初中数学圆专题训练
初中数学 圆及尺规作图专题训练【含详细答案】

圆及尺规作图专题训练一、填空题:(每题 3 分,共 36 分)1、已知⊙O的半径为 5cm,OA=4cm,则点A在____。
2、如果圆中一条弦长与半径相等,那么此弦所对圆心角为___度。
3、已知∠AOB=30°,⊙M的半径为 2cm,当OM=____时,OM与OA相切。
4、如图,AB是⊙O的直径,∠A=50°,则∠B=____。
5、已知,⊙O1与⊙O2外切,且O1O2=10cm,若⊙O1的半径为 3cm,则⊙O2的半径为___cm。
6、如图,半径为30cm的转轮转120°角时,传送带上的物体A平移的距离为____cm。
(保留π)7、在△ABC中,∠BAC=80°,I 是△ABC外接圆的圆心,则∠BIC=____。
8、如图,A、B、C是⊙O上三个点,当BC平分∠ABO时,能得出结论:___________。
(任写一个)第8题第9题第12题9、△ABC的周长为 10cm,面积为 4cm2,则△ABC内切圆半径为_____cm。
10、如图PA切⊙O于A点,PC经过圆心O,且PA=8,PB=4。
则⊙O的半径为_____。
11、半径是6,圆心角为120°的扇形是某圆锥的侧面展开图,这个圆锥的底面半径为____。
12、如图在Rt△ABC中,∠C=90°,CA=CB=2,分别以A、B、C为圆心,以AC 为半径画弧,三条弧与边AB所围成的阴影部分的面积是_____。
二、选择题:(每题 4 分,共 24 分)1、在⊙O中,若=2,则弦AB和CD的关系是()A、AB=2CDB、AB<2CDC、AB>2CDD、无法确定2、如图,等边三角形ABC内接于圆,D为上一点,则图中等于60°的角有()A、3个B、4个C、5个D、6个3、下列作图语言规范的是()A、过点P作线段AB的中垂线B、在线段AB的延长线上取一点C,使AB=ACC、过直线 a、直线 b 外一点 P 作直线MN,使MN∥a∥bD、过点 P 作直线 AB 的垂线4、已知△ABC中,AB<AC<BC。
初中数学圆形专题训练50题含答案

初中数学圆形专题训练50题含参考答案一、单选题1.如图,A 、B 、C 是⊙O 上的三个点,若⊙C =35°,则⊙OAB 的度数是( )A .35°B .55°C .65°D .70° 2.若圆锥的侧面展开图是一个半圆,该半圆的直径是4cm ,则圆锥底面的半径是( )A .0.5cmB .1cmC .2cmD .4cm 3.如图,AB 是半圆的直径,D 是弧AC 的中点,70ABC ∠=︒,则BAD ∠的度数是( ).A .55°B .60°C .65°D .70° 4.如图,点A 、B 、C 都在⊙O 上,⊙O 的半径为2,⊙ACB =30°,则AB 的长是( )A .2πB .πC .2π3 D .1π35.如图,ABCD 为⊙O 的内接四边形,若⊙D=65°,则⊙B=( )A .65°B .115°C .125°D .135° 6.如图,AB 、AC 是O 的两条切线,切点为B 、C , ∠BAC =30°,则∠BAO 度数为( )A .60B .45C .30D .15 7.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,OM =13,则sin⊙CBD 的值等于( )A B .13 C D .128.如图,在Rt⊙ABC 中,⊙C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,图中阴影部分面积为( )A .25244π-B .25248π-C .252416π-D .252432π- 9.如图,AB 为⊙O 的切线,A 为切点,OB 交⊙O 于点D ,C 为⊙O 上一点,若42ABO ∠=︒,则ACD ∠的度数为( )A .48°B .24°C .36°D .72° 10.如图,点A ,B ,C 在O 上,//BC OA ,20A ∠=︒,则B ∠的度数为( )A .10︒B .20︒C .40︒D .50︒ 11.如图,⊙O 是⊙ABC 的外接圆,已知AD 平分⊙BAC 交⊙O 于点D ,连结CD ,延长AC ,BD ,相交于点F.现给出下列结论:⊙若AD=5,BD=2,则DE=25; ⊙ACB DCF ∠=∠;⊙FDA ∆⊙FCB ∆;⊙若直径AG⊙BD 交BD 于点H ,AC=FC=4,DF=3,则cosF=4148; 则正确的结论是( )A .⊙⊙B .⊙⊙⊙C .⊙⊙D .⊙⊙⊙ 12.下列说法中,正确的是( )A .垂直于半径的直线一定是这个圆的切线B .任何三角形有且只有一个内切圆C .所有的正多边形既是轴对称图形也是中心对称图形D .三角形的内心到三角形的三个顶点的距离相等13.如图,ABC 中,30C ∠=,90B ∠=,8AC =,以点A 为圆心,半径为4的圆与BC 的位置关系是( )A .相交B .相离C .相切D .不能确定 14.如图,⊙O 的半径长6cm ,点C 在⊙O 上,弦AB 垂直平分OC 于点D ,则弦AB 的长为( )A .9 cmB .cmC .92 cmD .cm 15.如图,正ABC 的边长为3cm ,边长为1cm 的正RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为( )A .cm πB .2cm πC .3cm πD .6cm π 16.如图,两个半径都为1的圆形纸片,固定⊙O 1,使⊙O 2沿着其边缘滚动回到原来位置后运动终止,则⊙O 2上的点P 运动的路径长为( )A .2πB .4πC .6πD .无法确定 17.下列五个说法:⊙近似数3.60万精确到百分位;⊙三角形的外心一定在三角形的外部;⊙内错角相等;⊙90°的角所对的弦是直径;⊙函数y =x 的取值范围是2x ≥-且1x ≠.其中正确的个数有( )A .0个B .1个C .2个D .3个 18.下列命题正确的有( )A .在同圆或等圆中,等弦所对的弧相等B .圆的两条不是直径的相交弦,不能互相平分C .正多边形的中心是它的对称中心D .各边相等的圆外切多边形是正多边形 19.若扇形的面积是56cm 2,周长是30cm ,则它的半径是( )A .7cmB .8cmC .7cm 或8cmD .15cm 20.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32π二、填空题21.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA =___. 22.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为_____m .23.用一个圆心角为90°半径为32cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为___cm .24.如图,一块三角形透明胶片刚好在量角器上的位置,点A 、B 的读数分别是80︒、30︒,则ACB =∠________.25.如图,点I 为ABC 的三个内角的角平分线的交点,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为______.26.已知⊙O 1和⊙O 2的半径长分别为3和4,若⊙O 1和⊙O 2内切,那么圆心距O 1O 2的长等于_____.27.已知一个圆锥的底面半径为5cm ,则这个圆锥的表面积为___________28.如图,在⊙O 中,AB 为直径,CD 为弦,已知⊙BAD=60°,则⊙ACD=______度.29.正十二边形的中心角是_____度.30.如图,A 、D 是半圆O 上的两点,BC 是直径,若⊙D =35°,则⊙AOB =_____°.31.如图,四边形ABCD 内接于O ,1079,,BD CD AB AC ====,则AD 的长为 ___________.32.如图,已知⊙P的半径为1,圆心P在抛物线22=-上运动,当⊙P与x轴相切y x时,圆心P的坐标是___________________.33.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是_____34.如图,AB为⊙O的直径,弦CD⊙AB于点E,若AE=8,BE=2,则CD=_______________.35.如图,已知AB是半圆的直径,且AB=10,弦AC=6,将半圆沿过点A的直线折叠,使点C落在直径AB上的点C′,则折痕AD的长为________.36.一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上.木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关数据(单位:cm )后,从点N 沿折线NF FM NF BC FM AB -(∥,∥)切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠、无缝隙、不计损耗),则CN AM ,的长分别是_______.37.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,分别以点A 、C 为圆心,OA 长为半径作OE 、OF 交AD 于点E 、BC 于点F .若6AC =,50∠=°ACB ,则阴影部分图形的面积为__________.(结果保留π)38.如图,在直角坐标系中,点A 坐标为(2,0),点B 的坐标为(6,0),以B 点为圆心,2长为半径的圆交x 轴于C 、D 两点,若P 是⊙B 上一动点,连接P A ,以P A 为一直角边作Rt ⊙P AQ ,使得1tan 2APQ ∠=,连接DQ ,则DQ 的最小值为_____39.如图,点O 为以AB 为直径的半圆的圆心,点M ,N 在直径AB 上,点P ,Q 在AB 上,四边形MNPQ 为正方形,点C 在QP 上运动(点C 与点P ,Q 不重合),连接BC 并延长交MQ 的延长P 线于点D ,连接AC 交MQ 于点E ,连接OQ ,则sin⊙AOQ =__________,若圆半径为R ,则DM ·EM =_______.40.已知Rt △ABC 中,⊙A =90°,M 是BC 的中点.如图,(1)以M 为圆心,MB 为半径,作半圆M ;(2)分别B ,C 为圆心,BA ,CA 为半径作弧,两弧交于D 点;(3)连接AM ,AD ,CD ;(4)作线段CD 的中垂线,分别交线段CD 于点F ,半圆M 于点G ,连接GC ;(5)以点..G 为圆心...,线段GC 为半径,作弧.CD .根据以上作图过程及所作图形,下列结论中:⊙点A 在半圆M 上;⊙AC =CD ;⊙弧AC =弧CD ;⊙△ABM ⊙△ACD ;⊙BC =GC ;⊙⊙BAM =⊙CGF .一定正确的是_______.三、解答题41.如图,⊙O 的半径OA 、OB 分别交弦CD 于点E 、F ,且CE =DF .求证:⊙OEF 是等腰三角形.42.如图,Rt ABC 中90BAC ∠=︒,2AE AD AC =⋅,点D 在AC 边上,以CD 为直径画O 与AB 交于点E .(1)求证:AB 是O 的切线;(2)若1==,求BE的长度.AD DO43.如图,AC是⊙O的直径,AD是⊙O的切线.点E在直径AC上,连接ED交⊙O于点B,连接AB,且AB=BD.(1)求证:AB=BE;(2)若⊙O的半径长为5,AB=6,求线段AE的长.44.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,求球的半径长.45.如图,⊙ABC内接于⊙O,AB=AC,P为⊙O上一动点(P,A分别在直线BC的两侧),连接PC.(1)求证:⊙P=2⊙ABC;(2)若⊙O的半径为2,BC=3,求四边形ABPC面积的最大值.46.如图,AB是⊙O的直径,过点A作⊙O切线AP,点C是射线AP上的动点,连接CO交⊙O于点E,过点B作BD//CO,交⊙O于点D,连接DE、OD、CD.(1)求证:CA=CD;(2)填空:⊙当⊙ACO的度数为时,四边形EOBD是菱形.⊙若BD=m,则当AC=(用含m的式子表示)时,四边形ACDO是正方形.47.如图,已知△ABC为直角三角形,⊙C=90°,边BC是⊙O的切线,切点为D,AB 经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分⊙BAC;(2)若AC=8,tan⊙DAC=34,求⊙O的半径.48.已知A,B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(⊙)如图⊙,求⊙ADC的大小;(⊙)如图⊙,经过点O作CD的平行线,与AB交于点E,与AB交于点F,连接AF,求⊙F AB的大小.49.(1)小迪同学在学习圆的内接正多边形时,发现:如图1,若P是圆内接正三角形ABC的外接圆的BC上任一点,则60APB∠=︒,在PA上截取PM PC=,连接MC,可证明MCP∆是_______(填“等腰”、“等边”或“直角”)三角形,从而得到=PC MC,再进一步证明PBC≅_______,得到=PB MA,可证得:.(2)小迪同学对以上推理进行类比研究,发现:如图2,若P是圆内接正四边形ABCD的外接圆的BC上任一点,则APB APD∠=∠=°,分别过点,B D作BM AP⊥于M、⊥DN AP于N.(3)写出,PB PD与PA之间的数量关系,并说明理由.50.某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知⊙CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm,(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?参考答案:1.B【分析】根据“同一条弧所对的圆周角等于它所对的圆心角的一半”求出⊙AOB 的度数,再根据等腰三角形的性质求解即可.【详解】⊙⊙AOB 与⊙C 是同弧所对的圆心角与圆周角,⊙⊙AOB =2⊙C =2×35°=70°,⊙OA =OB ,⊙⊙OAB =⊙OBA =180AOB 2︒-∠=180702︒︒-=55°. 故选:B .【点睛】本题考查的是圆周角定理,掌握圆周角定理及等腰三角形的性质是关键. 