中)设函数11,1()1,1x x f x x ⎧-+≤=⎨>⎩,则满足() 1()2f x f x +<的x 的取值范围是()A .1(]2-∞-,B .1(,)2-∞C .1(0)2-,D .1()2-+∞,29.(2021·全国·高一专题练习)已知函数()1,101,0x x f x x x a --≤<⎧=⎨-≤≤⎩的值域是[]0,2,则实数a 的取值范围是()A .(]0,1B .[]1,3C .[]1,2D .[]2,330.(2021·新疆·乌鲁木齐市第四中学高一期中)已知函数(2)3,1()1,1a x a x f x x x -+<⎧⎪=⎨-≥⎪⎩的值域为R ,那么实数a 的取值范围是()A .(,1]-∞-B .[1,2)-C .(0,2)D .(2,1]-【双基达标】一、单选题31.(2022·全国·高一专题练习)函数符号()y f x =表示()A .y 等于f 与x 的乘积B .()f x 一定是一个式子C .y 是x 的函数D .对于不同的x ,y 也不同32.(2022·江苏·高一单元测试)已知函数()2,056,0x x x f x x x ⎧+>=⎨+≤⎩,若()()2f a f a -=,则2a f ⎛⎫= ⎪⎝⎭()A .11B .6C .4D .233.(2022·全国·高一课时练习)已知函数()2268f x x x +=++,则函数()f x 的解析式为()A .()22f x x x=+B .()268f x x x =++C .()24f x x x=+D .()286f x x x =++34.(2022·全国·高一课时练习)已知函数()1,101,01x x f x x x ---≤<⎧=⎨-+<≤⎩,则()()1f x f x -->-的解集为()A .111,,122⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .(]11,0,12⎡⎤--⋃⎢⎥⎣⎦C .111,,122⎡⎤⎛⎤--⋃ ⎢⎥⎥⎣⎦⎝⎦D .()11,0,12⎡⎤--⋃⎢⎥⎣⎦35.(2022·全国·高一专题练习)若函数2()1f x ax ax =++的定义域为R ,则a 的范围是()A .[0,4]B .[0,4)C .(0,4]D .(0,4)36.(2022·全国·高一课时练习)求下列函数的定义域.(1)()45-=-x f x x ;(2)()11232f x x xx=+-+-.37.(2022·全国·高一课时练习)(1)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +=+,求函数()f x 的解析式;(2)已知()()22f x f x x x +-=-,求函数()f x 的解析式;(3)已知()f x 是R 上的函数,()01f =,并且对任意的实数x ,y 都有()()()21f x y f x y x y -=--+,求函数()f x 的解析式.【高分突破】一:单选题38.(2022·内蒙古赤峰·高一期末(理))设()f x 的定义域为R ,且满足()()11f x f x -=+,()()2f x f x +-=,若()12f =,则()()()()1232022f f f f +++⋅⋅⋅+=()A .2023B .2024C .3033D .303439.(2022·全国·高一课时练习)已知函数()2,0,2,0.x x a x f x x ⎧+≤=⎨>⎩若()14f f ⎡⎤-=⎣⎦,且1a >-,则=a ()A .12-B .0C .1D .240.(2022·全国·高一专题练习)下列四组函数中,表示相同函数的一组是()A .2()x x f x x-=,()1g x x =-B .2()f x x =,()2()g x x=C .()22f x x =-,()22g t t =-D .()11f x x x =+⋅-,2()1g x x =-41.(2022·全国·高一专题练习)已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是()A .()02f =B .()f x 的值域为(),4-∞C .()1f x <的解集为()1,1-D .若()3f x =,则x 的值是1或342.(2021·吉林油田高级中学高一开学考试)已知函数()f x 对任意x ,y ∈R ,总有()()()x f x y y f f +=+,若()11f =-,则()3f =()A .-3B .-2C .-1D .043.(2022·广东·化州市第三中学高一阶段练习)已知函数y =f (x +1)定义域是[-2,3],则y =f (x -2)的定义域是()A .[1,6]B .[-1,4]C .[-3,2]D .[-2,3]44.(2022·全国·高一专题练习)已知函数202()282x x x f x x x ⎧+<<=⎨-+≥⎩,,,若()(2)(0,)f a f a a ∞=+∈+,,则1f a ⎛⎫= ⎪⎝⎭()A .2B .516C .6D .172二、多选题45.(2022·全国·高一单元测试)下列函数中,与函数2y x =+不是同一个函数的是()A .()22y x =+B .332y x =+C .22x y x=+D .22y x =+46.(2022·全国·高一课时练习)(多选)下列各组函数表示同一个函数的是()A .()0(0)f x x x =≠,()()10g x x =≠B .()()21f x x x =+∈Z ,()()21g x x x =-∈Z C .()24f x x =-,()22g x x x =+⋅-D .()221f x x x =--,()221g t t t =--47.(2022·全国·高一课时练习)下列函数中,值域为[1,)+∞的是()A .1y x =-B .1y x =+C .21y x =+D .11y x =-48.(2022·全国·高一单元测试)已知函数()225,1,1x ax x f x a x x⎧++<⎪=⎨-≥⎪⎩在区间(),-∞+∞上是减函数,则整数a 的取值可以为()A .2-B .1-C .0D .149.(2022·全国·高一课时练习)下列说法正确的是()A .若()f x 的定义域为[]22-,,则()21f x -的定义域为13,22⎡⎤-⎢⎥⎣⎦B .函数1xy x=-的值域为()(),22,-∞+∞C .函数21y x x =+-的值域为17,8⎛⎤-∞ ⎥⎝⎦D .函数()224f x x x =-+在[]22-,上的值域为[]4,1250.(2022·全国·高一单元测试)已知函数()2,212,1x x f x x x ⎧-≤<=⎨-+≥⎩关于函数()f x 的结论正确的是()A .()f x 的定义域为RB .()f x 的值域为(],4∞-C .若()2f x =,则x 的值是2-D .()1f x <的解集为()1,1-51.(2022·重庆九龙坡·高一期末)德国者名数学家狄克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数“1,()0,R x Qy f x x Q ∈⎧==⎨∈⎩ð,其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为()A .