第一讲速算与巧算(一)
第1讲 速算与巧算

第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。
1.加法巧算。
(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。
字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。
如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。
字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。
(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。
字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。
字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。
(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。
字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。
如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。
(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
第一讲 速算与巧算

第一讲速算与巧算一、加减巧算知识梳理1、学会“化零为整”的思想。
2、加法交换律:两个数相加,交换加数的位置,它们的和不变。
3、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
例1凑整法 23+54+18+47+82;例2借数凑整法有些题目直观上凑整不明显,这时可“借数”凑整。
例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
(1350+49+68)+(51+32+1650)例3分组凑整法(1)875-364-236; (2)1847-1928+628-136-64;例4加补凑整法(1)512-382; (2)6854-876-97;二、乘除巧算知识梳理前面我们已给同学们介绍了加、减法中的巧算,大家学会了运用“凑整”的方法进行巧算,实际上这种凑整的方法也同样可以运用在乘除计算中。
为了更好地凑整,同学们要牢记以下几个计算结果:2×5=10,4×25=100,8×125=1000。
提高计算能力,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。
巧算中,经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提高巧算能力的关键。
例1你有好办法算出下面各题的结果吗?(1)25×17×4 (2)8×18×125 (3)8×25×4×125例题2你有好办法计算下面各题吗?(1)16×125 (2)16×25×25 (3)125×32×25思路点拨:分解因数,凑整先乘例3 计算(1) 175×34+175×66 (2) 123×99思路点拨:应用乘法分配律例题4你能很快算出它们的结果吗?(1)82×88 (2)51×59思路点拨:通过观察,我们可以发现这两题都是两位数乘两位数,被乘数和乘数十位上的数字相同,个位数字和是10,像这样的题目,我们可以将首位数字加1再乘首位数字,得数作为积的前两位数字;将两个末位数字相乘,得数作为积的末位两个数字,如果末位数字相乘的积是一位数,要在前面加一个0。
速算和巧算

第一讲速算和巧算例1 计算:18+21+23+20+19+15例2 计算:199999+19999+1999+199+19例3 计算:2541-1998例4 计算:1991+8119+8009+1881例5 计算:25×19×64×125例6 计算:(1)125×34+125×66(2)43×11+43×36+43×52+43例7 计算:(1)68×62(2)85×85例8 计算:26×11例9 计算:358×11练习1. 计算:78+76+81+82+77+80+79+832. 计算:998+1413+99893. 计算:19+299+3999+499995. 计算:673+(528-373)6. 计算:829+(571-629)7. 计算:(1)1164×25 (2)1730÷58. 计算:3600-785+534-2159. 计算:9+99+999+9999+…+99999个11. 计算:26×8612. 计算:548-164-23613. 计算:(1)54-36+64+36 (2)54×36×64÷3614. 计算:28÷3×54×15÷54÷1415. 速算下面各题:(1)2×31×5 (2)72×125×3(3)125×64+125×36 (4)21×73+26×21+2116. 先观察下列各题有什么特点再计算:(1)23×27 (2)46×44 (3)55×55 (4)353×11 (5)638×9 (6)38×999四年级第一讲速算与巧算(一)例题例1 计算:1966+1976+1986+1996+2006例2 计算:125×25×32例3 计算:(1)567×422+567+577×567 (2)5328×9999 例4 计算:99999×22222+33333×33334例5 计算:1991×199219921992-1992×199119911991例6 计算:1234+3142+4321+2413练习一1. 计算:1+2+3+4+5+6+7+8+9+10+11+…+1002. 计算:3600000÷125÷32÷253. 计算:5×96×125×254. 计算:899998+89998+8998+8985. 计算:3456×9986. 计算:37×18+27×427. 计算:38×82+17×38+388. 计算:347×69+653×31+306×199. 计算:3983993433333个个10. 计算:111111×999999+999999×77777711. 计算:123+234+345+456+567+67812. 计算:(2+4+6+…+1998+2000)-(1+3+5+…+1997+1999)13. 计算:99999×77778+33333×6666614. 计算:12345+23451+34512+45123+5123415. 计算:19961997×19971996-19961996×19971997第二讲 速算与巧算(二)例19199291992919929991999999个个个+⨯的末尾有多少个零?例2 计算:98+97-96-95+94+93-92-91+90+89-…-4-3+2+1例3 计算:98989898×99999999÷1010101÷11111111例4 计算:7+77+777+7777+77777例5 计算:9÷(9÷8)÷(8÷7)÷(7÷6)÷(6÷5)÷(5÷4)÷(4÷3) 例6 计算:11111×11111练习二1. 计算:999999999×999999999+19999999992. 计算:1-2+3-4+5-6+…+97-98+99+1003. 计算:76000÷98010000020001个个4. 计算:[1-1×﹙0+1﹚+1÷1] ÷﹙1000-999﹚5. 计算:3+33+333+…+39333个6. 计算:1+2-3-4+5+6-7-8+9+10-…+19907. 计算:1+2-3+4+5-6+7+8-9+…+97+98-1008. 计算:99+198+297+396+495+594+693+792+891+9909. 计算:(1)11111111×11111111(2)1111111111×111111111110. 计算:1÷(2÷3) ÷(3÷4) ÷(4÷5) ÷(5÷6) ÷(6÷7) ÷(7÷8)11. 计算:36×12004111个+412. 计算:22222×2222213. 计算:61996619976766666个个14. 计算:123456789×987654321-123456788×987654322。
三年级奥数知识讲座:第一讲:速算与巧算(一)