2.B【分析】根据圆锥侧面展开图的半圆的周长等于圆锥底面的周长,从而求出底面半径; 【详解】解:由题意,底面圆的周长为:1422ππ⨯⨯=, ⊙底面圆的半径为:212ππ=(cm ), 故选:B【点睛】此题考查立体图形的侧面展开;圆锥的侧面展开图为扇形,扇形的半径为圆锥的母线,扇形的弧长为圆锥的底面周长.3.A【分析】连接BD ,由于点D 是AC 的中点,即CD AD =,根据圆周角定理得ABD CBD ∠=∠,则35ABD ∠=︒,再根据直径所对的圆周角为直角得到90ADB ∠=︒,然后利用三角形内角和定理可计算出BAD ∠的度数.【详解】解:连接BD ,如图,⊙点D 是AC 的中点,即CD AD =,⊙ABD CBD ∠=∠,而70ABC ∠=︒,⊙170352ABD ∠=⨯︒=︒, ⊙AB 是半圆的直径,⊙90ADB ∠=︒,⊙903555BAD ∠=︒-︒=︒.故选:A .【点睛】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.4.C【详解】⊙点A 、B 、C 都在⊙O 上,⊙ACB =30°,⊙⊙AOB =60°,⊙OA =2,⊙AB =6022=1801803n r πππ⨯=︒ 故选:C .5.B【分析】根据圆内接四边形的对角互补可得答案.【详解】⊙⊙B +⊙D =180°,⊙⊙B =180°﹣65°=115°.故选B .【点睛】本题主要考查了圆内接四边形的性质,关键是掌握圆内接四边形的对角互补. 6.D【分析】根据切线长定理即可求解.【详解】⊙AB 、AC 是O 的两条切线,切点为B 、C ,⊙AO 平分⊙BAC ,⊙∠BAO =12⊙BAC=15°, 故选D.【点睛】此题主要考查圆内角度求解,解题的关键是熟知切线长定理的性质.7.B【分析】根据锐角⊙ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,得出sin ⊙CBD =sin ⊙OBM 即可得出答案.【详解】连接AO ,⊙OM⊙AB于点M,AO=BO,⊙⊙AOM=⊙BOM,⊙⊙AOB=2⊙C⊙⊙MOB=⊙C,⊙⊙O的半径为1,锐角⊙ABC内接于⊙O,BD⊙AC于点D,OM=13,⊙sin⊙CBD=sin⊙OBM=13113 MOOB==则sin⊙CBD的值等于13.故选B.【点睛】此题主要考查了垂径定理以及锐角三角函数值和圆周角定理等知识,根据题意得出sin⊙CBD=sin⊙OBM是解决问题的关键.8.A【分析】设等圆⊙A,⊙B外切于O点,如图,利用两圆相切的性质得到O点在AB上,再利用勾股定理计算出AB,则OA=OB=5,然后根据扇形的面积公式,利用S阴影=S△ABC一2S扇形进行计算,即可求解.【详解】解:设两等圆⊙A,⊙B外切于点O,则点O在AB上,⊙⊙C=90°,AC=8,BC=6,⊙10AB,⊙A+⊙B=90°,⊙OA =OB =5,⊙S 阴影=S △ABC -2S 扇形2190525682423604ππ⨯⨯=⨯⨯-=-. 故选:A .【点睛】本题考查了相切两圆的性质:如果两圆相切,那么连心线必经过切点.也考查了勾股定理和扇形面积的计算.9.B【分析】连结OA ,由切线定理和直角三角形性质可得⊙AOB=48°,再由圆周角定理可得⊙ACD=24°.【详解】解:如图,连结OA ,则由切线定义可得:⊙OAB=90°,⊙⊙AOB=90°-⊙ABO=90°-42° =48°,⊙根据圆周角定理可得:⊙ACD=12⊙AOB=24°, 故选B .【点睛】本题考查圆的应用,综合运用圆周角定理、切线的性质定理和直角三角形的性质求解是解题关键.10.C【分析】由//BC OA 得20C A ∠=∠=︒,由圆心角和圆周角的关系得40O ∠=︒,再利用平行线的性质可得结论.【详解】解:如图,⊙//BC OA ,20A ∠=︒⊙20C A ∠=∠=︒⊙240O C ∠=∠=︒//,BC OA⊙40B O ∠=∠=︒故选:C【点睛】此题考查了圆周角定理与平行线的性质.此题难度不大,注意掌握数形结合思想的应用.11.C【详解】试题分析:此题主要考查圆的综合问题,熟悉圆的相关性质,会证明三角形相似并解决相关问题,能灵活运用垂径定理和三角函数是解题的关键.⊙只需证明⊙BDE⊙⊙ADB ,运用对应线段成比例求解即可; ⊙连接CD ,假设⊙ACB=⊙DCF ,推出与题意不符即可判断; ⊙由公共角和同弧所对的圆周角相等即可判断; ⊙先证明⊙FCD⊙⊙FBA ,求出BD 的长度,根据垂径定理求出DH ,结合三角函数即可求解.⊙如图1,⊙AD 平分⊙BAC ,⊙⊙BAD=⊙CAD ,⊙⊙CAD=⊙CBD ,⊙⊙BAD=⊙CBD ,⊙⊙BDE=⊙BDE ,⊙⊙BDE⊙⊙ADB , ⊙BD DE AD BD=, 由AD=5,BD=2,可求DE=45, ⊙不正确;⊙如图2,连接CD ,⊙FCD+⊙ACD=180°,⊙ACD+⊙ABD=180°,⊙⊙FCD=⊙ABD ,若⊙ACB=⊙DCF ,因为⊙ACB=⊙ADB ,则有:⊙ABD=⊙ADB ,与已知不符,故⊙不正确;⊙如图3,⊙⊙F=⊙F,⊙FAD=⊙FBC,⊙⊙FDA⊙⊙FCB;故⊙正确;⊙如图4,连接CD,由⊙知:⊙FCD=⊙ABD,又⊙⊙F=⊙F,⊙⊙FCD⊙⊙FBA,⊙FC FD FB FA=,由AC=FC=4,DF=3,可求:AF=8,FB=323,⊙BD=BF-DF=233,⊙直径AG⊙BD,⊙DH=233,⊙FG=416,⊙cosF=FGAF=4148,故⊙正确.故选C.考点:圆的综合题.12.B【分析】经过半径的外端并且垂直于这条半径的直线是圆的切线,所以A不正确;三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,所以B是对的;一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,所以C不正确;三角形的内心是三个内角平分线的交点,根据角平分线上的点的特点,D是错误的.【详解】解:A.经过半径的外端并且垂直于这条半径的直线是圆的切线,故A错误;B.三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,故B正确;C.一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,故C错误;D.三角形的内心是三个内角平分线的交点,到三边的距离相等,故D错误.故选B.【点睛】本题考查了圆的切线的判定,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.13.C【分析】由已知条件易求AB的长,和圆的半径4比较大小即可得知与BC的位置关系.【详解】⊙⊙C =30°,⊙B =90°,AC =8,⊙AB =12AC =4. ⊙以点A 为圆心,半径为4画圆,⊙d =r ,即以点A 为圆心,半径为4的圆与BC 的位置关系是相切.故选C .【点睛】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.14.B【分析】弦AB 垂直平分OC 于点D ,得OD=3,由勾股定理得AD ,由垂径定理得AB=2AD ,可得答案.【详解】⊙⊙O 的半径长6cm ,弦AB 垂直平分OC ,⊙OD=3,由勾股定理得:,⊙OC 过O ,OC⊙AB ,⊙AB=2AD=,故选B .【点睛】本题主要考查了垂径定理,勾股定理,利用弦AB 垂直平分OC 得OD 是解答此题的关键.15.B【分析】从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P 为圆心,所以没有路程,同理在AC 和BC 上也是相同的情况,由此求解即可.【详解】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180⨯π,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180⨯π,第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为1201180⨯π×3=2π. 故选:B .【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P 点的运动轨迹.16.B【分析】由⊙O 2上的点P 运动的路径长=点O 2运动的路径长可求解.【详解】解:⊙⊙O 2沿着其边缘滚动回到原来位置后运动终止,⊙⊙O 2上的点P 运动的路径长=点O 2运动的路径长,⊙⊙O 2上的点P 运动的路径长=2π(1+1)=4π故选:B .【点睛】本题考查了轨迹问题,掌握⊙O 2上的点P 运动的路径长=点O 2运动的路径长是本题的关键.17.B【分析】根据近似数3.60万精确到百位可判断⊙,根据三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外可判断⊙,根据两直线平行,内错角相等可判断⊙; 90°的圆周角性质可判断⊙,函数y =0,可判断⊙即可得出答案.【详解】解:⊙近似数3.60万精确到百位,故⊙近似数3.60万精确到百分位错误; ⊙三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外,故⊙三角形的外心一定在三角形的外部错误;⊙两直线平行,内错角相等;故⊙内错角相等错误;⊙90°的圆周角性质是90°的圆周角所对的弦是直径,故⊙90°的角所对的弦是直径不正确;;⊙函数y = 2010x x +≥⎧⎨-≠⎩, 解得2x ≥-且1x ≠,⊙函数y =x 的取值范围是2x ≥-且1x ≠正确. 正确的个数有一个⊙.故选择:B .【点睛】本题考查基本技能,精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围,熟练掌握精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围是解题关键.18.B【分析】根据垂径定理和正多边形的相关知识判断.【详解】解:A 、错误.因为一条弦对应着两条弧;B 、正确.只有垂直于弦的直径才能平分弦;C 、错误.正多边形的中心是它的外接圆的圆心;D 、错误.各边相等的圆外切多边形不一定是正多边形,因为角不一定相等.故选:B.【点睛】本题比较复杂,涉及到垂径定理,圆心角、弧、弦的关系,正多边形和圆的关系,是中学阶段的难点.19.C【分析】设扇形的半径为Rcm ,求出扇形的弧长为(30-2R )cm ,根据扇形的面积是56cm 2得出12R (30-2R )=56,求出即可. 【详解】解:设扇形的半径为R ,⊙扇形周长是30cm ,⊙扇形的弧长为(30-2R )cm ,⊙扇形的面积是56cm 2, ⊙12R (30-2R )=56,解得:R=7或8,故答案为C .【点睛】本题考查了扇形的面积的有关应用,注意:扇形的面积等于弧和半径积的一半. 20.D【分析】连接AD ,根据等边三角形的性质得到3AD AB ==,60ADB ∠=︒,根据勾股定理得到AC =【详解】解:连接AD ,3AB BD ==,60ABC ∠=︒,ABD ∴是等边三角形,3AD AB ∴==,60ADB ∠=︒,6BC =,3CD ∴=,AD CD ∴=,C CAD ∴∠=∠,60C CAD ADB ∠+∠=∠=︒,30C ∴∠=︒,90BAC ∴∠=︒,AC ∴=∴图中阴影部分的面积2160313332360222AB AC πππ⋅⨯=⋅-=⨯⨯=, 故选:D .【点睛】本题考查了扇形面积公式,等边三角形的判定和性质,直角三角形的性质,勾股定理,推出ABD △是等边三角形是解题的关键.21.5【详解】如图,OC 是弦AB 的弦心距,⊙AC =116322AB =⨯=,⊙5OA =.22.2【分析】过O 点作半径OD⊙AB 于E ,如图,由垂径定理得到AE =BE =4,再利用勾股定理计算出OE ,然后即可计算出DE 的长.【详解】解:过O 点作半径OD⊙AB 于E ,如图,⊙AE =BE =12AB =12×8=4,在Rt⊙AEO 中,OE 3,⊙ED =OD ﹣OE =5﹣3=2(m ),答:筒车工作时,盛水桶在水面以下的最大深度为2m .故答案为:2.【点睛】本题考查了垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧,能熟练运用垂径定理是解题的关键.23.8【详解】试题分析:⊙扇形的圆心角为90°半径为32cm ,⊙根据扇形的弧长公式,扇形的弧长为()9032=16cm 180ππ⋅⋅. ⊙圆锥的底面周长等于它的侧面展开图的弧长,⊙根据圆的周长公式,得2r=16ππ,解得()r=8cm .24.25°【分析】首先设半圆的圆心为O ,连接OA ,OB ,由A 点的读数为80°,B 点的读数为30°,即可求得圆心角⊙AOB 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得⊙ACB 的大小.【详解】解:设半圆的圆心为O ,连接OA ,OB ,⊙A 点的读数为80°,B 点的读数为30°,⊙⊙AOB=80°-30°=50°, ⊙⊙ACB=12⊙AOB=25°.故答案为:25°.【点睛】此题考查了圆周角定理.此题难度不大,正确的作出辅助线是解题的关键.25.4【分析】连接AI,BI,由点I为⊙ABC的内心,得到AI平分⊙CAB,根据角平分线的定义得到⊙CAI=⊙BAI.根据平移的性质得到AC⊙DI,由平行线的性质和等角对等边得到AD=DI,BE=EI,根据三角形的周长公式进行计算即可得到答案.【详解】解:连接AI,BI,⊙点I为⊙ABC的内心,⊙AI平分⊙CAB,⊙⊙CAI=⊙BAI.由平移得:AC⊙DI,⊙⊙CAI=⊙AID.⊙⊙BAI=⊙AID,⊙AD=DI.同理可得:BE=EI,⊙⊙DIE的周长=DE+DI+EI=DE+AD+BE=AB,因为4AB ,即图中阴影部分的周长为4.故答案为:4.【点睛】本题考查角平分线的定义、平移的性质、等腰三角形的判定和平行线的性质,解题的关键是掌握角平分线的定义、平移的性质和平行线的性质和等角对等边.26.1【分析】根据两圆内切,圆心距等于半径之差.【详解】解:⊙⊙O1和⊙O2的半径长分别为3和4,⊙O1和⊙O2内切,⊙圆心距O1O2的长=4﹣3=1,故答案为:1.【点睛】本题考查了圆与圆的位置关系,掌握圆与圆之间的位置关系是解题的关键.27.255cmπ【分析】首先求得底面的周长、面积,利用勾股定理求得圆锥的母线长,然后利用扇形的面积公式即可求得圆锥的侧面积,加上底面面积就是表面积.