对12,R x x Q ∀∈ð()()()1212,f x x f x f x +=+恒成立B .对1x R ∀∈,都存在2x Q ∈,使得()()121f x x f x +=C .若0,1a b ,则()(){}{}xf x a x f x b >=<∣∣D .存在三个点()()()()()()112233,,,,,A x f x B x f x C x f x ,使得ABC 为等边三角形三、填空题52.(2022·全国·高一课时练习)已知函数()f x 的定义域为[]0,1,则函数()21f x +的定义域为______.53.(2022·全国·高一课时练习)已知2111x f x x+⎛⎫=+ ⎪⎝⎭,则()f x 的值域为______.54.(2022·全国·高一专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__.55.(2022·全国·高一课时练习)已知函数()22xf x x=+,则()()()()1111220212022202220212f f f f f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++++⋅⋅⋅++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.四、解答题56.(2022·全国·高一)作出下列函数的图象:(1)()11f x x x =-++;(2)()2243,00,043,0x x x f x x x x x ⎧-+->⎪==⎨⎪++<⎩.57.(2022·全国·高一单元测试)(1)已知()2f x x =,求()21f x +的解析式;(2)已知()24fx x x +=+,求函数()f x 的解析式;(3)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +=+,求函数()f x 的解析式;(4)已知()()223f x f x x +-=+,求()f x 的解析式.58.(2022·全国·高一单元测试)求下列函数的值域:(1)(){}()2212,1,0,1,2f x x x x =++∈--;(2)()213x f x x +=-(3)()223f x x x =-++;(4)()12f x x x =--.【答案详解】1.B【分析】利用函数的定义域和值域定义判断①②③的真假,利用函数值的定义判断④⑤的真假.【详解】解:函数值域中的每一个数都有定义域中的一个或多个数与之对应,故①不正确;函数的定义域和值域不一定都是无限集,故②不正确;根据函数的定义,可知③正确;对于任意一个函数,如果x 不同,那么y 的值可能相同,也可能不同,故④不正确;由函数值的定义,可知⑤正确.故选:B .2.B【分析】根据函数的定义判断即可.【详解】B 中,当0x >时,y 有两个值和x 对应,不满足函数y 的唯一性,A ,C ,D 满足函数的定义,故选:B 3.B【分析】根据函数的定义判断.【详解】A 中12x <≤中的x 没有对应的象,不符合;B 符合函数定义,C 也符合函数定义,D 中对于02x <≤的x 有两个象与之对应,不符合.所以有2个满足.故选:B .4.D【分析】根据区间的概念及区间形式可以表示连续数集,是无限集,逐个判断即可得出结论.【详解】区间形式可以表示连续数集,是无限集①②是自然数集的子集,③是空集为有限集,都不能用区间形式表示,④是图形的集合,不是数集,等边三角形组成的集合.⑥Q 是有理数,数轴上大于1的有理数不是连续的,故只有⑤可以,区间形式为(][)3,-∞+∞,0,故答案为:D.5.A【分析】依题意得22a a <-,解不等式即可求解.【详解】因为22a a ⎡⎤-⎣⎦,为一确定区间,则2222021a a a a a <-⇒+-<⇒-<<故选:A【解析】按照区间的定义写出区间即可.【详解】解:集合{|0x x <或}1x ≥用区间表示为:()[),01,-∞+∞.故选:B.7.C【分析】函数定义域满足23100x x ⎧-≥⎨≠⎩,求解即可【详解】由题,函数定义域满足23100x x ⎧-≥⎨≠⎩,解得[)(]1,00,1x ∈-.故选:C 8.B【分析】使解析式有意义,解不等式组即可.【详解】依题意3030x x x +≥⎧⇒≥-⎨≠⎩且0x ≠,所以函数32x y x+=的定义域是[)()3,00,-⋃+∞.故选:B .9.D【分析】根据函数解析式有意义的要求列不等式求函数定义域.【详解】由函数解析式有意义可得10x +≥且0x ≠,所以函数的定义域是{1x x ≥-且}0x ≠,故选:D.10.C【分析】根据抽象函数的定义域的求解,结合具体函数单调性的求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以()f x 的定义域为()1,6-.又因为310x ->,即13x >,所以函数()g x 的定义域为1,63⎛⎫ ⎪⎝⎭.故选:C.11.C【分析】由33x -≤≤求出21x -的范围,然后可得答案.【详解】因为2(1)f x -的定义域为[3,3]-,所以33x -≤≤,所以2112x -≤-≤,所以()f x 的定义域为[1,2]-.故选:C【分析】根据函数()f x 的定义域求出21x +的范围,结合分母不为0求出函数的定义域即可.【详解】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .13.D【分析】根据二次函数的对称轴和端点处的值即可求解值域.【详解】2233()263=2--22f x x x x ⎛⎫=-+ ⎪⎝⎭,对称轴3=2x ,当[]12x ∈-,,()min 33-,22f x f ⎛⎫== ⎪⎝⎭又因为()()()()max -111,21,-111f f f x f ==∴==,所以函数的值域为3112⎡⎤-⎢⎥⎣⎦,.故选:D 14.C【分析】利用二次函数的性质进行求解即可.【详解】22()23(1)4g x x x x =--=--,因此该函数的对称轴为:1x =,因为[]0,4x ∈,所以当1x =时,函数有最小值,最小值为4-,而(0)3,(4)5g g =-=,所以最大值为5,因此值域为[]4,5-,故选:C 15.B【分析】逐项判断函数值域,即可得到正确选项.【详解】对于y x =,,x R y R ∈∈,故A 不正确;对于y x =,[)[)0,0x y ∈+∞∈+∞,,,故B 正确;对于16y x=,()()()()0,0,x y ∈-∞⋃+∞∈-∞⋃+∞,0,,0,故C 不正确;对于22131=44y x x x ⎛⎫=++++ ⎪⎝⎭,3,4x R y ⎡⎫∈∈+∞⎪⎢⎣⎭,,故D 不正确;故选:B 16.C【分析】将函数2()1xf x x =+分离常数后可直接求解.【详解】22(1)22()2111x x f x x x x +-===-+++,从而可知函数2()1xf x x =+的值域为(,2)(2,)-∞⋃+∞.