来源于:华罗庚学校奥林匹克数学课本第一讲速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下面各题:①36+87+64 99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:=19413.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例 5 ①506-397②323-189③467+997④987-178-222-390解:①式=500+6-400+3(把多减的3再加上)=109②式=323-200+11(把多减的11再加上)=123+11=134③式=467+1000-3(把多加的3再减去)=1464④式=987-(178+222)-390=987-400-400+10=197。
第一讲 速算与巧算(一)

2. 用简便方法计算下面各题。 (1)43+39+38+40+39+41 (2)88+79+82+75+85+81 (3)785+992-185 (4)5131+4367-1131-1367 (5)632-156-232
3.用简便方法计算下面各题。 (1)375-88-12 (2)411-185-15
2.加法交换律、加法结合律; 3.分拆法; 4.多加几,要减几;少加几,再加几;多减几, 要加几。少减几,要减几;
5.减法性质。
例1.用简便方法计算下面各题。 (1)275+156+225+44 (2)9999+998+97+9 (3)68+192+40 (4)68+78+88+98 (5)529-395
(2)42+39+50-38-42+48+37
举一反三: 1.用简便方法计算下面各题。 (1)125+78+75+22
(2)172+55+62+45+28
(3)56+94+150
(4)9+97+996+995
(5)1996+2997+4998+3999
(6)653-498
(7)867-395-399 (8)865-489 (9)397-299+3999-399
3.拓展探究. (1)100-99+98-97+96-95+…+2-1 (2)1+11+21+31+…+101+11 (3)99998+9998+998+98+8 (4)99999+9999+999+99+9 (5)80-79+78-77+76-75+74-73+72-71
例2.用简便方法计算下面各题。 (1)50+56+48+46+52+60
(2)178+188-78
例3.用简便方法计算下面各题。 (1)867-45-55
(2)845-(45+130)
四秋 第1讲 速算与巧算(一)

速算与巧算(一)一、知识站点1、加法结合律2、加法交换律3、基本的运算技巧4、“取整补零”二、注意事项1、认真地观察算式中各个数的特点,确定简算的方法;2、简算的步骤必须清楚完整、简练。
例1、用简便方法计算下面各题。
(1)275+156+225+44 (2)9999+998+97+9(3)68+192+40 (4)529-395练一练:(1)172+55+62+45+28 (2)9+97+996+995(3)653-498 (4)865-489例2、用简便方法计算下面各题。
1)50+56+48+46+52+60 2)178+188-78练一练:(1)43+39+38+40+39+41 (2)88+79+82+75+85+81 (3)785+992-232 (4)5131+4367-1131-1367例3、用简便方法计算下面各题。
1)867-45-55 2)845-(45+130)3)324-(124-96)练一练:(1)375-88-12 (2)845-(88+45)(3)785-(185-99)例4、用简便方法计算下面各题。
1)18-16+14-12+10-8+6-4+2 2)42+39+50-38-32-42+48+37练一练:(1)97-95+93-91+89-87+85-83+81-79 (2)30+32+35+28-32-33课后测试题1★用简便方法计算下面各题。
(1)56+27+44+13 (2)85+32+68(3)4231+5648-4648-2231 (4)219+648+51-138-548-62(5)99998+9998+998+98+82★★歌唱比赛中,七位选手的分数分别为85分、82分、76分、78分、70分、76分、65分。
这七位选手的平均成绩是多少?3★★用简便方法计算下面各题。
1)80-79+78-77+76-75+74-73+72-71 2)65+58+55+60-57-62-553)52+49+57+50+48+514★★★用简便方法计算下面各题。
第一讲速算与巧算