【详解】解:底面周长是2×5π=10πcm,底面积是:5²π=25πcm².(cm),则圆锥的侧面积是:12×10π×6=30π(cm²),则圆锥的表面积为25π+30π=55π(cm²).故答案为:255cmπ.【点睛】本题考查了圆锥的计算,勾股定理,圆的面积公式,圆的周长公式和扇形面积公式求解.注意圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2的应用.28.30【分析】由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得⊙ADB=90°,又由圆周角定理,可求得⊙ACD=⊙B=90°-⊙BAD,继而求得答案.【详解】⊙在⊙O中,AB为直径,⊙⊙ADB=90°,⊙⊙ACD=⊙B=90°-⊙BAD=30°,故答案为:30.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.29.30【分析】根据正多边形的中心角公式:360n计算即可【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式30.70【分析】根据圆周角定理即可求出.【详解】⊙⊙D =35°,⊙⊙AOB =2⊙D =70°,故答案为70【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧所对的圆心角是圆周角的2倍.31【分析】过点A 作AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,根据已知易证ADB ADE ∠=∠,从而证明证明AFD AED △≌△,可得,DF DE AF AE ==,然后再证明Rt Rt BAF CAE ≌,可得BF CE =,最后进行计算即可求出DF ,从而求出,,BF AF AD ,即可解答.【详解】解:过点A 作.AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,⊙AB AC =,⊙ABC ACB ∠=,⊙四边形ABCD 是圆内接四边形,⊙180ABC ADC ∠+∠=︒,⊙180ADC ADE ∠+∠=︒,⊙ABC ADE ∠=∠,⊙ADB ACB ∠=∠,⊙ADB ADE ∠=∠,⊙90,AFD AED AD AD ∠=∠=︒=,⊙(AAS)AFD AED ≌,⊙.,DF DE AF AE ==,⊙90AFB AEC ∠=∠=︒,⊙Rt Rt (HL)BAF CAE ≌,⊙.BF CE =,⊙BD DF CD DE -=+,⊙107DF DE -=+, ⊙32DF DE ==, ⊙3171022BF BD DF =-=-=,⊙AF ===⊙AD = ⊙AD【点睛】本题考查了全等三角形的判定与性质,圆内接四边形的性质,勾股定理,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.32.或(或(1,-1)或(1,-1)-【分析】根据圆与直线的位置关系可知,当⊙P 与x 轴相切时,P 点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】⊙⊙P 的半径为1,⊙当⊙P 与x 轴相切时,P 点的纵坐标为1或-1.当1y =时,221y x =-=,解得x =,⊙此时P 的坐标为或(;当1y =-时,221y x =-=-,解得1x =± ,⊙此时P 的坐标为(1,1)-或(1,1)--;故答案为:或(或(1,-1)或(1,-1)-.【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x 轴相切找到点P的纵坐标的值是解题的关键.33.(﹣2,﹣1)【分析】根据外心的定义作图即可.【详解】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.⊙点A的坐标为(﹣3,2),⊙点O的坐标为(﹣2,﹣1).【点睛】本题考查了三角形外心,熟练掌握外心的定义,准确求作线段的垂直平分线是解题的关键.34.8【详解】连接OC,因为AE=8,BE=2,所以AB=10,则OB=12AB=5,所以OE=OB-BE=5-2=3,在Rt⊙OEC中,由勾股定理可得:CE4=,则CD=8,故答案为:8.35.【详解】解:设圆的圆心是O,连接OD,作DE⊙AB于E,OF⊙AC于F.根据题意知,⊙OF⊙AC,⊙AF=12AC=3,⊙⊙CAD=⊙BAD,⊙CD BD=,⊙点D是弧BC的中点.⊙⊙DOB=⊙OAC=2⊙BAD,在⊙AOF和⊙OED中,⊙⊙OFA=⊙OED,⊙FAO=⊙EDO,AO=DO,⊙⊙AOF⊙⊙OED(AAS),⊙OE=AF=3,⊙DO=5,⊙DE=4,=故答案为【点睛】本题考查翻折变换(折叠问题);勾股定理.36.18cm , 31cm .【分析】如图,延长OK 交线段MF 于点1M ,延长PQ 交BC 于点G ,交FN 于点2N ,设圆孔半径为r .根据勾股定理,得222BH KH BK +=.从而得16r =.根据题意知,12111122ON KN AB OM KM r CB ===+=,.则根据图中相关线段间的和差关系求得CN =QH -QN 2=44-26=18, AM =BC -PD -KM 1=130-50-49=31 ( cm).【详解】解:作辅助线如图所示,设圆孔半径为r ,根据勾股定理,得222BH KH BK +=.⊙()()2221305044100r -++=, 16r ∴=.按题意要求,切割后,以圆O 为中心,到两对边的距离相等, 即:12111122ON KN AB OM KM r CB ===+=,. ⊙21422KN AB ==, ⊙ QN 2+r =42,即QN 2=42-16=26.⊙CN =QH -QN 2=44-26=18.又⊙112KM r CB +=,即 11161302KM +=⨯, ⊙ KM 1=49.⊙AM =BC -PD -KM 1=130-50-49=31.⊙CN =18cm ,AM =31cm .故答案为:18cm ,31cm【点睛】本题考查了矩形、直角三角形及圆等相关知识,将实际问题转化为数学问题经验,利用图形变换思想是解题的关键,体现了数学思想方法在现实问题中的应用价值. 37.52π 【分析】每个扇形的圆心角是50°,半径为3,根据扇形面积计算公式计算即可.【详解】⊙菱形ABCD,⊙AD∥BC,OA=OC=12AC=3,⊙⊙ACB=⊙EAO=50°,⊙阴影部分的面积为50952=3602ππ⨯⨯⨯,故答案为:52π.【点睛】本题考查了菱形的性质,扇形的面积公式,熟练掌握菱形的性质,灵活运用扇形面积公式是解题的关键.38.1##1-+【分析】由题意根据“瓜豆原理-主从联动”可得Q的点轨迹也是一个圆,找到此圆即可解决问题.【详解】解:如图,取点M(2,-2),连接AM,MQ、PB,⊙⊙MAB=⊙QAP=90°,⊙⊙MAQ=⊙BAP,⊙12 AM AQAB AP==,⊙⊙MAQ⊙⊙BAP,⊙MQ=12PB=1,⊙Q点在以M为圆心,以1为半径的圆上,由图象可得:DQ的最小值为:DM-MQ,AD=OD-OA=6+2-2=6,由勾股定理可得:DM =⊙DQ 的最小值等于:故答案为:.【点睛】本题考查轨迹圆问题,熟悉掌握利用相似三角形的性质解决动点的轨迹是快速解题的关键.39. 245R 【分析】利用全等三角形的性质证明OM =ON ,设OM =ON =m ,则MQ =2m ,求出OQ ,可得结论. 再证明⊙AME ⊙⊙DMB ,可得AM EM DM BM,由此构建关系式,可得结论. 【详解】解:如图,连接OP .⊙四边形MNPQ 是正方形,⊙⊙OMQ =⊙ONP =90°,MQ =PN ,⊙OQ =OP ,⊙Rt ⊙OMQ ⊙Rt ⊙ONP (HL ),⊙OM =ON , 设OM =ON =m ,则MQ =2m ,225OQOM MQ m , ⊙sin⊙AOQ =22555MQ m OQ m . ⊙AB =2R ,⊙OA =OB =OQ =R ,⊙QM =2MO , ⊙525sin ,55R R OM OQ AOQ MQ ,55555,,555RAM R R BM R⊙AB 是直径,⊙⊙ACB =⊙DCE =90°,⊙⊙CED =⊙AEM ,⊙⊙A =⊙D ,⊙⊙AME =⊙DMB =90°,⊙⊙AME ⊙⊙DMB ,⊙ AM EM DM BM, 255554.555R DM EMR R245R 【点睛】本题考查了圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.40.⊙⊙【分析】根据圆周角定理,弧、弦、圆心角的关系定理,相似三角形的判定方法,以及其他与圆有关的性质及定理即可判断.【详解】⊙由作图可知,以M 为圆心,BC 为直径的半圆是Rt⊙ABC 的外接圆, ⊙⊙BAC=90°,⊙⊙BAC 是直径所对的圆周角,⊙点A 在半圆M 上,故⊙正确;⊙由分别以B ,C 为圆心,BA ,CA 为半径作弧,两弧交于点D 可知,CA 、CD 是以圆C 的半径,⊙AC=CD ,故⊙正确; ⊙⊙AC 在以M 为圆心、BM 为半径的圆中,CD 在以G 为圆心,以CG 为半径的圆中, ⊙AC CD ,故⊙错误;。
初中数学圆形专题训练50题含(参考答案)

初中数学圆形专题训练50题含参考答案一、单选题1.如图,A ,B ,C 是⊙O 上的三点,且⊙ACB =35°,则⊙AOB 的度数是( )A .35°B .65°C .70°D .90°【答案】C 【分析】根据圆周角定理即可得.【详解】解:由圆周角定理得:223570AOB ACB ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.2.如图,在半径为R 的圆内作一个内接正方形,⊙然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .RB .(12)RC .(12)n -1RD .n R3.如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分⊙BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:⊙AD平分⊙BAC,⊙BAD CAD∠=∠,故C正确;在⊙ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.4.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20°B.25°C.30°D.40°【点睛】此题主要考查了切线的性质,正确得出⊙DOC =50°是解题关键.5.如图,点A ,B ,C 在圆O 上,65∠=︒ABO ,则ACB ∠的度数是( )A .50︒B .25︒C .35︒D .20︒6.如图4,在Rt ABC △中,90C =∠,3AC =.将其绕B 点顺时针旋转一周,则分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( )AB .3πC .3πD .3π 【答案】C 【分析】根据勾股定理,得两圆的半径的平方差即是AC 的平方.再根据圆环的面积计算方法:大圆的面积减去小圆的面积,即9π.【详解】解:圆环的面积为πAB 2-πBC 2,=π(AB 2-BC 2),=πAC 2,=32π,=9π.故选C.7.已知水平放置半径为6cm的球形容器中装有溶液,容器内液面的面积为27πcm2,如图,是该球体的一个最大纵截面,则该截面O中阴影部分的弧长为()A.2πcm B.4πcm C.6πcm D.8πcm意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A,B,C都在圆O上,若⊙C=34°,则⊙AOB为()A.34⊙B.56⊙C.60⊙D.68⊙【答案】D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:⊙⊙C=34°,⊙⊙AOB=2⊙C=68°.故选:D.【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.下列命题中,真命题的个数是()⊙同位角相等⊙经过一点有且只有一条直线与这条直线平行⊙长度相等的弧是等弧⊙顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【答案】A【详解】解:两直线平行,同位角相等,⊙错误;经过直线外一点有且只有一条直线与这条直线平行,⊙错误;在同圆或等圆中,长度相等的弧是等弧,⊙错误;顺次连接菱形各边中点得到的四边形是矩形,⊙正确.故选A.【点睛】本题考查命题与定理.10.AB是⊙O的直径,PB、PC分别切⊙O于点B、C,弦CD AB∥,若PB=AB=10,则CD的长为()A .6B C .D .3 OCF CPE ,四边形12BE OF OF ==,【详解】解:过点⊙OCF CPE , OF OC CE PC =, PB 、PC 分别切⊙O PB PC =,10PB AB ==,11.如图,AB 是O 的直径,ACD 是O 的内接三角形,若6AB =,105ADC ∠=︒,则BC 的长为( )A .8πB .4πC .2πD .π【答案】C【分析】连接OC 、BC ,根据四边形ABCD 是圆的内接四边形和⊙D 的度数,即可求出303602π=,【点睛】本题考查了圆内接四边形的性质、圆周角定理以及弧长公式等知识,根据圆12.将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A .6B .C .3D .【答案】D13.如图,正五边形ABCDE,则⊙DAC的度数为()A.30°B.36°C.60°D.72°【答案】B【分析】根据正五边形和等腰三角形的性质即可得到结论.【详解】⊙在正五边形ABCDE中,AE=DE=AB=BC,⊙E=⊙B=⊙EAB=108°,⊙⊙EAD=⊙BAC=36°,⊙⊙DAC=108°﹣36°﹣36°=36°,故选:B.