故选:C 17.D【分析】分离常数即可得出()1103343y x =-+-,从而得出13y ≠-,进而得出该函数的值域.【详解】解:()()1104321103343433343x x y x x x --++===-+---,∴y 13≠-,∴该函数的值域为1133⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭,,.故选:D .18.B【分析】令2211x x y x x --=++,可得()()21110y x y x y -++++=,可知关于x 的方程()()21110y x y x y -++++=有解,分1y =、1y ≠两种情况讨论,结合已知条件可求得y 的取值范围,即可得解.【详解】设2211x x y x x --=++,则有()()21110y x y x y -++++=,当1y =时,代入原式,解得1x =-.当1y ≠时,()()()()()21411135y y y y y ∆=+--+=+-+,由0∆≥,解得513y -≤≤,于是y 的最大值为53,最小值为1-,所以函数()f x 的最大值与最小值的和为23.故选:B.19.C【分析】利用两函数为同一函数则定义域和对应法则要相同,逐项分析即得.【详解】①()32f x x =-与()2g x x x =-的定义域是{}|0x x ≤,而()322f x x x x =-=--,故这两个函数不是同一函数;②()f x x =与()2g x x =的定义域都是R ,()2g x x x ==,这两个函数的定义域相同,对应法则不同,故这两个函数不是同一函数;③()0f x x =与()01g x x =的定义域是{}|0x x ≠,并且()()g 1f x x ==,对应法则也相同,故这两个函数是同一函数;④()221f x x x =--与()221g t t t =--是同一函数;所以是同一函数的是③④.故选:C.20.C【分析】分别分析各个选项中函数的定义域,值域和对应关系,即可得出答案.【详解】A .函数的定义域为{|0}x x ≤,322y x x x =-=--,两个函数的对应法则不相同,不是同一函数,B .2()y x x ==,定义域为{|0}x x ≥,函数的定义域不相同,不是同一函数C .两个函数的定义域和对应法则相同,是同一函数D .由1010x x +≥⎧⎨-≥⎩得11x x ≥-⎧⎨≥⎩得1≥x ,由()()110x x +≥-得1≥x 或1x ≤-,两个函数的定义域不相同,不是同一函数,故选:C .21.B【分析】根据题意,先看函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.【详解】对于A 中,函数()1f x x =-的定义域为R ,而函数()2(1)g x x =-的定义域为[1,)+∞,所以两个函数不是同一个函数;对于B 中,函数()()23,(3)|3|f x x g x x x =-=-=-的定义域和对应法则完全相同,所以是同一个函数;对于C 中,函数()f x x =的定义域为R ,而函数()2x g x x x==的定义域为{}|0x x ≠,所以两个函数不是同一个函数;对于D 中,函数()(1)(3)f x x x =--的定义域为(,1][3,)-∞⋃+∞,而函数()13g x x x =-⋅-的定义域为[3,)+∞,所以不是同一个函数,故选:B 22.B【分析】设()f x kx b =+,根据已知条件可得出关于k 、b 的方程组,解出这两个未知数的值,再结合()35f =-可得出k 、b 的值,即可得出函数()f x 的解析式.【详解】设()f x kx b =+,其中0k ≠,则()()()()241f f x k kx b b k x kb b x =++=++=-,所以,241k kb b ⎧=⎨+=-⎩,解得21k b =-⎧⎨=⎩或213k b =⎧⎪⎨=-⎪⎩.当2k =-时,()21f x x =-+,此时()35f =-,合乎题意;当2k =时,()123f x x =-,此时()1733f =,不合乎题意.综上所述,()21f x x =-+.故选:B.23.B【分析】采用待定系数法先求解出()f x 的解析式,然后即可计算出()()1f f 的值.【详解】设()()20f x ax bx c a =++≠,因为()()2211075f x f x x x +-=-+,所以()()22242111075ax bx c a x b x c x x +++-+-+=-+,化简可得:()2253221075ax b a x a b c x x +-+-+=-+,所以51032725a b a a b c =⎧⎪-=-⎨⎪-+=⎩,所以211a b c =⎧⎪=-⎨⎪=⎩,所以()221f x x x =-+,所以()12112f =-+=,所以()()()1224217f f f ==⨯-+=,故选:B.24.A【分析】设出二次函数的解析式,结合已知利用待定系数法可以求出()f x 的解析式.【详解】设()2(0)f x ax bx c a =++≠,因为()01f =,所以1c =.又()()14f x f x x --=,所以有2224(1)(1)1(1)4240a a x b x ax bx x ax a b x a b -=⎧-+-+-++=⇒-+-=⇒⎨-=⎩,解得2a b ==-.故选:A【点睛】本题考查了用待定系数法求二次函数解析式,考查了数学运算能力.25.C【分析】将已知解析式配方,可得()2(1)11f x x +=+-,再通过换元法求得解析式.【详解】因为()2(1)211f x x x x +=+=+-令()11t x t =+≥,所以()()211f t t t =-≥所以()()211f x x x =-≥故选:C.26.B 【分析】令1x t x+=,配凑可得()22f t t =-,再根据()4f m =求解即可【详解】令1x t x +=(2t ≥或2t ≤-),22221122x x t x x ⎛⎫+=+-=- ⎪⎝⎭,()22f t t ∴=-,()224f m m =-=,6m ∴=±.故选;B 27.C【分析】利用换元法,令11t x =-≥-,则1x t =+,()21x t =+,可求出()f t 的解析式,从而得出()f x 的解析式.【详解】解:已知()11fx x x -=++,令11t x =-≥-,则1x t =+,()21x t =+,()()()22111331f t t t t t t ∴=++++=++≥-,()()2331f x x x x ∴=++≥-.故选:C.28.B【分析】化简函数解析式,分区间讨论化简不等式() 1()2f x f x +<求其解.【详解】∵11,1()1,1x x f x x ⎧-+≤=⎨>⎩,∴2,1()1,1x x f x x -≤⎧=⎨>⎩,当11x +≤且21x ≤时,不等式() 1()2f x f x +<可化为2122x x --<-,∴0x ≤,当11x +≤且21x >时,不等式() +12()f x f x <可化为211x --<,∴满足条件的x 不存在,当11x +>且21x >时,不等式() +12()f x f x <可化为11<,∴满足条件的x 不存在,当11x +>且21x ≤时,不等式() +12()f x f x <可化为122x <-,∴102x <<,∴满足() +12()f x f x <的x 的取值范围是1(,)2-∞,故选:B.29.B【分析】先求出当10x -≤<时,()f x 的值域为(]1,2.