第一讲速算与巧算第一讲速算与巧算速算技巧在计算中,通过“凑整”、“拆数”、“等积变形”、“应用补充的数”等方法改变运算方法、顺序,运用运算定律、性质、计算公式等,可以使我们的运算变得简便。
速算技巧(一)1.几个接近的数相加例1、计算898+899+901+907+895+911+898+897+906+890思路与技巧:求几个大小比较接近的加数的和,可以选择一个比较接近的数作为相同加数(有时又叫做“标准数”),用乘法求出这几个相同加数的和,然后加上少加的数,减去多加的数。
计算:8888+253+249+248+250+248+246+251+2552.换个方法用乘法分配律例2、1420×3.4+1.42×2300+14.2×430思路与技巧:积不变的规律应用一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。
1、当有几个乘式相加并且有一个因数相同时,可以考虑逆向利用乘法分配律进行简便计算。
2、如果一个因数数字相同而小数点位置不同,要首先利用积的变化规律使得其中一个因数相同,然后再利用乘法分配律。
计算:1.6×5.96+264×0.596+720×0.596速算技巧(二)1.巧用括号改变运算顺序引例:看谁算得又对又快,(1)562+314+438+286 (2)713-36-64 (3)713-(213-46)例1:计算: 63587-3963-2065+36413-4789-3183思路与技巧:在连减运算时,有时运用连减的规律a- (b+c)=a-b-ca- (b-c)=a-b+c计算:236.87-37.4-6.87-28.5-34.12.商不变的性质的应用被除数与除数同时扩大或缩小相同的倍数,所得的商不变.例2、计算(1)5000 ÷ 125 (2)(96000-96)÷(32000-32)(3)(97932-97.932)÷(32644-32.644)计算:(12344-123.44)÷(24688-246.88)速算技巧(三)运用运算律简便计算计算(1)80.8×125 (2)125×239×25×64×5乘法中的凑整规律:5×2=1025×4=100125×8=1000当乘法算式中有因数5、25、125,常常通果拆数和积不变的性质得到上面几个式子。
四下 第1讲 速算与巧算(一)(四下第七单元后)