【点睛】此题考查正多边形和圆,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定【答案】B【分析】首先根据菱形的性质可知:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,然后根据等面积法得出斜边的高相等,这样问题就容易解决了.【详解】如图:⊙菱形对角线互相垂直平分,⊙AO=CO,BO=DO,AB=BC=CD=DA.⊙⊙ABO⊙⊙BCO⊙⊙CDO⊙⊙DAO.⊙⊙ABO、△BCO、△CDO、△DAO的面积相等.又⊙AB=BC=CD=DA,⊙⊙ABO、△BCO、△CDO、△DAO斜边上的高相等.即O到AB、BC、CD、DA的距离相等.⊙O到菱形一边的距离为半径的圆与另三边的位置关系是相切.故选B..【点睛】本题考查了直线与圆的位置关系,解题的关键是画出图形进行分析.15.如图,已知AB是⊙O的直径,弦CD⊙AB于点E,G是弧AB的中点,连接AD,AG ,CD ,则下列结论不一定成立的是( )A .CE =DEB .⊙ADG =⊙GABC .⊙AGD =⊙ADC D .⊙GDC =⊙BAD 【答案】D 【详解】⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙CE =DE ,A 成立;⊙G 是AB 的中点,⊙AG BG =,⊙⊙ADG =⊙GAB ,B 成立;⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙AC AD =,⊙⊙AGD =⊙ADC ,C 成立;⊙GDC =⊙BAD 不成立,D 不成立,故选D .16.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π【答案】D 【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.17.下列命题为真命题的是( )A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,2 1.4S =乙,则乙组数据较稳定【答案】C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.18.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且⊙ACD=45°,DF⊙AB 于点F ,EG⊙AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A.B.C.D.19.如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE 的中点,连接DF.给出以下四个结论:⊙BD=DC;⊙AD=2DF;⊙BD DE;⊙DF是⊙O的切线.其中正确结论的个数是:()A.4B.3C.2D.1【答案】B【详解】连接AD,OD,⊙AB是直径,⊙⊙ADB=⊙AEB=90°,又⊙AB=AC,⊙BD=DC,故⊙正确;⊙F是CE中点,BD=CD,⊙BE//DF,BE=2DF,但没有办法证明AD与BE相等,故⊙错误;⊙AB=AC,BD=CD,⊙⊙BAD=⊙CAD,⊙BD=DE,⊙BD=DE,故⊙正确;⊙⊙AEB=90°,⊙⊙BEC=180°-⊙AEB=90°,⊙BE//DF,⊙⊙DFC=⊙BEC=90°,⊙O为AB的中点,D为BC的中点,⊙OD//AC,⊙⊙ODF=⊙DFC=90°,⊙OD是半径,⊙DF是⊙O的切线,故⊙正确,所以正确的结论有3个,故选B.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质、三角形的中位线等,能根据具体的图形选择和灵活运用相关性质解题是关键.二、填空题20.如图,若正五边形和正六边形有一边重合,则⊙BAC=_____.【答案】132°##132度【详解】解:⊙正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,⊙⊙BAC=360°-108°-120°=132°.故答案为132°.21.已知直角⊙ABC中,⊙C=90°,BC=3,AC=4,那么它的内切圆半径为_______.【答案】1【分析】O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF,由切线的性质可得:⊙ODC=⊙OEC=90°,设OD=OE=r根据正方形的判定即可证出四边形OECD是正方形,从而得出:EC=CD=OD=OE=r,再根据切线长定理可得:BF=BD =3-r,AF=AE =4-r,再根据勾股定理求出AB,利用AB的长列方程即可.【详解】解:如图所示,O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF⊙⊙ODC=⊙OEC=90°22.如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,则BC =_______.【答案】10【分析】从圆外一点可以引圆的两条切线,它们的切线长相等,据此分析解答.【详解】⊙AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,⊙BF =BE =4,CF =CG =6,⊙BC =BF +FC =10,故填:10.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.23.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)24.如图,在O 中,弦AC =B 是圆上一点,且=45ABC ∠︒,则O 的半径R =_____.25.如图,⊙O 的内接四边形ABCD 中,⊙A =45°,则⊙C 的度数 _____________ .【答案】135°【分析】根据圆内接四边形的对角互补可得结论.【详解】∵⊙O的内接四边形ABCD中,⊙A=45°,⊙⊙C=135°.故答案为135°.【点睛】本题考查了圆内接四边形,关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若⊙BAD=105°,则⊙DCE的度数是________°.【答案】105【详解】⊙四边形ABCD是圆内接四边形,⊙⊙DAB+⊙DCB=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣⊙DAB=180°﹣105°=75°,⊙⊙DCB+⊙DCE=180°,⊙⊙DCE=⊙DAB=105°.故答案为10527.如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是____cm.【答案】3【分析】由当OP⊙AB时,OP最短,根据垂径定理,可求得AP的长,然后由勾股定28.如图,在矩形ABCD 中,AB a ,BC b =,点P 是BC 上的一个动点,连接AP ,把PAB 沿着AP 翻折到⊙PB C '(点B '在矩形的内部),连接B C ',B D '.点P 在整个运动过程中,若存在唯一的位置使得⊙B CD 为直角三角形,则a ,b 之间的数量关系是 __.为直径作O ,当点为直角三角形且唯一,在Rt ADO 中,根据22OD OA ,可得,计算可得答案. 为直径作O ,当点到O 的最小距离等于得B CD '为直角三角形且唯一,Rt ADO 中,2AD OD +22211())22b a a +=+,整理得22b =,a>,∴=2b29.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣:⊙将半径2的⊙O六等分,依次得到A,B,C,D,E,F六个分点;⊙分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;⊙连结OG.问:OG的长是多少?大臣给出的正确答案是_________2222OA,(23)222.【点睛】本题考查了圆周角定理,等腰三角形三线合一的性质以及勾股定理解直角三30.半径为O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若⊙OBD是直角三角形,则弦BC的长为_______________.31.如图,P A,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若⊙P=40°,则⊙ACB的度数为_________________.【答案】110°【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出⊙AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出⊙ADB的度数,再根据圆内接四边形的对角互补即可求出⊙ACB的度数.【详解】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:⊙PA、PB是⊙O的切线,⊙OA⊙AP,OB⊙BP,⊙⊙OAP=⊙OBP=90°,又⊙⊙P=40°,⊙⊙AOB=360°-(⊙OAP+⊙OBP+⊙P)=140°,32.如图,矩形ABCD 中,6AB =,9BC =.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为________.33.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.34.如图所示,在⊙O 中,AB 是⊙O 的直径,⊙ACB 的角平分线CD 交⊙O 于D ,则⊙ABD=_________ 度.【答案】45.【详解】试题解析:⊙CD 平分⊙ACB⊙⊙ACD=⊙BCD=45°⊙⊙ABD=⊙ACD=45°.考点:圆周角定理.35.如图,在平面直接坐标系xOy 中,()40A ,,()03B ,,()43C ,,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90°后,I 的对应点'I 的坐标为________.【答案】(-2,3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】解:过点作IF⊙AC于点F,IE⊙OA于点E,⊙A(4,0),B(0,3),C(4,3),⊙BC=4,AC=3,则AB=5,⊙I是⊙ABC的内心,⊙I到⊙ABC各边距离相等,等于其内切圆的半径,⊙IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),⊙⊙ABC绕原点逆时针旋转90°,⊙I的对应点I'的坐标为:(-2,3).故答案为:(-2,3).【点睛】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.36.一个半径为4cm的圆内接正六边形的面积等于_______cm2.S=ABC⊙内接正六边形的面积是故答案是:37.圆心角为40°,半径为2的扇形面积为________.38.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为_____【答案】【详解】连接OC,过O点作BC垂线,设垂足为F,根据垂径定理、勾股定理可以得到OC=5,CF=4,OF=3,在等腰三角形CDE中,高=OF=3,底边长DE=10-8=2,根据勾股定理即可求出CE.解:连接OC,过O点作OF⊙BC,垂足为F,交半圆与点H,⊙OC=5,BC=8,⊙根据垂径定理CF=4,点H为弧BC的中点,且为半圆AE的中点,⊙由勾股定理得OF=3,且弧AB=弧CE⊙AB=CE,又⊙ABCD为平行四边形,⊙AB=CD,⊙CE=CD,⊙⊙CDE为等腰三角形,在等腰三角形CDE中,DE边上的高CM=OF=3,⊙DE=10-8=2,⊙由勾股定理得,CE2=OF2+(DE)2,⊙CE=,故答案为.本题考查了勾股定理和垂径定理以及平行四边形的性质,是基础知识要熟练掌握.39.如图,⊙O是⊙ABC的外接圆,连接OB、OC,若OB=BC,则⊙BAC的度数是_____.三、解答题40.如图,AB是⊙O的直径,C是半圆上的一点,CD是⊙O的切线,AD⊙CD于点D,交⊙O于点E.(1)求证:AC平分⊙DAB;(2)若点E为弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.41.如图,AB是⊙O的直径,点C、E位于⊙O上AB两侧.在BA的延长线上取点D,使⊙ACD=⊙B.(1)求证:DC是⊙O的切线;(2)当BC=EC时,求证:AC2=AE•AD;(3)在(2)的条件下,若BC=AD:AE=5:9,求⊙O的半径.【点睛】本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.42.如图,已知、是⊙的切线,、为切点.直径的延长线与的延长线交于点.(1)求证:;(2)若,.求图中阴影部分的面积(结果保留根号与).【答案】(1)证明见解析;(2).【详解】试题分析:(1)连接,根据是⊙的切线,由切线长定理得到AP=BP,OP平分⊙APB,根据等腰三角形的性质三线合一得到OP⊙AB,再根据AC是⊙O的直径,得到⊙ABC=90°,即AB⊙BC,BC⊙OB,得到内错角相等,由等量代换得到结果.(2)根据切线长定理和三角形全等,S△OPA=S△OPB,通过解直角三角形得到OB,PB,再根据三角形的面积和扇形的面积推出结论.试题解析:(1)证明:连接. 1分⊙是⊙的切线,⊙平分. 2分.⊙是⊙的直径,⊙, 即:. 3分⊙.⊙. 4分,⊙. 5分(2) 连接.⊙,⊙⊙、是⊙的切线,⊙,,又⊙⊙⊙⊙.⊙. 6分在中,,. 7分在中,,⊙. 8分⊙.⊙,.⊙. 9分⊙所求的阴影面积:. 10分考点:1.切线的性质;2.扇形面积的计算.43.数学课上,王老师画好图后并出示如下内容:“已知AB为O的直径,O过AC 的中点D.DE为O的切线.(1)求证:DE BC ⊥(2)王老师说:如果添加条件“1DE =,1tan 2C =”,则能求出O 的直径.请你写出求解过程.DE 为O 的切线,OD DE ∴⊥,即∠AB 为O 的直径,OA OB ∴=,即点点D 为AC 的中点,OD BC ∴∥,CED ODE ∴∠=∠=BC .DE BC ⊥1tan DE CE ∴=O∴的直径为【点睛】本题考查了圆的切线的性质、圆周角定理、三角形中位线定理、解直角三角形等知识点,熟练掌握圆的切线的性质和圆周角定理是解题关键.44.