由题意可知,当0x a ≤≤时,()10f x x =-=有解,此时1x =,所以[]10,a ∈,故1a ≥,然后根据()1f x x =-的单调性对a 分12a ≤≤和2a >两种情况进行讨论即可求解.【详解】解:由题意,当10x -≤<时,()(]11,2f x x =-∈,又函数()1,101,0x x f x x x a --≤<⎧=⎨-≤≤⎩的值域是[]0,2,当0x a ≤≤时,()10f x x =-=有解,此时1x =,所以[]10,a ∈,所以1a ≥,当1a ≥时,()1,0111,1x x f x x x x a -≤≤⎧=-=⎨-<≤⎩在[]0,1上单调递减,在[]1,a 上单调递增,又()()()01,10,1f f f a a ===-,①若12a ≤≤,则11a -≤,所以()[]0,1f x ∈,此时[](][]1,20,20,1=,符合题意;②若2a >,则11a ->,所以()0,1f x a ∈⎡-⎤⎣⎦,要使(][]200,11,2,a ⎡-⎤⎣⎦=,只须12a -≤,即23a <≤;综上,13a ≤≤.故选:B.30.B【分析】先求出函数1,1y x x =-≥的值域,而()f x 的值域为R ,进而得20230a a a -<⎧⎨-+≥⎩,由此可求出a 的取值范围.【详解】解:因为函数1,1y x x =-≥的值域为[0,)+∞,而()f x 的值域为R ,所以函数()()23(1)g x a x a x =-+<的值域包含(),0∞-,所以()202130a a a ->⎧⎨-⨯+≥⎩,解得12a -≤<,故选:B 31.C【分析】直接根据函数定义可判断.【详解】符号()y f x =,即“y 是x 的函数”的数学表示,它仅仅是函数符号,不是表示“y 等于f 与x 的乘积”()f x 也不一定是解析式,可以是图象、表格,也可以是文字叙述,故A 、B 错误;当2y x =时,1x =或1x =-时,1y =,故D 错误.故选:C 32.D【分析】分析函数()f x 的单调性,结合已知条件可得出关于a 的等式,求出a 的值,代值计算可得2a f ⎛⎫⎪⎝⎭的值.【详解】因为()2,056,0x x x f x x x ⎧+>=⎨+≤⎩,所以,函数()f x 在(],0-∞和()0,∞+上均为增函数,因为()()2f a f a -=,所以20a a -≤⎧⎨>⎩,可得02a <≤,由题意可得()2526a a a +=-+,即2440a a -+=,解得2a =,合乎题意,所以,()211122a f f ⎛⎫==+= ⎪⎝⎭.故选:D.33.A【分析】利用配凑法(换元法)计算可得.【详解】解:方法一(配凑法)∵()()()22268222f x x x x x +=++=+++,∴2()2f x x x =+.方法二(换元法)令2t x =+,则2x t =-,∴()()()2226282f t t t t t =-+-+=+,∴2()2f x x x =+.故选:A 34.B【分析】根据分段函数解析式分类讨论,分别求出不等式的解集,最后取并集.【详解】解:当01x <≤时,10x -≤-<,则()()1f x f x -->-可化为()111x x -+-->-,解得32x <,又01x <≤,所以01x <≤.当10x -≤-<时,01x <-≤,则()()1f x f x -->-可化为()111x x ---+>-,解得12x <-,又10x -≤<,所以112x -≤<-.综上,(]11,0,12x ⎡⎤∈--⋃⎢⎥⎣⎦.故选:B.35.A【分析】根据给定条件,可得210ax ax ++≥,再分类讨论求解作答.【详解】依题意,R x ∀∈,210ax ax ++≥成立,当0a =时,10≥成立,即0a =,当0a ≠时,2Δ40a a a >⎧⎨=-≤⎩,解得04a <≤,因此得04a ≤≤,所以a 的范围是[0,4].故选:A36.(1){}45x x x ≥≠且(2)3202x x x ⎧⎫-≤<≠⎨⎬⎩⎭且【分析】根据函数解析式,分别列出不等式,解出即可.(1)要使该函数有意义,只需4050x x -≥⎧⎨-≠⎩,解得4x ≥,且5x ≠,所以该函数的定义域为:{}45x x x ≥≠且(2)要使该函数有意义,只需230200x x x +≥⎧⎪->⎨⎪≠⎩,解得322x -≤<,且0x ≠,所以该函数的定义域为:3202x x x ⎧⎫-≤<≠⎨⎬⎩⎭且37.(1)()21f x x x =-+;(2)()23x f x x =+;(3)()21f x x x =++.【分析】(1)待定系数法:先设含待定系数的解析式,再利用恒等式的性质或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)方程组法:已知关于()f x 与()f x -的表达式,构造出另外一个等式,通过解方程组求出()f x .(3)特殊值法(赋值法):通过取特殊值代入题设中的等式,使抽象的问题具体化、简单化,求出解析式.【详解】(1)设()()20f x ax bx c a =++≠,由()01f =得:c =1.由()()12f x f x x +=+得:()()2211112++++=+++a x b x ax bx x ,整理得()()220a x a b -++=,∴2200a a b -=⎧⎨+=⎩,则11a b =⎧⎨=-⎩,∴()21f x x x =-+.(2)∵()()22f x f x x x +-=-,①∴()()22f x f x x x -+=+,②②×2-①得:()233f x x x =+,∴()23x f x x =+.(3)令y x =,则()()()()0211f x y f f x x x x -==--+=,∴()21f x x x =++.38.A【分析】根据函数的性质由()()11f x f x -=+,()()2f x f x +-=可得()(1)(2)(3)4f x f x f x f x ++++++=【详解】因为()()2f x f x +-=,()12f =,所以(1)0f -=,(0)1f =由()()11f x f x -=+得()(2)f x f x -=+,所以()(2)2f x f x ++=,(1)(3)2f x f x +++=,即()(1)(2)(3)4f x f x f x f x ++++++=,所以[(1)(0)(1)(2)][(3)(4)(2021)(2022)]45062024f f f f f f f f -++++++⋅⋅⋅++=⨯=所以()()()()12320222024(1)(0)2023f f f f f f +++⋅⋅⋅+=---=.故选:A.39.C【分析】根据函数的解析式求出(1)1f a -=+,结合10a +>即可求出[(1)]f f -,进而得出结果.