3 计算1308-(308-49)
如果我们能用1308先减去308该多好啊?49怎么办呢?自己算一算 吧。 1308-(308-49) 1308-(308-49) =1308-308-49 =1308-308+49 =1000-49 =1000+49 =951 =1049 想办法验证一下?
? ≠
?836-(336-48)源自简算下列各题: (1)386-309+114; (2)354+(646-198); (3)937+115-37+85; (4)612-(187+212); (5)811-125-113-62 ; (6)3652-581-419-652; (7)847-578+353-222 ; (8)3842-1567-433-842
用字母表示:a±b±c=a±c±b
这样的方法适用更多的连加、连减和加减混合运算中。
1.简算 516+88-16
255-138+145
819-85-119
用字母表示:a±b±c=a±c±b
这样的方法适用更多的连加、连减和加 减混合运算中。
2 计算386+123+214+277 4265+125+875-256
√
按原来的运算顺序计算
比较1308-308与1308-(308-49)的大小
因为从1308中-308比-(308-49)多减了49,所以要补上49,也就是 +49.
528-(328+196) =528-328-196 =200-196 =4
1308-(308-49) =1308-308+49 =1000+49 =1049
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 速算与巧算(一)
内容概述
同学们,这节课我们又要一同走进“计算的海洋”,还记得课堂上我们学到的一些巧算的方法吗?在那节课中我们学到了以下几种方法:凑整求和、找基准数、分组求解、自然数的分拆等几个常用技巧!学习完以后,相信聪明的你会发现自己能快速正确的做出更多的题目了!可有时候,还有许多我们却摸不着头脑!那是因为在速算的方法技巧中还蕴藏了许多我们没有学习到的东西!那么这节课让我们一起来走进去探讨一下吧!
一、巧妙运用运算律和积、商不变的规律进行简便运算
在速算的过程中,如果加入运算律的应用,会有意想不到的效
果!我们一起先来看看常用的一些运算律和结论吧!
在计算过程中,最常用的技巧之一是灵活熟练地运用运算律.运算律有:
(1) 加法交换律:a+b=b+a
(2) 加法结合律:(a+b)+c=a+(b+c)
(3) 乘法交换律:ab=ba
(4) 乘法结合律:(ab)c=a(bc)
(5) 分配律: a(b+c)=ab+ac (反过来就是提取公因数)
(6) 减法(括号)的性质:a-b-c=a-(b+c)
(7) 除法的性质:a÷(b×c)=a÷b÷c
(a+b) ÷c=a÷c+b÷c
(a-b) ÷c=a÷c-b÷c
和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.
积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变.
商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变.
【例1】 计算:6.25×8.27×16+3.75×0.827×8
分析:原式=6.25×16×8.27+3.75×0.8×8.27
=8.27×(6.25×16+3.75×0.8)
=8.27×(100+3)
=8.27×100+8.27×3
=851.81 .
根据“一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变”的道理,进行适当变换,提取公因式,进而凑整求和.
【巩固】计算 6.25 × 0.16+264×0.0625+5.2×6.25+0.625×20
【巩固】计算:8.88×0.15+265×0.0888+5.2×8.88+0.888×20【例2】 1.23452+0.76552+2.469×0.7655
分析:原式=1.23452+0.7655×(1.235+2)
=1.2345×(1.2345+0.7655)+0.7655×2
=2×2
=4
【巩固】计算7.816×1.45+3.14×2.184+1.69×7.816
【例3】 计算:147.75×8.4+4.792+409×2.1+0.9521×479分析:原式=(147.75×4+409)×2.1+(0.0479+0.9521)×479 =1000×2.1+479
=2579
【巩固】计算11.8×43—860×0.09
【例4】 41.2×8.1+11×8.75+537×0.19
分析:(法1)原式=41.2×8.1+11×8.75+53.7×1.9
=41.2×8.1+11×8.75+(41.2+12.5)×1.9
=41.2×(8.1+1.9)+11×8.75+12.5×1.9
=412+11×8.75+12.5×1.9
=412+1.1×87.5+12.5×1.9
=412+1.1×12.5×7+12.5×1.9
=412+12.5×8×1.2
=532
(法2):原式=41.2×8.1+11×8.75+(41.2+12.5)×1.9
=41.2×(8.1+1.9)+11×8.75+19×1.25
=412+11×8.75+(11+8)×1.25
=412+11×(1.25+8.75)+8×1.25=412+110+10=532 【巩固】计算31.4×36+64×43.9
【例5】 计算:2003×2001÷111+2003×73÷37
分析:原式=2003×(2001+73×3)÷111
=2003×2220÷111
=40060
【例6】 下面有两个小数:
试求a+b,a—b,a×b,a÷b.
分析:只需记住小数的四则计算法则就能正确算出.
a+b,a的小数点后面有1998位,b的小数点后面有2000位.小数加法要求数位对齐,然后按整数的加法法则计算,所以
a—b,方法与a+b一样,数位对齐,还要注意退位和补零.因为由12500—8=12492,所以
a×b,a×b的小数点后面应该有1998+2000位,但
125×8=1000,所以:
a÷b,将a、b同时扩大倍,得到: .
【例7】 (873×477-198)÷(476×874+199)
分析:原式=(873×476+873-198)÷(873×476+476+199)
=(873×476+675)÷(873×476+675)
= 1
【例8】 计算:(0.1+0.21+0.321+0.4321)×(0.21+0.321+0.4321+0.54321)-
(0.1+0.21+0.321+0.4321+0.54321)×(0.21+0.321+0.4321)
分析:设x=0.21+0.321+0.4321,y=0.21+0.321+0.4321+0.54321,原式=(0.1+x)×y-(0.1+y)×x
=0.1×(y-x)
= 0.054321
【例9】 计算:2004.05×1997.05-2001.05×1999.05
分析:原式=(3+2001.05)×(1999.05-2)-
2001.05×1999.05
=3×1999.05-2×2001.05-6
=3×1999.05-2×1999.05-2×2-6
=1989.05
【例10】计算:(224466-2244.66)÷(112233-1122.33)
分析:原式=2×(112233-1122.33)÷(112233-1122.33)=2 .
【巩固】765×213÷27+765×327÷27
【例11】若A=1921,B=1949,C=1976,D=2004,
求:(A+B+C-D)+(A+B+D-C)+(A+C+D-B)+(B+C+D-A)的值.
分析:原式=(A+B+C+D)×2 = (1921+1949+1976+2004)×2 =15700 .
练习:
1. 计算:85.42×7903.29+286.5×790.329+7903
2.9×4.323
2. 计算:
3.142+68.6×1.314
3. 计算:3.42×76.3+7.63×57.6+9.18×23.7
4. 计算:9966×6+6678×18
能力检测:
1、若,,试求:,
2、计算:÷
3、计算:7.816×1.45+3.14×2.184+1.69×7.816
4、计算:7.24×0.1+0.5×72.4+0.049×724
5、计算:3.7×15+21×4.5
6、计算:1.8018018÷3.003003
7、计算:3.75×4.23×36-125×0.423×2.8
8、计算:1÷32÷0.05÷0.25÷0.5
9、计算:8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3
10、计算:(112233-112.233)÷(224466-224.466)
11、计算:199.9×19.98-199.8×19.97
12、计算:82.54+835.27-20.38÷2+2×6.23-390.81-9×1.03。