如图,点A、B、C分别是⊙O上的点,⊙B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.45.如图,在O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC ,,25ADC ∠=︒.(1)求证:AD BC =;(2)求证:AE CE =;(3)若弦BD 经过点O ,求BEC ∠的度数. 【答案】(1)见解析(2)见解析(3)65︒【分析】(1)由AB CD =,推出AB CD =,推出BC AD =;(2)证明AED CEB ≌可得结论;(3)先求出90BCD ︒∠=,再求出25CBE,即可得答案. 【详解】(1)解:AB CD =,C ABD ∴=, AB AC CD AC ∴-=-,BC AD ∴=;(2)BC AD ,BC AD ∴=,ADE ∠和CBE ∠都是AC 的圆周角,ADE CBE ∴∠=∠,AED CEB ,AED CEB ∴≌,AE CE ∴=;(3)25ADC ,25CBE ,弦BD 经过点O ,BD ∴是O 的直径,90BCD ︒∴∠=,⊙在CEB 中,18065BEC BCD CBE .【点睛】本题考查了圆心角、弧、弦之间的关系,全等三角形的判定和性质,直径所对的圆周角是90︒,三角形的内角和,解题的关键是正确寻找全等三角形解决问题. 46.如图,在ABC 中,90ABC ∠=,O 是AB 上一点,以O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连接DE 、DE 、OC ,且//DE OC .()1求证:AC 是O 的切线;()2若8DE OC ⋅=,求O 的半径.【答案】(1)证明见解析;(2)2. 【分析】(1)先由OD=OE ,利用等边对等角可得⊙2=⊙3,再利用DE⊙OC ;进而利用平行线的性质,可得⊙3=⊙4,⊙1=⊙2,等量代换可得⊙1=⊙4;再结合OB=OD ,OC=OC ,利用SAS 可证△DOC⊙⊙BOC ,那么⊙CDO=⊙CBO ,而⊙ABC=90°,于是⊙CDO=90°,即CD 是 O 的切线;(2)由(1)可知⊙2=⊙4,而⊙CDO=⊙BDE=90°,易证△CDO⊙⊙BDE ,可得比例线段,OD :DE=OC :BE ,又BE=2OD ,可求OD .【详解】()1证明:连接OD ,⊙OE OD =,⊙23∠=∠,又⊙//DE OC ,⊙12∠=∠,34∠=∠,⊙14∠=∠;在DOC 和BOC 中,OD OB =,14∠=∠,OC OC =,⊙DOC BOC ≅,⊙CDO CBO ∠=∠;⊙90ABC ∠=,⊙90CDO ∠=,⊙CD 是O 的切线;()2⊙BE 是直径,⊙90BDE ∠=,在COD 和BED 中,24∠=∠,90EDB ODC ∠=∠=,⊙COD BED ∽,⊙::OD DE OC BE =;又⊙2BE OD =,⊙22OD DE OC =⋅,⊙2OD =.【点睛】考查了等边对等角,平行线的性质,全等三角形的判定与性质,切线的判定,直径所对的圆周角是直角,相似三角形的判定与性质.综合性比较强,难度较大. 47.已知:对于平面直角坐标系xOy 中的点P 和O ,O 的半径为4,交x 轴于点A ,B ,对于点P 给出如下定义:过点C 的直线与O 交于点M ,N ,点P 为线段MN 的中点,我们把这样的点P 叫做关于MN 的“折弦点”.(1)若()2,0C -⊙点()10,0P ,()21,1P -,()32,2P中是关于MN 的“折弦点”的是______;⊙若直线y kx =0k ≠)上只存在一个关于MN 的“折弦点”,求k 的值;(2)点C 在线段AB 上,直线y x b =+上存在关于MN 的“折弦点”,直接写出b 的取值范围.与D相交或相切,分两种情况利用勾股定理求出【详解】(1))与D相切,与D相交或相切,=+垂直直线y xy轴交于点重合时,b有最大值,此时48.如图1,AB 为O 的直径,C 为O 上一点,连接CB ,过C 作CD AB ⊥于点D ,过点C 作BCE ∠,使BCE BCD ∠=∠,其中CE 交AB 的延长线于点E .(1)求证:CE 是O 的切线.(2)如图2,点F 在O 上,且满足2FCE ABC ∠=∠,连接AF 并延长交EC 的延长线于点G .若4CD =,3BD =,求线段FG 的长.CD OB ⊥DCB ∴∠+∠BCE ∠=∠OC OB=OCB∴∠=OCB∴∠+即:OC⊥CE∴是O的切线.(2)过点O作OHFCE∠=FCE∴∠=FCE∠=FCO∴∠OC CE⊥DCO∴∠+DCO∴∠=DCO∴∠=CDO∠=OCH∴∆≅CH CD∴=8CF∴=设OB OC=2OC OD=2(x x∴=解得:256 x.256OB OC∴==.CDB中,OC CG ⊥GCF ∴∠GCF ∴∠AFCB 是圆的内接四边形,GFC ∴∠GFC∴∆∽∴GF CF BC OC=GF =49.问题探究:(1)如图⊙,已知在⊙ABC 中,BC =4,⊙BAC =45°,则AB 的最大值是 . (2)如图⊙,已知在Rt ⊙ABC 中,⊙ABC =90°,AB =BC ,D 为⊙ABC 内一点,且AD=BD =2.,CD =6,请求出⊙ADB 的度数.问题解决:(3)如图⊙,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区⊙ABC ,且AB =A C .⊙BAC =120°,点A 、B 、C 分别是三个任务点,点P 是⊙ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即⊙APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.的外接圆O,连接)如图⊙,作⊙的外接圆O,连接BAC=90°,OB是等腰直角三角形的外接圆O,连接AKC=⊙APB 是等边三角形。
2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案

2023年人教版初中数学中考第八章 圆(基础)专题训练时间:45分钟 满分:80分一、选择题(每题4分,共32分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 上D .不能确定2.如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB ︵所对的圆周角是( )(第2题)A .∠APBB .∠ABDC .∠ACBD .∠BAC3.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A.π6 B .π C.π3 D.2π34.如图,⊙O 的直径AB =8,弦CD ⊥AB 于点P ,若BP =2,则CD 的长为( )A .2 5B .4 2C .4 3D .8 2(第4题) (第5题) (第6题)5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠ACD=65°,则∠BAD的度数为()A.25°B.30°C.35°D.40°6.如图,在⊙O中,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°7.如图,以边长为2的等边三角形ABC的顶点A为圆心,一定的长为半径画弧,恰好与BC边相切,分别交边AB,AC于点D,E,则图中阴影部分的面积是()A.3-π4B.23-πC.(6-π)33 D.3-π2 (第7题)(第8题)8.如图,在⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1 C.32D.2二、填空题(每题4分,共16分)9.已知圆的半径是3,则该圆的内接正六边形的边长是________.10.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=________°.(第10题)(第11题)11.如图,P A,PB与⊙O相切于A,B两点,点C在⊙O上,若∠C=70°,则∠P=________°.12.已知圆锥的母线长为5,底面半径为3,则圆锥的侧面展开图的面积为________.三、解答题(共32分)13.(10分)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD 至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.(第13题)14. (10分)如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若sin ∠CAB=35,⊙O的半径为522,求AB的长.(第14题)15.(12分)如图,在Rt △ABC 中,∠C =90°,BC 与⊙O 相切于点D ,且⊙O 分别交AB ,AC 于点E ,F .(1)求证:AD 平分∠CAB ;(2)当AD =2,∠CAD =30°时,求AD ︵的长.(第15题)答案一、1.B 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.3 10.140 11.40 12.15π三、13.(1)证明:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°.∵∠ADC +∠ADE =180°,∴∠ADE =∠ABC . ∵AB =AC ,∴∠ABC =∠ACB .∵∠ACB =∠ADB ,∴∠ADB =∠ADE .(2)解:如图,连接CO 并延长交⊙O 于点F ,连接BF , 则∠FBC =90°.由题意得在Rt △BCF 中CF =4,BC =3,(第13题)∴sin F =BC CF =34.∵∠F =∠BAC ,∴sin ∠BAC =sin F =34.14.(1)证明:如图,连接OA .∵∠ABC =45°, ∴∠AOC =2∠ABC =90°.∵AD ∥OC ,∴∠DAO +∠AOC =180°,∴∠DAO =90°,即OA ⊥AD .又∵OA 是⊙O 的半径,∴AD 是⊙O 的切线.(2)解:如图,过点C 作CE ⊥AB 于点E .由(1)知∠AOC =90°.∵AO =OC =522,∵CE ⊥AB ,∴∠AEC =∠CEB =90°,∴sin ∠CAB =CE AC =35, ∴CE =3,∴AE =AC 2-CE 2=4.∵∠CEB =90°,∠ABC =45°,∴∠BCE =45°, ∴CE =BE =3,∴AB =AE +BE =7.(第14题)15.(1)证明:如图,连接OD .∵BC 与⊙O 相切于点D ,∴OD ⊥BC ,即∠ODB =90°.∵∠C =90°,∴OD ∥AC ,∴∠ODA =∠CAD .∵OD =OA ,∴∠OAD =∠ODA ,∴∠CAD =∠OAD ,∴AD 平分∠CAB .(2)解:如图,连接DE .∵AE 为⊙O 的直径,∴∠ADE =90°.∵∠CAD =30°,∠OAD =∠ODA =∠CAD , ∴∠OAD =∠ODA =30°,∴∠AOD =120°. 在Rt △ADE 中,AE =AD cos ∠EAD =232=43 3,∴⊙O 的半径为23 3, ∴AD ︵的长=120π×23 3180=49 3π.。
初中数学圆专题训练(一)

初中数学圆专题训练(一)(一)选择题1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 ( )(A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是 ( )(A )平分弦的直线垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则 ( )(A )=(B )>(C )的度数=的度数 (D )的长度=的长度4.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于 ( )(A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是( )(A )67.5° (B )135° (C )112.5° (D )110°6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与OB 的位置关系是 ( )(A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )(A )21(a +b +c )r (B )2(a +b +c ) (C )31(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =23,则tan ∠BCG 的值为……( ) (A )33 (B )23 (C )1 (D )3 9.在⊙O 中,弦AB 和CD 相交于点P ,若P A =3,PB =4,CD =9,则以PC 、PD 的长为根的一元二次方程为 ( ) (A )x 2+9 x +12=0 (B )x 2-9 x +12=0 (C )x 2+7 x +9=0 (D )x 2-7 x +9=0 10.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是 ( ) (A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r 11.两圆半径分别为2和3,两圆相切则圆心距一定为 ( )(A )1cm (B )5cm (C )1cm 或6cm (D )1cm 或5cm 12.弦切角的度数是30°,则所夹弧所对的圆心角的度数是 ( )(A )30° (B )15° (C )60° (D )45° 13.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦 ( )(A )相等 (B )不相等 (C )大小不能确定 (D )由圆的大小确定 ∠PAD= ( )14.A.10°B.15°C.30°D.25°15.如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连接AB 、BC 、OP ,则 与∠APO 相等的角的个数是 ( )A.2个B.3个C.4个D.5个(二)填空题16.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_____.17.如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠CBE =______.18.圆内接梯形是_____梯形,圆内接平行四边形是_______.19.如图,AB 、AC 是⊙O 的切线,将OB 延长一倍至D ,若∠DAC =60°,则∠D =_____.20.如图,BA 与⊙O 相切于B ,OA 与⊙O 相交于E ,若AB =5,EA =1,则⊙O 的半径为______.21.已知两圆的圆心距为3,半径分别为2和1,则这两圆有_____条公切线. 22.正八边形有_____条对称轴,它不仅是______对称图形,还是______对称图形. 23.边长为2 a 的正六边形的面积为______.24.扇形的半径为6 cm ,面积为9 cm 2,那么扇形的弧长为______,扇形的圆心角度数为_____.25.用一张面积为900 cm 2的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为______. 26. △ABC 的内切圆半径为3cm ,△ABC 的周长为20cm ,则△ABC 的面积为_______________ 。