【详解】由题意知,2(1)(1)1f a a -=-+=+,又1a >-,所以10a +>,所以1[(1)](1)24a f f f a +-=+==,解得1a =.故选:C 40.C【分析】根据相同函数的判断原则进行定义域的判断即可选出答案.【详解】解:由题意得:对于选项A :2()x x f x x-=的定义域为{}|0x x ≠,()1g x x =-的定义域为R ,所以这两个函数的定义域不同,不表示相同的函数,故A 错误;对于选项B :2()f x x =的定义域为R ,()2()g x x =的定义域为{}|0x x ≥,所以这两个函数的定义域不同,不表示相同的函数,故B 错误;对于选项C :()22f x x =-的定义域为R ,()22g t t =-的定义域为R ,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C 正确;对于选项D :()11f x x x =+⋅-的定义域为{}|1x x ≥,2()1g x x =-的定义域为{|1x x ≤-或1}x ≥,所以这两个函数的定义域不同,不表示相同的函数,故D 错误.故选:C41.B【分析】根据函数解析式,画出函数图象,结合图象一一判断即可;【详解】解:因为()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,函数图象如下所示:由图可知()00f =,故A 错误;()f x 的值域为(),4-∞,故B 正确;由()1f x <解得()(),11,1-∞--,故C 错误;()3f x =,即2312x x ⎧=⎨-<<⎩,解得3x =,故D 错误;42.A【分析】根据题设抽象函数的递推关系求函数值即可.【详解】由题设,()()()()312313f f f f =+==-.故选:A .43.A【分析】根据定义域的定义求解即可.【详解】由题意知,-2≤x ≤3,∴-1≤x +1≤4,∴-1≤x -2≤4,得1≤x ≤6,即y =f (x -2)的定义域为[1,6];故选:A.44.A【分析】根据分段函数,分02a <<,2a ≥,由()(2)f a f a =+求解.【详解】因为函数202()282x x x f x x x ⎧+<<=⎨-+≥⎩,,,且()(2)(0,)f a f a a ∞=+∈+,,当02a <<时,()2228a a a +=-++,即2340a a +-=,解得4a =-或1a =,当2a ≥时,()28228a a -+=-++,无解,综上:1a =,所以()112f f a ⎛⎫== ⎪⎝⎭,故选:A45.ACD【分析】根据两函数定义域相同且解析式一致即为相等函数,一一判断即可.【详解】解:2y x =+的定义域为R .对于A ,()22y x =+的定义域为[)2,-+∞,与2y x =+的定义域不同,不是同一函数;对于B ,3322y x x =+=+定义域为R ,与2y x =+定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+定义域不同,不是同一函数;对于D ,22,0222,0x x y x x x x +≥⎧=+=+=⎨-+<⎩,与2y x =+的对应关系不同,不是同一函数.故选:ACD .【分析】通过判断函数的定义域、对应关系是否相同来判断是否是同一个函数.【详解】对于选项A ,()0(0)f x x x =≠,()()10g x x =≠两个函数的定义域均为{}0x x ≠,且01y x ==,所以对应关系也相同,所以是同一个函数,故A 正确;对于选项B ,()()21f x x x =+∈Z ,()()21g x x x =-∈Z 两个函数的对应关系不相同,所以不是同一个函数,故B 错误;对于选项C ,()24f x x =-的定义域为(][,2)2,-∞-⋃+∞,()22g x x x =+⋅-的定义域为[2,)+∞,定义域不同,不是同一个函数,故C 错误;对于选项D ,()221f x x x =--,()221g t t t =--两个函数的定义域均为R ,对应关系也相同,是同一个函数,故D 正确.故选:AD.47.BC【分析】可以求出选项A 函数的值域为[0,)+∞,选项D 函数的值域为(0,)+∞,选项BC 函数的值域为[1,)+∞,即得解.【详解】解:A.函数的值域为[0,)+∞,所以该选项不符合题意;B.因为||0,||11x x ≥∴+≥,所以函数的值域为[1,)+∞,所以该选项符合题意;C.因为2220,11,11x x x ≥∴+≥∴+≥,所以函数的值域为[1,)+∞,所以该选项符合题意;D.函数的值域为(0,)+∞,所以该选项不符合题意.故选:BC48.AB【分析】依题意函数在各段上单调递减,且在断点左边的函数值不小于右边的函数值,即可得到不等式组,解得即可;【详解】解:由题意可得10125a a a a -≥⎧⎪<⎨⎪++≥-⎩,解得21a -≤≤-,∴整数a 的取值为2-或1-.故选:AB49.AC【分析】根据抽象函数的定义域的求解判断A ;利用分离常数化简函数解析式,结合反比型函数的值域判断B ;利用换元法,结合二次函数的性质求得其值域,判断C ;利用配方法,结合二次函数的性质判断D.【详解】对于A ,因为()f x 的定义域为[]22-,,所以2212x -≤-≤,解得1322x -≤≤,即()21f x -的定义域为13,22⎡⎤-⎢⎥⎣⎦,故A 正确;对于B ,11111111x x x y x x x x -+==-=-=------,所以1y ≠-,即函数1x y x =-的值域为()(),11,-∞--+∞,故B 不正确;对于C ,令1t x =-,则21x t =-,0t ≥,所以()2221172122248y t t t t t ⎛⎫=-+=-++=--+ ⎪⎝⎭,0t ≥,所以当14t =时,该函数取得最大值,最大值为178,所以函数21y x x =+-的值域为17,8⎛⎤-∞ ⎥⎝⎦,故C 正确;对于D ,()()222413f x x x x =-+=-+,其图象的对称轴为直线1x =,且()13f =,()212f -=,所以函数()224f x x x =-+在[]22-,上的值域为[]3,12,故D 不正确.故选:AC .50.BC【分析】求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分1≥x 、21x -£<两种情况令()2f x =求出x 可判断C ;分1≥x 、21x -£<两种情况解不等式可判断D.【详解】函数()2,212,1x x f x x x ⎧-≤<=⎨-+≥⎩的定义域是[)2,-+∞,故A 错误;当21x -£<时,()2f x x =,值域为[]0,4,当1≥x 时,()2f x x =-+,值域为(],1-∞,故()f x 的值域为(],4∞-,故B 正确;当1≥x 时,令()22f x x =-+=,无解,当21x -£<时,令()22f x x ==,得到2x =-,故C 正确;当21x -£<时,令()21f x x =<,解得()1,1x ∈-,当1≥x 时,令()21f x x =-+<,解得()1,x ∈+∞,故()1f x <的解集为()()1,11,-+∞,故D 错误.故选:BC .51.BCD 【分析】根据题中所给的函数的解析式,结合实数的性质逐一判断即可.【详解】A :当1222x x ==-、时,显然12,R x x Q ∈ð,而(22)(0)1f f -==,(2)(2)000f f +-=+=,所以()()()1212f x x f x f x +=+不成立,故本选项不正确;B :当1x Q ∀∈时,1()1f x =,因为有理数加上一个有理数得到的和仍是有理数,所以1x Q ∀∈时,都存在2x Q ∈,使得()()121f x x f x +=;当1R x Q ∀∈ð时,1()0f x =,因为一个无理数与一个有理数的和还是无理数,所以当1R x Q ∀∈ð时,都存在2x Q ∈,使得()()121f x x f x +=,所以本选项正确;C :当x Q ∈时,()1f x =,所以此时{}()x f x a Q >=,{}()x f x b Q <=,显然()(){}{}xf x a x f x b >=<∣∣成立;当R x Q ∈ð时,()0f x =,所以此时{}()R x f x a Q >=ð,{}()R x f x b Q <=ð,显然()(){}{}xf x a x f x b >=<∣∣成立,因此本选项正确;D :当123,,x x x 三个数都不是有理数时,它们都是无理数,则有123()()()0f x f x f x ===,此时三点共线,不构成三角形;当123,,x x x 三个数都是有理数时,此时123()()()1f x f x f x ===,因此三点共线,构不成三角形;当123,,x x x 三个数有二个数是有理数时,不妨设12,x x 是有理数,则3x 为无理数,所以有123()()1,()0f x f x f x ===,当三角形ABC 是等边三角形时,有2213231212312()1()1()()2()AC CB x x x x x x x x x x x =⇒-+=-+⇒-+=-,显然12x x ≠,于是有1232x x x +=,两个有理数的和不可能是无理数,所以构不成等边三角形;当123,,x x x 三个数有一个数是有理数时,不妨设1x 是有理数,则23,x x 为无理数,所以有123()1,()()0f x f x f x ===,当三角形ABC 是等边三角形时,有2213123232132()1()1()()2()AC BA x x x x x x x x x x x =⇒-+=-+⇒-+=-,显然32x x ≠,于是有3212x x x +=,取10x =,设23x x <,如下图所示:13tan 333OA OB OB OB π=⇒=⇒=,即2333,33x x =-=,所以存在三点33(0,1),(,0),(,0)33A B C -,使得ABC 为等边三角形,因此本选项正确,故选:BCD 【点睛】关键点睛:根据已知函数的解析式,结合无理数和有理数的性质是解题的关键.52.{}0【分析】根据抽象函数定义的求法,得到2011x ≤+≤,即可求得函数()21f x +的定义域.【详解】因为函数()f x 的定义域为[]0,1,所以2011x ≤+≤,即210x -≤≤,解得0x =,所以函数()21f x +的定义域为{}0.故答案为:{}0.53.()1,+∞【分析】先求出()()()2111f x x x =-+≠,再结合二次函数的性质即可得出值域.【详解】解:令1x t x +=,则111t x =+≠,所以11t x =-,所以()()211f t t =-+,故()f x 的解析式为()()()2111f x x x =-+≠,其值域为()1,+∞.故答案为:()1,+∞.54.2303⎡⎤⎢⎥⎣⎦,【分析】将m 分为000m m m =><,,三种情况讨论:当0m =时,()210f x x =-≥满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+-=-,值域是[0,+∞),满足条件;令()()221g x mx m x m =--+-,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0,∴232333m -≤≤,又0m >,所以2303m <≤综上,2303m ≤≤,∴实数m 的取值范围是:2303⎡⎤⎢⎥⎣⎦,,故答案为:2303⎡⎤⎢⎥⎣⎦,.55.40434##1010.75【分析】观察所求结构,考察()1f x f x ⎛⎫+ ⎪⎝⎭的值,然后可得.【详解】因为()111112222222x x xf x f x x x x +⎛⎫+=+== ⎪++⎝⎭+⋅,()114f =,所以()()()()1111220212022202220212f f f f f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1140432021244=⨯+=.故答案为:4043456.(1)作图见解析;(2)作图见解析.【分析】(1)先去绝对值变成分段函数,然后作出每一段的图象即可;(2)结合二次函数的图象特征,分别作出每一段图象即可.(1)因为函数()2,12,112,1x x f x x x x -≤-⎧⎪=-<≤⎨⎪>⎩,画出其图象如图①所示.(2)函数的图象是两段抛物线(部分)与一点,画出其图象如图②所示,57.(1)()221441f x x x +=++;(2)()24(2)f x x x =-≥;(3)()21f x x x =-+;(4)()21f x x =-+【分析】(1)根据已知函数代入直接求解即可,(2)利用换元法或配凑法求解,(3)利用待定系数法求解,设()2(0)f x ax bx c a =++≠,然后根据已知条件列方程求出,,a b c即可,(4)利用方程组法求解,用-x 替换()()223f x f x x +-=+中的x ,将得到的式子与原式子联立可求出()f x .【详解】(1)因为()2f x x =,所以()()222121441f x x x x +=+=++.(2)方法一设2t x =+,则2t ≥,2x t =-,即()22x t =-,所以()()()222424f t t t t =-+-=-,所以()24(2)f x x x =-≥.方法二因为()()2224f x x +=+-,所以()24(2)f x x x =-≥.(3)因为()f x 是二次函数,所以设()2(0)f x ax bx c a =++≠.由()01f =,得c =1.由()()12f x f x x +=+,得()()2211112++++=+++a x b x ax bx x ,整理得()()220a x a b -++=,所以2200a a b -=⎧⎨+=⎩,所以11a b =⎧⎨=-⎩,所以()21f x x x =-+.(4)用-x 替换()()223f x f x x +-=+中的x ,得()()223f x f x x -+=-+,由()2()232()()23f x f x x f x f x x +-=+⎧⎨+-=-+⎩,解得()21f x x =-+.58.