初中数学专题训练--圆--圆的内接四边形

例 圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数的比是3﹕2﹕7,求四边形各内角度数. 解:设∠A 、∠B 、∠C 的度数分别为3x 、2x 、7x .∵ABCD 是圆内接四边形.∴∠A +∠C=180°即3x+7x=180°,∴x=18°,∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°, 又∵∠B+∠D=180°,∴∠D=180°一36°=144°.说明:①巩固性质;②方程思想的应用.例 (2001厦门市,教材P101中17题)如图,已知AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形ABC 的外接圆相交于D .求证:DB=DC .分析:要证DB=DC ,只要证∠BCD=∠CBD ,充分利用条件和圆周角的定理以及圆内接四边形的性质,即可解决.证明:∵AD 平分∠EAC ,∴∠EAD =∠DAC , ∵∠EAD 为圆内接四边形ABCD 的外角,∴∠BCD=∠EAD ,又∠CBD=∠DAC ,∴∠BCD=∠CBD ,∴DB=DC .说明:角相等的灵活转换,利用圆内接四边形的性质作桥梁.例 如图,△ABC 是等边三角形,D 是上任一点,求证:DB+DC=DA .分析:要证明一条线段等于两条线段的和,往往可以“截长”和“补短”法,本题两种方法都可以证明.证明: 延长DB 至点E ,使BE=DC ,连AE . 在△AEB 和△ADC 中,BE=DC .△ABC 是等边三角形.∴AB=AC .∵ 四边形ABDC 是⊙O 的内接四边形, ∴∠ABE=∠ACD .∴△AEB ≌△ADC . ∴∠AEB=∠ADC=∠ABC . ∵∠ADE=∠ACB ,又 ∵∠ABC=∠ACB =60°, ∴∠AEB=∠ADE=60°.∴△AED 是等边三角形,∴AD=DE=DB+BE . ∵BE=DC ,∴DB+DC=DA .说明:本例利用“截长”和“补短”法证明.培养学生“角相等的灵活转换”能力.在圆中,圆心角、圆周角、圆内接四边形的性质构成了角度相当转换的一个体系,应重视.典型例题四例 如图,ABCD 是⊙O 的内接四边形,CD AH ⊥,如果︒=∠30HAD ,那么=∠B ( )A .90°B .120°C .135°D .150°解:,90,30︒=∠︒=∠AHD HADE︒=∠∴60D ,由圆内接四边形的对角和是180°,得︒=∠120B ,故选B. 说明:“圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.”这个定理很重要,要正确运用.典型例题五例 如图,已知:⊙1O 与⊙2O 相交于点A 、B ,P 是⊙1O 上任意一点,P A 、PB 的延长线交⊙2O 于点C 、D ,⊙1O 的直径PE 的延长线交CD 于点M .求证:CD PM ⊥.分析:要证CD PM ⊥,即证︒=∠+∠90D DPM ,连结公共弦AB 及EB ,即得证.证明:连结AB 、EB ,在⊙中,PEB PAB ∠=∠.∵ABCD 为⊙2O 的内接四边形..,D PEB D PAB ∠=∠∠=∠∴∵PE 为⊙1O 的直径..90︒=∠PBE.90.90.90︒=∠∴︒=∠+∠︒=∠+∠∴DMP D DPM PEB DPM即CD PM ⊥.说明:连接AB 就构造出圆内接四边形性质定理的基本图形.典型例题六例 如图,AD 是ABC ∆外角EAC ∠的平分线,AD 与ABC ∆外接⊙O 交于点D ,N 为BC 延长线上一点,且DN CD CN ,=交⊙O 于点M .求证:(1)DC DB =;(2).2DN CM DC ⋅=分析:(1)由于DB 与DC 是同一三角形的两边,要证二者相等就应先证明它们的对角相等,这可由圆周角定理与圆内接四边形的基本性质得到:(2)欲证乘积式.2DN CM DC ⋅=,只须证比例式DC CM DN DC =,也即CNCMDN DC =,这只须要证明DCM ∆∽DNC ∆即可.证明 (1)连结DC.∵AD 平分EAC ∠,∴.DBC DAC EAD ∠=∠=∠ 又ABCD 内接于⊙O , ∴.DCB EAD ∠=∠ 故.DCB DBC ∠=∠ .DC DB =∴(2).,180180NDC CDM DCN DCB DBC DMC ∠=∠∠=∠-︒=∠-︒=∠ ∴DMC ∆∽DCN ∆,故DNCMCN CM DN DC ==. ∴.2DN CM DC ⋅=说明:本题重在考查圆周角与圆内接四边形的基本性质和利用相似三角形证明比例线段的基本思维方法.本题曾是1996年南昌市中考试题.典型例题七例 如图,已知四边形ABCD 是圆内接四边形,EB 是⊙O 的直径,且AD EB ⊥,AD 与BC 的延长线相交于.F 求证:DCBCFD AB =. 证明 连结AC .∵ EB AD ⊥.∴.∴ DAB ACB ∠=∠.∵ 四边形ABCD 是圆内接四边形,∴ .,ABC FDC DAB FCD ∠=∠∠=∠∴ FCD ACB ∠=∠. ∴ ABC ∆∽FDC ∆.∴DCBCFD AB =. 说明:本题考查圆内接四边形性质的应用,解题关键是辅助线构造ABC ∆,再证ABC ∆∽FDC ∆.易错点是不易想到证ACB FCD ∠=∠而使解题陷入困境或出现错误.典型例题八例 如图,已知四边形ABCD 内接于半圆O ,AB 是直径,DC AD =,分别延长BA ,CD 交于点E ,EC BF ⊥,交EC 的延长线于F ,若12,==BC AO EA ,求CF 的长.解 连结OD ,BD .∵DC AD =,的度数AOD ∠=.∴.//BC OD∴EBEOBC OD =. .24,16.8.3212,12,==∴=∴=∴===EB AB OD OD BC BO AO EAABCD 内接于⊙O ,∴.EBC EDA ∠=∠又 E ∠公用,∴EDA ∆∽EBC ∆. ∴EBEDEC EA BC AD ==. 设y ED x DC AD ===,,则有yx y x +==82412. ∴24=x . ∴24=AD .AB 为⊙O 的直径,∴.90︒=∠=∠F ADB 又.FCB DAB ∠=∠ ∴Rt ADB ∆∽Rt .CFB ∆∴.BCABCF AD =即.121624=CF ∴.23=CF 说明 本题主要考查圆内接四边形的性质,解题关键是作出辅助线.典型例题九例 (海南省,2000) 如图,AB 是⊙O 的直径,弦(非直径)AB CD ⊥,P 是⊙O 上不同于D C ,的任一点.(1)当点P 在劣弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论;(2)当点P 在优弧CD 上运动时,APC ∠与APD ∠的关系如何?请证明你的结论(不要讨论P 点与A 点重合的情形)分析:利用在同圆中,圆心角、弧、弦、弦心距之间的关系定理来解决.解 ∵弦AB CD ⊥,AB 是直径,∴∴(1).APD APC ∠=∠(2).180︒=∠+∠APD APC(如图中虚线所示).选择题1.在圆的内接四边形ABCD 中,A ∠和它的对角C ∠的度数的比为1:2,那么A ∠为( )A .30°B .60°C .90° C .120°2.四边形ABCD 内接于圆,A ∠、B ∠、C ∠、D ∠的度数依次可以是( )A .1:2:3:4B .6:7:8:9C .4:1:3:2D .14:3:1:12 3.四边形ABCD 内接于圆,A ∠、B ∠、C ∠、D ∠的度数比依次可以是() A .4:3:2:1 B .1:3:2:4 C .2:1:3:4 D .2:3:1:44.如图,四边形ABCD 内接于⊙O ,︒=∠110BOD ,那么BCD ∠的度数为()A .︒125B .︒110C .︒55D .︒705. 如图,⊙1O 与⊙2O 交于A 、B 两点,且⊙2O 过⊙1O 的圆心1O ,若︒=∠40M ,则N ∠等于()A .︒40B .︒80C .︒100D .︒70 6. 圆内接平行四边形一定是( )(A )矩形 (B )正方形 (C )菱形 (D )梯形 7.已知AB 、CD 是⊙O 的两条直径,则四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .等腰梯形8、四边形ABCD 内接于圆,则∠A 、∠B 、∠C 、∠D 的度数比可以是 ( ) (A )1﹕2﹕3﹕4 (B )7﹕5﹕10﹕8 (C )13﹕1﹕5﹕17 (D )1﹕3﹕2﹕49、若ABCD 为圆内接四边形,AE ⊥CD 于E ,∠ABC=130°,则∠DAE 为( ) (A )50° (B )40° (C )30° (D )20° 10、如图,圆内接四边形ABCD 的一组对边AD 、BC 的延长线相交于P ,对角线AC 和BD 相交于点Q ,则图中共有相似的三角形 ( )(A )4对 (B )3对 (C )2对 (D )1对11.如图,在ABC ∆,AD 是高,ABC ∆的外接圆直径AE 交BC 边于点G ,有下列四个结论:(1)CD BD AD ⋅=2;(2)AE EG BE ⋅=2;(3)AC AB AD AE ⋅=⋅;(4)CG BG EG AG ⋅=⋅.其中正确的结论的个数是( )A .1个B .2个C .3个D .4个 12.已知:如图,劣弧,那么D B ∠+∠的度数是( )A .320°B .160°C .150°D .200° 13.钝角三角形的外心在( )A .三角形内B .三角形外C .三角形的边上D .上述三种情况都有可能 14.圆内接平行四边形的对角线( )A .互相垂直B .互相垂直平分C .相等D .相等且平分每组对角 15.如图,已知四边形ABCD 是⊙O 的内接四边形,且3,7,5====BE AC CD AB ,下列命题错误的是( )A .DCE ABE ∆≅∆B .︒=∠45BDAC .5.24=ABCD S 四边形 D .图中全等的三角形共有2对答案:1.B 2.D 3.C 4. A 5. D 6、A ;7.A 8、C ; 9、B ; 10、A. 11.B 12.B 13.B 14.D 15.D.填空题1. 已知ABCD 是圆内接四边形,若∠A 与∠C 的度数之比是1﹕2,则∠A 的度数是 度.2. 若A ,B ,C ,D 四点共圆,且∠ACD 为36°,则所对的圆心角的度数是 度.3. 圆内接四边形相邻三个内角的比是2﹕1﹕7,则这个四边形的最大角的度数为 度.4. 圆上四点A 、B 、C 、D ,分圆周为四段弧,且=4:3:2:1,则圆内接四边形ABCD 的最大角是_________5. 圆内接四边形ABCD 中,若EBC ∠是ABC ∠相邻的一个外角,且︒=∠105EBC ,︒=∠93C ,则_____=∠D ,______=∠A ,若3:2:1::=∠∠∠C B A ,则_____=∠D ,______=∠A6. 四边形ABCD 内接于圆,A ∠、C ∠的度数之比是4:5,B ∠比D ∠大︒30,则______=∠A ,______=∠D7. 圆内接梯形是________梯形,圆内接平行四边形是_________8.圆内接四边形ABCD 中,如果4:3:2::=∠∠∠C B A ,那么______=∠D 度. 9.在圆内接四边形ABCD 中,5:3:4::=∠∠∠C B A ,则______=∠D .10.如图,在圆内接四边形ABCD 中,α=︒=∠=AC BAD AD AB ,30,,则四边形ABCD 的面积为________.11.如图,把正三角形ABC 的外接圆对折,使点A 落在的中点A ',若5=BC ,则折痕在ABC ∆内的部分DE 长为_______.答案:1. 60°;2. 72°;3.160°;4. ︒1265. ︒105,︒87,︒90,︒45;6. ︒100,︒757. 等腰,矩形.8.90 9.120° 10.243a 11.310.判断题1. 顶点在圆上的角叫做圆周角;()2. 相等的圆周角所对的弧相等;()3. 直角所对的弦是直径;()4. 在圆中,同一弦上的两个圆周角相等或互补;()5. 弓形含的圆周角为︒120,则弓形弧也为︒120;()6. 四边形的对角互补.() 答案:1. ×2. ×3. ×4. √5. ×6. ×.解答题1、如图,已知:ABCD 为圆内接四边形,(1)若DB ∥CE ,求证:AD ﹕BC=CD ﹕BE ;(2)若AD ﹕BC=CD ﹕BE ,求证:DB ∥CE .2、已知:⊙O 中,直径AB 垂直弦CD 于H ,E 是CD 延长线上一点,AE 交⊙O 于F .求证:∠AFC=∠DFE . 3.如图,已知四边形ABCD 内接于圆,DC 、AB 的延长线相交于E ,且D B A C B E ∠=∠,求证:BD EC BE AD ⋅=⋅4.如图,点A 、D 在⊙O 上,以点A 为圆心的⊙A 交⊙O 于B 、C 两点,AD 交⊙A 于点E ,交BC 于点F ,求证:AD AF AE ⋅=25.已知圆内接四边形,ABCD 中,4:5:2::=∠∠∠C B A ,求最小的角。
初中数学专题训练--圆--过三点的圆

例 如图,表示一块破碎的圆形木盖,确定它的圆心.作法:(1)在弧上任取三点A 、B 、C ; (2)连接AC 、BC ;(3)分别作AC 、BC 的中垂线MN 、PQ ,相交于点0,点0即为所求圆心.说明:此题是最基础的题目,主要培养学生的作图能力,学生必须落实. 例 如图,在△ABC 中,BD 、CE 为△ABC 的中线,延长BD 到F ,使延长CE 到G ,EG=CE.求证:过A 、G 、F 三点不能作圆. 分析:只要证明点G 、A 、F 三点共线即可.证明:连接AG 、AF 、BG 、CF.∵AD=DC 、BD=DF , ∴四边形ABCF 是平行四边形.故AF ∥BC. 同理AGBC 是平行四边形,故AG ∥BC.∴点G 、A 、F 三点在同一直线上. ∴过点G 、A 、F 不可能作圆.说明:此题是小型一个综合题,主要培养学生的思维能力.例 如图,在梯形ABCD 中,AB ∥CD ,E 、F 分别是AD 、BC 的中点,连结EF . 求证:EF ∥AB分析:对反证法思想的理解和基本步骤的掌握是解决本题的关键. 证明:(用反证法证明) 假设EF 与AB 不平行,作EG ∥AB 交BC 于G(如图所示), 则AEDE GB CG ∵E 为AD 的中点,∴CG =BG 即G 是BC 的中点 ∵一条线段只有一个中点,∴F 不是BC 的中点,这与已知条件矛盾 因此假设EF 与AB 不平行是错误的,∴EF ∥AB说明:此题目的是理解和掌握反证法的基本步骤,是初中应用反证法证明的典例之一. 例 用反证法证明:等腰三角形的底角必定是锐角.分析:解题的关键是反证法的第一步否定结论,需要分类讨论. 已知:在△ABC 中,AB=AC.求证:∠A 、∠B 为锐角.证明:假设等腰三角形的底角不是锐角,那么只有两种情况: (1)两个底角都是直角; (2)两个底角都是钝角;(1)由∠A=∠B=90°则∠A+∠B+∠C=∠A+90°+90°>180°,这与三角形内角和定理矛盾,∴∠A=∠B=90°这个假设不成立.(2)由90°<∠B <180°,90°<∠C <180°,则∠A+∠B+∠C>180°,这与三角形内角和定理矛盾.∴两个底角都是钝角这个假设也不成立. 故原命题正确 ∴等腰三角形的底角必定是锐角. 说明:本例中“是锐角(小于90°)”的反面有“是直角(等于90°)”和“是钝角(大于90°)”两种情况,这时,必须分别证明命题结论反面的每一种情况都不可能成立,最后才能肯定命题的结论一定正确.此题是对反证法的进一步理解.典型例题五A B CD E FG A B C D EFG例 作圆使其半径为R ,且经过线段AB 的两端点A 、B .作法(1)作线段AB 的垂直平分线MN ;(2)以点A 为圆心R 为半径画弧,交MN 于O ; (3)以O 为圆心,R 为半径作⊙O . ⊙O 即为所求的圆,如图.说明:要作出一个确定的圆,就必须要明确它的圆心和半径,二都缺一不可.本题中要求的圆的半径已知,故关键要确定它的圆心.通过找圆心的过程可以看出:①当AB R 21>时,符合条件的圆心有两个,要求作的圆有两个;②当AB R 21=时,符合条件的圆心只有一个,要求作的圆有一个;③当AB R 21<时,符合条件的圆心找不到,要求作的圆不存在.典型例题六例 如图,在ABC ∆中,D 、E 分别在AC 、AB 上,BD 、CE 相交于点O ,证明BD 和CE 不可能互相平分.分析:结论带否定词“不”的问题适合于用反证法证明,我们不妨一试. 证明 假定BD 和CE 互相平分,则四边形EBCD 是平行四边形. CD BE //∴,这与已知BE 和CD 相交于A 相矛盾. ∴BD 和CE 不可能互相平分.典型例题七例 如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且OB OA =,OD OC =.证明:四边形ABCD 一定有外接圆.分析:如果能证明四边形的三条边的垂直平分线相交于一点就是了,由题设可以证明AB 、CD 有公共的垂直平分线,这样问题就不难解决了.证明,COD AOB ∠=∠∴等腰AOB ∆和等腰COD ∆的顶角相等. ∴它们的底角也相等.∴ABO CDO ∠=∠.CD AB //,过O 作AB OM ⊥,则OM 是AB 的垂直平分线,也是CD 的垂直平分线.设DA 的垂直平分线交OM 于P ,则P 点到A 、B 、C 、D 的距离相等,即四边形ABCD 有外接圆,其圆心是P 点.典型例题八例 已知:如图,BC DE ⊥于E ,AC DF ⊥于F ,AB DG ⊥于G ,并且E 、F 、G 三点共线,求证:A 、B 、C 、D 四点共圆.分析:A 、B 、C 、D 四点共圆的几何性质是︒=∠+∠180BDC A ,这一结论的反面是︒≠∠+∠180BDC A ,因此,用反证法,从︒≠∠+∠180BDC A 推出一个矛盾,便肯定了A 、B 、D 、C 四点共圆.证明 假设A 、B 、D 、C 四点不共圆,则: ︒≠∠+∠180BDC A ,,,AC DF BC DE ⊥⊥,180︒=∠+∠∴DFC DEC故D 、E 、C 、F 四点共圆. 同理,D 、E 、G 、B 四点共圆. DBG DEF DCF ∠=∠=∠∴, 从而CDF BDG ∠=∠, BDC GDF ∠=∠∴.故︒≠∠+∠=∠+∠180A BDC A GDF , AB DG ⊥,AC DF ⊥, ︒=∠+∠∴180DFA AGD故四边形AGDF 的内角和︒≠∠+∠+∠+∠=360DFA AGD A GDF ,矛盾. ∴A 、B 、D 、C 四点共圆.典型例题九例 作一个圆,使它经过已知点A 和B ,并且圆心在已知直线l 上.作法 (1)当直线l 和AB 斜交或重合时,只要作线段AB 的垂直平分线与l 交于O ,以O 为圆心,OA 为半径作圆即为所求的圆.这样的圆只有一个(如图1).(2)当直线l 与AB 垂直但不经过线段AB 的中点时,这样的圆不能作出. (3)当直线l 经过线段AB 的垂直平分线,这样的圆可作无数个(如图2).图1 图2说明:本题考查圆的确定,解题关键是确定圆心的位置和半径的大小,易错点是忽视线段AB 与l 的不同位置关系,只画出(1)的情况,造成丢解的错误.选择题1.下列命题中正确的为( )(A )三点确定一个圆 (B )圆有切只有一个内接三角形(C )三角形的外心是三角形任意两边的垂直平分线的交点 (D )面积相等的三角形的外接圆是等圆 2.钝角三角形的外心在( )(A )三角形的内部 (B )三角形的外部 (C )三角形的钝角所对的边上 (D )以上都有可能3.己知命题:(1)三角形中最少有一个内角不小于60°;(2)三角形的外心到三角形各边的距离都相等. 下面判断中正确的是( )(A )命题(1)(2)都正确 (B )命题(1)正确,(2)不正确 (C )命题(1)不正确,(2)正确 (D )命题(1)(2)都不正确 4.下列条件,可以画出圆的是() A .已知圆心 B .已知半径 C .已知三个点 D .已知直径 5.三角形的外心是()A .三条中线的交点B .三条中垂线的交点C .三条高的交点D .三条角平分线的交点6.若三角形的外心在三角形内,则三角形的形状是()A .锐角三角形B .直角三角形C .钝角三角形D .形状无法确定 7.在下列三角形中,外心在它一条边上的三角形是() A .边长分别为cm 2、cm 2、cm 3 B .三角形的边长都等于cm 5C .三角形的边长分别为cm 5、2cm 1、3cm 1D .三角形的边长为cm 4、cm 6、cm 8 8.下列说法正确的是( ). A .三点决定一个圆B .三角形的中心就是三角形的外心C .三角形的外心就是三条中线的交点D .∆Rt 斜边的中点就是这个三角形的外心. 9.下列说法中,正确的是( ). A .三点决定一个圆 B .过一点不能作圆 C .过两点不能作圆D .一个圆的圆心决定这个圆的位置,这个圆的半径决定这个圆的大小10.下列命题:(1)经过三点一定可以作圆;(2)任一个三角形一定有一个外接圆,而且只有一个外接圆;(3)任意一个圆一定有一个内接三角形,而且只有一个内接三角形;(4)三角形的外心到三角形三个顶点的距离相等.A .4个B .3个C .2个D .1个 答案:1、C ;2、B ;3、B. 4. D 5. B 6. A 7. C. 8.D ;9.D ;10.C ;填空题1. 如图,ABC ∆内接于⊙O ,OAC B ∠=∠,cm 8=OA ,则cm _____=AC2. 过一点A 可作_______个圆,过两点A 、B 可作________个圆,且圆心在线段AB 的_______上,过三点A 、B 、C ,当这三点________时能且只能作一个圆,且圆心在______上。
初中数学专题训练--圆--圆扇形弓形的面积

例 如图,已知半径OA=6cm ,C 为OB 的中点,∠AOB=120°,求阴影部分的面积.解:过A 作AD ⊥BO 交BO 的延长线于D ,则AD 是△ACO 的边OC 上的高,∵∠AOB=120°,∴∠AOD=60°, ∴AD=OAsin60°=33236=⨯.∴S 阴影=S 扇形ABO -S △ACO =)cm (3291233321360612022-π=⨯⨯-⋅π 说明:(1)此题应用解直角三角形,三角形面积公式和扇形面积公式;(2)阴影部分的面积是由扇形和三角形组合而成,熟练拿握扇形面积公式和三角形面积公式是求此阴影部分面积的关键;(3)灵活选用三角形面积公式: ①a ah 21S =∆;②B sin ca 21C sin bc 21C sin ab 21S ===∆. 例 已知:弓形的弧的度数为240°,弧长是π38,求弓形的面积.解:如图,根据弧长公式有π=⋅π38180OA 240. ∴OA=2.∴ S 扇形OAmB =π=⨯π3836022402, S △OAB =360sin 2221=︒⨯⨯,∴S 弓形AmB =338+π. 说明:(1)弓形面积的计算;(2)弓形面积可以看成是扇形面积和三角形面积的分解和组合,实际应用时,要注意公式的选择.例 如图,在边长l 的正方形中,以各顶点为圆心,对角线长的一半为半径在正方形内画弧,则图中阴影部分的面积为 .解:S 阴影=22121S S 4S 41π-=-π-=-⨯-)()(正方形圆正方形. 说明:求面积问题的常用方法有:直接公式法,和差法,割补法等.例 如图,已知半径为1的三个等圆⊙A 、⊙B 、⊙C 两两外切,切点分别为M 、N 、P ,求夹在三个等圆中间的曲边形MNP 的面积.分析:连结AB 、BC 、CA ,则必分别过点M 、N 、P .曲边形MNP 如果先借添上三个全等扇形即构成了正△ABC ,算出△ABC 的面积后再还掉三个扇形.这样一借一还,先借后还,剩下的就是曲边形MNP .解:S 曲边形MNP =三个扇形△三个扇形三个扇形曲边形)(S S S S S A BC M N P -=-+=π-=⨯π⨯-︒⨯⨯213360160360sin 22212.说明:求有关不规则图形的面积问题的关键是将图形分解为可求图形面积的和差问题,本题是作辅助线构造三角形和扇形的面积解决的.典型例题五例 已知扇形的圆心角150°,弧长为π20cm ,则扇形的面积为_______. 解:设扇形的面积为S ,弧长为l ,所在圆的半径为R ,由弧长公式,得18015020Rππ=. ∴24=R (cm ). 由扇形面积公式,得ππ240360241502=⋅=S .故填π240.说明:本题主要考察弧长公式180R n l π=和扇形面积公式3602R n S π=.典型例题六例 已知弓形的弦长等于半径R ,则此弓形的面积为________.(弓形的弧为劣弧) 解:∵弓形的弦长等于半径R , ∴弓形的弧所对的圆心角为60°,∴扇形的面积为63606022R R S ππ==. 三角形的面积为224360sin 21R R =︒. ∴弓形的面积为22436R R -π. 即212332R -π.故应填212332R -π.说明:注意弓形面积的计算方法,即弓形的面积等于扇形面积与三角形面积的和或差.本题若没有括号里的条件,则有两种情况.典型例题七例 如图,已知扇形AOB 的中心角为直角,若cm 4=OA ,以AB 为直径作半圆,求圆中阴影部分的面积.分析:欲求图形中阴影部分的面积,必须弄清求这个面积没有直接的公式计算,只有通过可求面积的和差来解决,因为阴影部分的面积等于以AB 为直径的半圆面积减去弓形AmB 的面积,而AO B AO B Am B S S S ∆-=扇.解 cm 4=OA ︒=∠90O ,则cm 4=OB22)cm (4360490ππ=⨯⨯︒=∴AOBS 扇cm 24=AB)cm (82=∴∆AO B S)cm (42)22(22ππ==∴半圆S)cm )(84(2-=∴πAm B S 弓形即阴影部分面积)cm (8)84(42=--=-=ππAm B S S 弓形半圆典型例题八例 如图,A 为⊙O 外一点,AO 交⊙O 于P ,AB 切⊙O 于B ,5=AP 厘米,35=AB 厘米,求图中阴影部分的面积.分析:图中阴影部分面积计算无公式可用,可转化为OBA ∆Rt 与扇形OBP 的面积差. 解 连结OB ,因AB 为⊙O 的切线,故AB OB ⊥ 设⊙O 的半径为r ,在OBA ∆Rt 中,r OB =,35=AB ,r OA +=5. 则有222)5()35(r r +=+,︒=∠∴60OO BP O BA S S S 扇形阴影-=∴∆360560355212⋅-⨯⨯=π 6252325π-=(平方厘米) 说明:本例求半径r 时,还可用切割线定理.典型例题九例 已知:如图,OA 和1OO 是⊙O 中互相垂直的半径,B 在上,弧的圆心是1O ,半径是1OO ,⊙2O 与⊙O 、⊙1O 、OA 都相切,61=OO .求图中阴影部分的面积.解析设⊙2O 与⊙O 、⊙1O 、OA 分别切于点D 、C 、E ,设⊙2O 的半径为r ,连结21O O ,E O 2,过点2O 作O O F O 12⊥于F ,连结B O 1、OB 、2OO .r E O r F O r O O O O =-=+=∴=21211,6,6,6212212F O O O EO F O -==r r r 62)6()6(22=--+=r r F O O O S O OO 6662621212121=⋅⨯⨯=⋅=∴∆又)69)(69)(69(921r r S O OO --+--⨯=∴∆)9(332r -=)9(33662r r -=∴2922r r -=,298r r -=1=∴r 或9-=r (舍去)又OB O 1∆ 是等边三角形︒=∠=∠===∴60,61111BOO O BO O O OB B O∴扇形BO O 1和扇形B OO 1的面积相等且都等于ππ63606021=⋅O O O O 1∴、、所组成的图形面积为扇形BO O 1和扇形B OO 1的面积之和减去三角形OB O 1的面积.