(1){}0,1,4,9(2)(,2)(2,)-∞⋃+∞(3)520,4⎡⎤⎢⎥⎣⎦(4)1,2⎛⎤-∞ ⎥⎝⎦【分析】(1)将2,1,0,1,2--代入()f x 求解即可;(2)形如()0,ax b y ac ad bc cx d +=≠≠+的函数常用分离常数法求值域,ad b ax b a c y cx d c cx d-+==+++,其值域是a y y c ⎧⎫≠⎨⎬⎩⎭.(3)根据二次函数的顶点式求解值域,再结合根式的定义域求解即可.(4)形如(0)y ax b cx d ac =+++≠的函数常用换元法求值域,先令t cx d =+,用t 表示出x ,并注明t 的取值范围,再代入原函数将y 表示成关于t 的二次函数,最后用配方法求值域.(1)因为()21f -=,()10f -=,()01f =,()14f =,()29f =,所以函数()f x 的值域为{}0,1,4,9.(2)因为()f x =212(3)772333x x x x x +-+==+---,且703x ≠-,所以()2f x ≠,所以函数()f x 的值域为(,2)(2,)-∞⋃+∞.(3)因为()2212523248f x x x x ⎛⎫=-++=--+ ⎪⎝⎭,所以()0f x ≤524≤,所以函数()f x 的值域为520,4⎡⎤⎢⎥⎣⎦.(4)设12t x =-(换元),则0t ≥且21122x t =-+,令22111(1)1222y t t t =--+=-++.因为0t ≥,所以12y ≤,即函数()f x 的值域为1,2⎛⎤-∞ ⎥⎝⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章函数第一节函数的概念及其表示高考试题考点一函数的定义域1.(2013年重庆卷,文3)函数y=21log(2)x-的定义域是( )(A)(-∞,2) (B)(2,+∞)(C)(2,3)∪(3,+∞) (D)(2,4)∪(4,+∞)解析:要使函数有意义,则x满足20,21,xx->⎧⎨-≠⎩解得x>2且x≠3.故选C.答案:C2.(2013年陕西卷,文10)设[x]表示不大于x的最大整数,则对任意实数x,有( )(A)[-x]=-[x] (B)12x⎡⎤+⎢⎥⎣⎦=[x](C)[2x]=2[x] (D)[x]+12x⎡⎤+⎢⎥⎣⎦=[2x]解析:取特殊值进行排除:当x=1.3时,[-x]=[-1.3]=-2,-[x]=-1,选项A错.当x=1.5时,12x⎡⎤+⎢⎥⎣⎦=2,[x]=[1.5]=1,[2x]=3,2[x]=2,选项B、C错.故选D.答案:D3.(2013年山东卷,文5)函数的定义域为( )(A)(-3,0] (B)(-3,1](C)(-∞,-3)∪(-3,0] (D)(-∞,-3)∪(-3,1]解析:由f(x)=得120,30,xx⎧-≥⎨+>⎩则-3<x≤0.故选A.答案:A4.(2013年广东卷,文2)函数f(x)= lg(1)1x x +-的定义域是()(A)(-1,+∞) (B)[-1,+∞)(C)(-1,1)∪(1,+∞) (D)[-1,1)∪(1,+∞) 解析:由题意得10,10,x x -≠⎧⎨+>⎩即x>-1且x ≠1.故选C. 答案:C5.(2012年山东卷,文3)函数f(x)=()1ln 1x +的定义域为( )(A)[-2,0)∪(0,2] (B)(-1,0)∪(0,2] (C)[-2,2](D)(-1,2]解析:由210,11,40,x x x ⎧+>⎪+≠⎨⎪-≥⎩得1,0,22,x x x >-⎧⎪≠⎨⎪-≤≤⎩∴-1<x ≤2且x ≠0.故选B.答案:B6.(2011年广东卷,文4)函数f(x)= 11x-+lg(1+x)的定义域是( )(A)(-∞,-1) (B)(1,+∞) (C)(-1,1)∪(1,+∞) (D)(-∞,+∞) 解析:要使函数有意义,需满足1010x x -≠⎧⎨+>⎩,得x>-1且x ≠1,∴函数f(x)的定义域为(-1,1)∪(1,+∞).故选C. 答案:C7.(2011年江西卷,文3)若f(x)=()121log 21x +,则f(x)的定义域为()(A)1,02⎛⎫-⎪⎝⎭ (B)1,2⎛⎫-+∞ ⎪⎝⎭ (C)1,02⎛⎫-⎪⎝⎭∪(0,+∞) (D)1,22⎛⎫- ⎪⎝⎭解析:法一 要使函数有意义,需满足210211x x +>⎧⎨+≠⎩解得x>-12且x ≠0.∴函数f(x)的定义域为1,02⎛⎫-⎪⎝⎭∪(0,+∞).故选C.法二 显然当x=0时函数无意义,故排除B 和D;又当x=1时函数有意义,因此排除A,故选C. 答案:C8.(2013年安徽卷,文1)设i是虚数单位,若复数a-103i-(a∈R)是纯虚数,则a的值为( )(A)-3 (B)-1 (C)1 (D)3解析:因a-103i-=a-()()()10333ii i+-+=a-()10391i++=a-3-i=(a-3)-i,又复数是纯虚数,所以a-3=0,即a=3.故选D.答案:D9.(2012年四川卷,文13)函数的定义域是.(用区间表示)解析:由题意可得1-2x>0,∴x<1 2.答案:1,2⎛⎫-∞⎪⎝⎭10.(2011年安徽卷,文13)函数的定义域是.解析:要使函数有意义,只需6-x-x2>0,解得-3<x<2,∴函数的定义域为(-3,2).答案:(-3,2)考点二分段函数1.(2012年江西卷,文3)设函数f(x)=21,1,2,1,x xxx⎧+≤⎪⎨>⎪⎩则f(f(3))等于( )(A)15(B)3 (C)23(D)139解析:因为3>1,所以f(3)=2 3.所以f(f(3))=f23⎛⎫⎪⎝⎭=223⎛⎫⎪⎝⎭+1=139.故选D.2.(2012年福建卷,文9)设f(x)=1,0,0,0,1,0,xxx>⎧⎪=⎨⎪-<⎩g(x)=1,xx⎧⎨⎩为有理数,,为无理数,则f(g(π))的值为( )(A)1 (B)0 (C)-1 (D)π解析:g(π)=0,则f(0)=0,所以f(g(π))=0.故选B.答案:B3.(2011年福建卷,文8)已知函数f(x)=2,010x xx x⎧>⎨+≤⎩,,,若f(a)+f(1)=0,则实数a的值等于( )(A)-3 (B)-1(C)1 (D)3解析:f(1)=21=2,由f(a)+f(1)=0,∴f(a)=-2,若a>0,则2a=-2,无解. 若a ≤0,则a+1=-2,得a=-3.故选A. 答案:A4.(2013年福建卷,文13)已知函数f(x)= 32,0πtan 2x x x x ⎧<⎪⎨≤≤⎪⎩,-,0,则f π4f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭= .解析:f π4⎛⎫⎪⎝⎭=-tan π4=-1, f π4f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=f(-1)=2×(-1)3=-2. 答案:-25.(2013年北京卷,文13)函数f(x)= 12log ,1,2,1x x x x ≥⎧⎪⎨⎪<⎩的值域为.解析:函数f(x)=12log x 为减函数,当x ≥1时, 12log x ≤0,f(x)≤0.