即391223662166-=⨯⨯⨯-+πππ 又 扇形1OAO 的面积为:ππ96412=⋅∴阴影部分的面积为:ππππππ-+-=⋅---39129)3912(92r π439-=说明:求组合图形的面积一般要构造出易解决问题的基本图形,然后求出各图形的面积,最后通过面积的加、减得出结论.本题较为复杂,考察的知识面较多,要正确作辅助线,找出解题的思路.典型例题十例 (1)已知扇形的半径为10cm ,弧长为π5cm ,则扇形的面积为______cm 2. (2)一个扇形的半径等于一个圆的半径的3倍,且面积相等,则这个扇形的圆心角等于________度.(3)如图,已知半圆的直径︒=∠==35,,cm 10ACD AD AB BC ,则图中阴影部分的面积等于_________.解 (1)设扇形半径为R ,弧长为l ,则).cm (2510521212ππ=⨯⨯=⋅=R l S 扇形 (2)设扇形的半径为R 3,则圆的半径为R ,22)(R R S ππ=⋅=圆.依题意,得扇形的圆心角为:︒=÷120360)3(22R R ππ(3)连结,,,AD AB OA OD = ∴∴.2ACD ∠=∠又.352,35︒=∠∴︒=∠ACD 又.1,3521,ACD OC PA ∠=∠∴︒=∠=∠∴=)cm (925360540.,//22ππ=⨯⨯==∴=∴∴∆∆OCDADC ODC S S S S DC AO 扇形阴影说明:本题考查面积公式的应用,弄清公式中字母的意义,善于进行图形的转换是解题关键.典型例题十一例 如图,已知:⊙O 的长l 是半径R 的π32倍,BC AC ,是方程01)1(22=++---m x m x 的根,1=OC ,求弓形AmB 的面积.解 延长线段OC 交⊙O 于F E ,,作AB OG ⊥于G ,∴.21AB GB =又.120,120,32180︒=∠=∴==AOB n R R n l ππ ∴.60︒=∠GOB在Rt OGB ∆中,.2360sin R R GB =︒⋅= ∴R AB 3=,又.21,cos R OG OB OG GOB =∴=∠ ∴.4321321212R R R OG AB S ABO =⨯⨯=⋅=∆ BC AC , 是方程01)1(22=++---m x m x 的根,∴21+-=⋅m BC AC ,① 21m BC AC -=+ ② 又1))((222-=-=+-=⋅=⋅R OC R OC R OC R CF CE BC AC ③ ∴R AB BC AC 3==+ ④ 由②④得213m R -=,由①,③得.2112+=-m R解方程组⎪⎪⎩⎪⎪⎨⎧+=--=.211,2132m R m R 得.3=R∴.360)3(120,4334322ππ===∆OAmB ABO S R S 扇形=∴弓形AmB 的面积.433-=-=∆πOAB OAmB S S 扇形 说明:本题考查方程与面积的综合应用,解题关键是求⊙O 的半径,应用一元二次方程的根与系数关系等求出面积.典型例题十二例 如图,已知:⊙O 的半径为R ,直径⊥AB 直径CD ,以B 为圆心,以BD 为半径作⊙B 交AB 于E ,交AB 的延长线于F ,连结DB 并延长交⊙B 于M ,连结MA 交⊙O 于N ,交CD 于H ,交⊙B 于G .(1)求图中阴影部分的面积S ;(2)求证:.HM HG HN HA ⋅=⋅解 (1)连结BC ,则,,2122R S R S BCD BCED ==∆π扇形 .2121.2122222R R R R S S R S CED =+-=∴-=∴πππ弓形(2)由相交弦定理,得HC HD HM HG HC HD HN HA ⋅=⋅⋅=⋅,,∴.HM HG HN HA ⋅=⋅说明:本题综合考查阴影面积计算与比例线段的证明,解题关键是把组合图形的面积,化归为几个简单图形面积的和或差.典型例题十三例 如图,ABC ∆为某一住宅区的平面示意图,其周长为800米,为了美化环境,计划在住宅区周围5米(虚线以内,ABC ∆之外)作为绿化带,则绿化带的面积为______(米2).解 分别过C B A ,,作BC C C BC B B AC A A AC C C AB B B AB A A ⊥''⊥''⊥''⊥'⊥'⊥',,,,,,则A A A S A A AC B B BC B B AB S '''+''⋅+''⋅+'⋅=3.2540005800518018022πππ+=⋅+⨯='⋅⋅+⨯'=∆B B l B B ABC 说明:本题考查不规则图形的面积计算,解题关键是通过作辅助线转化为规则几何图形求解.选择题1. 如图,在ABC ∆Rt 中,︒=∠90BAC ,2==AC AB 以AB 为直径的圆交BC 于D ,则图中阴影部分面积为()A .1B .2C .41π+D .42π-2. 如果扇形的圆心角为︒150,扇形面积为2cm 240π,那么扇形的弧长为() A .cm 5π B .cm 10π C .cm 20π D .cm 40π3. 正方形的内切圆半径为r ,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为() A .222r -πB .221r -π C .2)2(r -πD .2)1(r -π4. 设三个同心圆的半径分别为1r ,2r ,3r ,且321r r r <<,如果大圆的面积被两个小圆分成三等分,那么321::r r r 为() A .1:2:3B .3:2:1C .9:4:1D .2:3:15.已知如图,扇形AOB 的半径为12,OB OA ⊥,C 为OB 上一点,以OA 为直径的半圆1O 和以BC 为直径的半圆2O 相切于点D ,则图中阴影部分面积为( )(A )π6 (B )π10 (C )π12 (D )π206.若⊙1O 的60°弧与⊙2O 的45°弧长度相等,则⊙1O 与⊙2O 的面积之比为( ) A .16:9 B .9:16 C .4:3 D .3:47.若扇形的面积为π12,它的弧所对的圆心角为25°,则扇形的半径是( )A .212B .30512C .12D .612 8.两圆半径分别为R 和r ,另有一大圆的面积等于这两圆面积之和的4倍,则此大圆半径为( )A .)(21r R + B .)(2122r R + C .2221r R + D .222r R + 9.两同心圆小圆切线被大圆所截部分为6cm ,则这两圆围成的环形面积为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学圆专题训练 This model paper was revised by LINDA on December 15, 2012.
初中数学圆专题训练(一)
(一)选择题
1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()(A)4个(B)3个(C)2个
(D)1个
2.下列判断中正确的是()
(A)平分弦的直线垂直于弦(B)平分弦的直线也必平分弦所对的两条弧
(C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦
3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则()(A)=(B)>
(C)的度数=的度数
(D)的长度=的长度
4.如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()
(A )60° (B )100° (C )80°
(D )130°
5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是
( )
(A )67.5° (B )135° (C )112.5°
(D )110°
6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那
么圆P 与OB 的位置关系是 ( )
(A )相离 (B )相切 (C )相交
(D )不确定
7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )
(A )21(a +b +c )r (B )2(a +b +c ) (C )3
1(a +b +c )r (D )(a +b +c )r
8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN
切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =2
3,则tan ∠BCG 的值为……( )
(A )33 (B )2
3 (C )1 (D )3
9.在⊙O中,弦AB和CD相交于点P,若PA=3,PB=4,CD=9,则以PC、PD的长为根的一元二次方程为()
(A)x2+9 x+12=0 (B)x2-9 x+12=0 (C)x2+7 x+9=0 (D)x2-7 x+9=0
10.已知半径分别为r和2 r的两圆相交,则这两圆的圆心距d的取值范围是()(A)0<d<3 r(B)r<d<3 r(C)r≤d<3 r(D)r≤d≤3 r
11.两圆半径分别为2和3,两圆相切则圆心距一定为()
(A)1cm (B)5cm (C)1cm或6cm (D)1cm或5cm
12.弦切角的度数是30°,则所夹弧所对的圆心角的度数是()
(A)30°(B)15°(C)60°(D)45°13.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦()
(A)相等(B)不相等
(C)大小不能确定(D)由圆的大小确定
14. ∠PAD= ()
A.10°
B.15°
C.30°
D.25°
15.如图,PA、PB分别切⊙O于A、B,AC是⊙O的直径,连接
AB、BC、OP,则
与∠APO相等的角的个数是()
A.2个
B.3个
C.4个
D.5个
(二)填空题
16.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为
_____.
17.如图,已知AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠CBE=______.
18.圆内接梯形是_____梯形,圆内接平行四边形是_______.
19.如图,AB、AC是⊙O的切线,将OB延长一倍至D,若∠DAC=60°,则∠D=_____.20.如图,BA与⊙O相切于B,OA与⊙O相交于E,若AB =5,EA=1,则⊙O的半径为______.
21.已知两圆的圆心距为3,半径分别为2和1,则这两圆有_____条公切线.
22.正八边形有_____条对称轴,它不仅是______对称图形,还是______对称图形.
23.边长为2 a的正六边形的面积为______.
B
24.扇形的半径为6 cm,面积为9 cm2,那么扇形的弧长为______,扇形的圆
O
E
A
心角度数为_____.
25.用一张面积为900 cm2的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为______.
26. △ABC的内切圆半径为3cm,△ABC的周长为20cm,则△ABC的面积为
_______________ 。
27.在半径为1的圆中,长度等于的弦所对的圆心角是______度。
28. 如图,⊙P的半径为2,圆心P在函数y= 的图象上运动,当⊙P与x轴相切时,点P 的坐标为。
29.如图,在△ABC中,∠C=90°,AC=5cm ,BC=12cm,⊙O分别切AC、BC于点D、E,圆心O在AB上,则⊙O的半径r为_____________。
(三)判断题
30.相交两圆的公共弦垂直平分连结这两圆圆心的线段
()
31.各角都相等的圆内接多边形是正多边形
()
32.正五边形既是轴对称图形,又是中心对称图形
()
33.三角形一定有内切圆 ( )
34.平分弦的直径垂直于弦 ( )
(四)解答题
35. 如图,⊙O 的直径AB 和弦CD 相交于点E ,且AE =1 cm ,EB =5 cm ,∠
DEB =60°,
求CD 的长.
36.如图,AB 为⊙O 的直径,P 为BA 的延长线上一点,PC
切⊙O 于点C ,CD ⊥AB ,垂足为D ,且PA =4,PC =8,
求tan ∠ACD 和sin ∠P 的值.。
37.如图,已知ABCD 是圆内接四边形,EB 是⊙O 的直径,
且EB ⊥AD ,AD 与BC 的延长线交于F ,求证FD AB =DC BC
.。
38.已知:如图,⊙O 1与⊙O 2内切于点P ,过点P 的直线交⊙O 1
于点D ,交⊙O 2于点E ;DA 与⊙O 2相切,切点为C .*(1)求证
PC 平分∠APD ; (2)若PE =3,PA =6,求PC 的长.
.
39.如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧的中点,连结AD 并延
长,与过C 点的切线交于P ,OD 与BC 相交于点E .(1)求证OE =21AC ;(2)求证:AP
DP =22AC BD ;(3)当AC =6,AB =10时,求PC 的长. .
40. 已知:如图,PBA 是⊙O 的割线,PC 切⊙O 于C ,PED 过点
41. 在同心圆O 中,AB 是大圆的直径,与小圆交于C 、D ,EF 是大
圆的弦,且切小圆于C ,ED 交小圆于G ,若大圆半径为6,小圆
半径为4,求EG 的长.
42. 已知:如图AB 为半圆O 的直径,过圆心O 作EO ⊥AB,交半圆于
F ,过E 作EC 切⊙O 于M ,交AB 的延长线于C ,在EC 上取一点
D ,使CD=OC 求证:DF 是⊙O 的切线.
43. 已知:如图△ABC 内接于⊙O ,∠BAC 相邻的外角∠CAD 的
平分线AE 交BC 延长线于E ,延长EA 交⊙O 于F ,连BF。