函数f(x)=2x为增函数,当x<1时,0<2x<21,所以0<f(x)<2,即函数f(x)的值域为(-∞,2). 答案:(-∞,2)6.(2013年安徽卷,文14)定义在R 上的函数f(x)满足f(x+1)=2f(x).若当0≤x ≤1时.f(x)=x(1-x),则 当-1≤x ≤0时,f(x)= .解析:设-1≤x ≤0,则0≤x+1≤1,这时f(x+1)=(x+1)[1-(x+1)]=(x+1)(1-x-1) =-x(x+1), 又因f(x+1)=2f(x), 所以2f(x)=-x(x+1),即f(x)=-()12x x +. 答案:-()12x x + 7.(2010年陕西卷,文13)已知函数f(x)= 232,1,,1,x x x ax x +<⎧⎨+≥⎩若f(f(0))=4a,则实数a=.解析:∵f(0)=3×0+2=2, ∴f(f(0))=f(2)=22+2a=4a,解得a=2. 答案:28.(2011年江苏卷,11)已知实数a≠0,函数f(x)=2,1,2,1,x a xx a x+<⎧⎨--≥⎩若f(1-a)=f(1+a),则a的值为.解析:若a>0,则1+a>1,1-a<1,∴f(1+a)=-(1+a)-2a=-1-3a, f(1-a)=2(1-a)+a=2-a,又∵f(1+a)=f(1-a),∴-1-3a=2-a,∴a=-32(舍去),若a<0,则1+a<1,1-a>1,∴f(1+a)=2(1+a)+a=2+3a, f(1-a)=-(1-a)-2a=-1-a,又∵f(1+a)=f(1-a),∴2+3a=-1-a,∴a=-3 4,综上a=-3 4.答案:-34模拟试题考点一函数的定义域1.(2012河北唐山模拟)函数y=log3(x+1)+( )(A)(0,2) (B)(0,2](C)(-1,2) (D)(-1,2]解析:要使函数有意义,应有10,420,xx+>⎧⎨-≥⎩解得-1<x≤2,故函数的定义域是(-1,2].故选D.答案:D2.(2013重庆市酉阳一中月考)函数的定义域为R,则k的取值范围是( )(A)k≤0或k≥1 (B)k≥1(C)0≤k≤1 (D)0<k≤1解析:若k=0,符合题意,若k≠0,则k>0,且36k2-4×9×k≤0,即0<k≤1,综上可知,0≤k≤1.故选C.答案:C3.(2012浙江树人中学月考)设f(x)在[0,1]上有定义,要使函数f(x-a)+f(x+a)有定义,则a的取值范围为( )(A)1,2⎡⎤-∞-⎢⎥⎣⎦(B)11,22⎡⎤-⎢⎥⎣⎦(C)1,2⎛⎫+∞ ⎪⎝⎭(D)(1,2⎤-∞-⎥⎦∪)1,2⎡+∞⎢⎣解析:由题可知01,01,x ax a≤-≤⎧⎨≤+≤⎩得1,1,a x aa x a≤≤+⎧⎨-≤≤-⎩有a≤-a≤1+a或-a≤a≤1-a,解得-12≤a≤12.故选B.答案:B考点二函数解析式1.(2012吉林模拟)已知函数y=f(x)的图象关于点(-1,0)对称,且当x∈(0,+∞)时,f(x)=1x,则当x∈(-∞,-2)时,f(x)的解析式为( )(A)-1x(B)12x+(C)-12x+(D)12x-解析:因为函数y=f(x)的图象关于点(-1,0)对称,则-y=f(-2-x).设x∈(-∞,-2),则-2-x>0.故-y=f(-2-x)=-12x+,即y=12x+.故选B.答案:B2.(2012江西红色六校联考)具有性质:f1x⎛⎫⎪⎝⎭=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-1x;②y=x+1x;③y=()()()01,01,11x xxxx⎧⎪<<⎪=⎨⎪⎪->⎩其中满足“倒负”变换的函数是( )(A)①②(B)①③(C)②③(D)①解析:对于①,f(x)=x-1x,f1x⎛⎫⎪⎝⎭=1x-x=-f(x),满足;对于②,f1x⎛⎫⎪⎝⎭=1x+x=f(x),不满足;对于③,f1x⎛⎫⎪⎝⎭=1101,101,11,x xxxx⎧⎛⎫<<⎪⎪⎝⎭⎪⎪⎛⎫=⎨ ⎪⎝⎭⎪⎪⎛⎫->⎪ ⎪⎝⎭⎩即f1x⎛⎫⎪⎝⎭=()()()1>1,01,01,xxxx x⎧⎪⎪=⎨⎪-<<⎪⎩故f1x⎛⎫⎪⎝⎭=-f(x).综上可知,满足“倒负”变换的函数是①③.故选B.答案:B考点三分段函数1.(2011浙江省宁波市高三“十校联考”)设集合A=[0,12],B=[12,1],函数f(x)=()1,,221,,x x Ax x B⎧+∈⎪⎨⎪-∈⎩若x0∈A,且f(f(x0))∈A,则x0的取值范围是( )(A)(0,14] (B)(14,12)(C)(14,12] (D)[0,38]解析:∵x0∈A,∴x0+12∈[12,1),即x0+12∈B,所以f(f(x0))=f(x0+12)=2(1-x0-12)=1-2x0,所以0≤1-2x0<12,故14<x0≤12,又x0∈A,所以14<x0<12.故选B.答案:B2.(2011年襄樊检测)设函数f(x)=2,0,2,0,x bx c xx⎧++≤⎨>⎩若f(-4)=0,f(-2)=-2,则关于x的方程x=f(x)的解的个数为( ) (A)1 (B)2 (C)3 (D)4解析:由f(-4)=0,f(-2)=-2,得1640, 422,b cb c-+=⎧⎨-+=-⎩∴b=5,c=4,即f(x)=254,0, 2,0.x x xx⎧++≤⎨>⎩当x≤0时,令x=x2+5x+4,解得x=-2,当x>0时,令x=2.故方程f(x)=x有2个解.故选B.答案:B综合检测1.(2013四川宜宾市高中一诊)下列函数与y=|x|相等的是( )2(D)y=2 x x解析:选项A、D中函数定义域与y=|x|不同;选项B中函数与y=|x|解析式不同,只有选项C符合.故选C.答案:C2.(2013安徽省安庆市四校联考)函数f(x)满足f(x)f(x+2)=13,若f(1)=2,则f(2013)等于( )(A)13 (B)2 (C)132(D)213解析:由f(x)f(x+2)=13,得f(x+2)·f(x+4)=13,∴f(x)=f(x+4),∴f(2013)=f(4×503+1)=f(1)=2.故选B.答案:B3.(2013广东省江门市上学期调研)设f(n)是定义在数集N+上的函数,若对∀n1,n2∈N+,f(n1+n2)=f(n1)f(n2),则f(n)=a n,a为大于0且不等于1的常数.类似地,若对∀n1,n2∈N+,f(n1+n2)=f(n1)+f(n2),则有. 解析:根据条件,可知f(n)=an满足题意.答案:f(n)=an(a为常数)4.(2012浙江省六校联盟第一次联考)已知函数f(x)=221xx+,则f(1)+f(2)+f(3)+f(4)+f(5)+f12⎛⎫⎪⎝⎭+f13⎛⎫⎪⎝⎭+f14⎛⎫⎪⎝⎭+f15⎛⎫⎪⎝⎭= .解析:f(x)+f1x⎛⎫⎪⎝⎭=221xx++22111xx+=1,且f(1)=1 2,∴原式=12+4×1=92.答案:9 25.(2011桦甸二模)已知函数f(x)满足2x x⎛⎫⎪⎪+⎝⎭=log,则f(x)= .解析:由题意知x>0,设t=2x x+=1x.则x=1t.故log=12log2x2=log2x=log21t=-log2t,所以f(t)=-log2t,即f(x)=-log2x(x>0).答案:-log2x(x>0)。